(x", y")

(x', ¥")

(a)

(b}

Fig. 4.5 A line (a) in image space; (b) in parameter space.

4.3 THEHOUGH METHOD FOR CURVE DETECTION

The classical Hough technique for curve detection is applicable if little is known
about the location of a boundary, but its shape can be described as a parametric
curve (e.g., a straight line or conic). Its main advantages are that it is relatively
unaffected by gaps in curves and by noise.

To introduce the method [Duda and Hart 1972], consider the problem of
detecting straight lines in images. Assume that by some process image points have
been selected that have a high likelihood of being on linear boundaries. The Hough
technique organizes these points into straight lines, basically by considering all
possible straight lines at once and rating each on how well it explains the data.

Consider the point x' in Fig. 4.5a, and the equation for a line y = mx + ¢
What are the lines that could pass through x'? The answer is simply all the lines
with mand csatisfying y'= mx’+ c¢. Regarding (x/, ') as fixed, the last equation is
that of a line in m—c space, or parameter space. Repeating this reasoning, a second
point (x”, y") will also have an associated line in parameter space and, further-
more, these lines will intersect at the point (m’, ¢”) which corresponds to the line
AB connecting these points. In fact, all points on the line AB will yield lines in
parameter space which interSéct at the point (m’, ¢’), as shown in Fig. 4.5b.

This relation between image space x and parameter space suggests the follow-
ing algorithm for detecting lines:

Algorithm 4.1: Line Detection with the Hough Algorithm
1. Quantize parameter space between appropriate maximum and minimum

values for cand m.
2. Form an accumulator array 4 (¢, m) whose elements are initially zero.
3. For each point (x,y) in a gradient image such that the strength of the gradient
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exceeds some threshold, increment all points in the accumulator array along
the appropriate line, i.e.,

Ale,m)=A(c,m) +1

for mand ¢ satisfying ¢ = —mx + y within the limits of the digitization.

4, Local maxima in the accumulator array now correspond to collinear points in
the image array. The values of the accumulator array provide a measure of the
number of points on the line.

This technique is generally known as the Hough technique [Hough 1962].

Since m may be infinite in the slope-intercept equation, a better parameteri-
zation of the line is xsin@ + ycosé = r. This produces a sinusoidal curve in (7, 8)
space for fixed x, y, but otherwise the procedure is unchanged.

The generalization of this technique to other curves is straightforward and
this method works for any curve f(x, a) = 0, where a is a parameter vector. (In
this chapter we often use the symbol fas various general functions unrelated to the
image gray-level function.) In the case of a circle parameterized by

(x—a)+ (y—0b)2=r2 4.1)

for fixed x, the modified algorithm 4.1 increments values of a, b, rlying on the sur-
face of a cone. Unfortunately, the computation and the size of the accumulator ar-
ray increase exponentially as the number of parameters, making this technique
practical only for curves with a small number of parameters.

The Hough method is an efficient implementation of a generalized matched
filtering strategy (i.e., a template-matching paradigm). For instance, in the case of
a circle, imagine a template composed of a circle of 1’s (at a fixed radius R) and 0’s
everywhere else. If this template is convolved with the gradient image, the result is
the portion of the accumulator array 4 (a, b, R).

In its usual form, the technique yields a set of parameters for a curve that best
explains the data. The parameters may specify an infinite curve (e.g., a line or para-
bola). Thus, if a finite curve segment is desired, some further processing is neces-
sary to establish end points.

4.3.1 Use of the Gradient

Dramatic reductions in the amount of computation can be achieved if the gradient
direction is integrated into the algorithm [Kimme et al. 1975]. For example, con-
sider the problem of detecting a circle of fixed radius R.

