for each table entry for ¢ do
foreach S and 6
x, = x+r(p)Scos [al(p) + 6]
Yo =y +r(¢)Ssin [a(p) + 6]
Finally, step 2.2b is now
Alx, 9,8 08) =A(x, y., S 0) +1

4.4 EDGE FOLLOWING AS GRAPH SEARCHING

A graph is a general object that consists of a set of nodes {n;} and arcs between
nodes <n;, n;>. In this section we consider graphs whose arcs may have numeri-
cal weights or costs associated with them. The search for the boundary of an object
is cast as a search for the lowest-cost path between two nodes of a weighted graph.
Assume that