Without gradient information, all values a, b lying on the circle given by
(4.1) are incremented. With the gradient direction, only the points near (g,6) in
Fig. 4.6 need be incremented. From geometrical considerations, the point (a,b) is
given by
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Fig 4.6 Reduction in computation with gradient information
a=x—rsing (4.2)
b=y +rcos¢

where ¢ (x) is the gradient angle returned by an edge operator. Implicit in these
equations is the assumption thai the circle is the boundary of a disk that has gray
levels greater than its surroundings. These equations may also be derived by
differentiating (4.2), recognizing that dy/dx = tan¢, and solving for a and b
between the resultant equation and (4.2). Similar methods can be applied to other
conics. In each case, the use of the gradient saves one dimension in the accumula-
tor array.

The gradient magnitude can also be used as a heuristic in the incrementing
procedure. Instead of incrementing by unity, the accumulator array location may
be incremented by a function of the gradient magnitude. This heuristic can balance
the magnitude of brightness change across a boundary with the boundary length,
but it can lead to detection of phantom lines indicated by a few bright points, or to
missing dim but coherent boundaries.

4.3.2 Some Examples

The Hough technique has been used successfully in a variety of domains. Some ex-
amples include the detection of human hemoglobin fingerprints [Ballard et al.
1975], the detection of tumors in chest films [Kimme et al. 1975], the detection of
storage tanks in aerial images [Lantz et al. 1978], and the detection of ribs in chest
radiographs [Wechsler and Sklansky 1977]. Figure 4.7 shows the tumor-detection
application. A section of the chest film (Fig. 4.7b) is searched for disks of radius 3
units. In Fig. 4.7c, the resultant accumulator array A [a, b, 3] is shown in a pictoral
fashion, by interpreting the array values as gray levels. This process is repeated for
various radii and then a set of likely circles is chosen by setting a radius-dependent
threshold for the accumulator array contents. This result is shown in Fig. 4.7d. The
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(d)

Fig. 4.7 Using the Hough technique for circular shapes. (a) Radiograph. (b) Window. (c)
Accumulator array for r = 3. (d) Results of maxima detection.

circular boundaries detected by the Hough technique are overlaid on the original
image.

4.3.3 Trading Off Work in Parameter Space for Work in Image Space

Consider the example of detecting ellipses that are known to be oriented so that a
principal axis is parallel to the x axis. These can be specified by four parameters.
Using the equation for the ellipse together with its derivative, and substituting for
the known gradient as before, one can solve for two parameters. In the equation
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x is an edge point and xg, yg, @, and b are parameters. The equation for its deriva-
tive is

=1 (4.3)

(x— _ 2
x — xp) N OG-y @y _ 0
a b2 dx

(4.4)

where dy/dx = tan ¢ (x). The Hough algorithm becomes:

Algorithm 4.2: Hough technique applied to ellipses

For each discrete value of xand y, increment the point in parameter space given by
a, b, xy, vy, where

= xp%+ g 4.5)
T Y b ante)” (
Yy =)yox L (4.6)

T (14 gttan?o/pD)"
that is,
Ala, b, xq, yo) == Ala, b, xg, yg) + 1

For a and b each having m values the computational cost is proportional to m?2.

Now suppose that we consider all pairwise combinations of edge elements.
This introduces two additional equations like (4.3) and (4.4), and now the four-
parameter point can be determined exactly. That is, the following equations can be
solved for a unique x, yo, a, b.

", ¥ =1 (4.7a)
(x; — xo) (o, - }’0)2

p 5 =1 (4.7v)
X1~ Xo Vi~ Yo dy _

az + bz E = (47(3)
X2~ X Y2~ Vo dy

+ =0 4,
- e (4.7d)
dy
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Their solution is left as an exercise. The amount of effort in the former case
was proportional to the product of the number of discrete values of a and b,
whereas this case involves effort proportional to the square of the number of edge
elements.

4.3.4 Generalizing the Hough Transform

Consider the case where the object being sought has no simple analytic form, but
has a particular silhouette. Since the Hough technique is so closely related to tem-
plate matching, and template matching can handle this case, it is not surprising that
the Hough technique can be generalized to handle this case also. Suppose for the
moment that the object appears in the image with known shape, orientation, and
scale. (If orientation and scale are unknown, they can be handled in the same way
that additional parameters were handled earlier.) Now pick a reference point in the
silhouette and draw a line to the boundary. At the boundary point compute the gra-
dient direction and store the reference point as a function of this direction. Thus it
is possible to precompute the location of the reference point from boundary points
given the gradient angle. The set of all such locations, indexed by gradient angle,
comprises a table termed the R-table [Ballard 1981]. Remember that the basic stra-
tegy of the Hough technique is to compute the possible loci of reference points in
parameter space from edge point data in image space and increment the parameter
points in an accumulator array. Figure 4.8 shows the relevant geometry and Table
4.1 shows the form of the R-table. For the moment, the reference point coordi-
nates (x,, y.) are the only parameters (assuming that rotation and scaling have
been fixed). Thus an edge point (x, y) with gradient orientation ¢ constrains the
possible reference points to be at {x + r; (¢) cos [a; (®)], y +r,(¢) sin [e; (¢)]}
and so on.

Fig. 4.8 Geometry used to form the
R-Table.
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Table 4.1
INCREMENTATION IN THE GENERALIZED HOUGH CASE

Angle measured
from figure boundary  Set of radii {r¥} where

to reference point r=( a)
QS] rlli r%: ---:rﬂll
#2 2B RN L

(‘bm r{n‘ rzm, vy r:!

m

The generalized Hough algorithm may be described as follows:

Algorithm 4.3: Generalized Hough

Step 0. Make atable (like Table 4.1) for the shape to be located.

Step 1. Form an accumulator array of possible reference points
A O min * Xemaxs Yemin : Yemax) iNitialized to zero.

Step 2. For each edge point do the following:
Step 2.1. Compute ¢ (x)

Step 2.2a. Calculate the possible centers; that is, for each table entry for
¢, compute

x.:=x+r ¢ cosla(p)]

Ye =y+r ¢ sinla(g)]

Step 2.2b. Increment the accumulator array
Alx, y) = A, y) +1

Step 3. Possible locations for the shape are given by maxima in array 4.

The results of using this transform to detect a shape are shown in Fig. 4.9.
Figure 4.9a shows an image of shapes. The R-table has been made for the middle
shape. Figure 4.9b shows the Hough transform for the shape, that is, 4 (x., y.)
displayed as an image. Figure 4.9c shows the shape given by the maxima of
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(c) (d)

Fig. 4.9 Applying the Generalized Hough technique. (a) Synthetic image. (b) Hough
Transform A (x,, y.) for middle shape. (c) Detected shape. (d) Same shape in an aerial

image setting.

A (x,, y.) overlaid on top of the image. Finally, Fig. 4.9d shows the Hough
transform used to detect a pond of the same shape in an aerial image.

What about the parameters of scale and rotation, S and 8 ? These are readily
accommodated by expanding the accumulator array and doing more work in the in-
crementation step. Thus in step 1 the accumulator array is changed to

(xcmin ‘ Xemaxs Yemin - Yemaxs Smin : Smaxr 6min :emux)

and step 2.2ais changed to
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for each table entry for ¢ do
foreach S and 6
x, = x+r(p)Scos [al(p) + 6]
Yo =y +r(¢)Ssin [a(p) + 6]
Finally, step 2.2b is now
Alx, 9,8 08) =A(x, y., S 0) +1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a set of nodes {n;} and arcs between
nodes <n;, n;>. In this section we consider graphs whose arcs may have numeri-
cal weights or costs associated with them. The search for the boundary of an object
is cast as a search for the lowest-cost path between two nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image s (x) and direction image ¢ (x). Now interpret the elements
of the direction image ¢ (x) as nodes in a graph, each with a weighting factor s (x).
Nodes x;, x; have arcs between them if the contour directions ¢ (x,), ¢ (x,) are ap-
propriately aligned with the arc directed in the same sense as the contour direction.
Figure 4.10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x; to x;, X; must be one of the three possi-
ble eight-neighbors in front of the contour direction ¢ (x,) and, furthermore, g (x;)

/
o

AIRrdesvd
:

v

=N

N ! 0

Fig. 4.10 Interpreting a gradient image as a graph (see text).
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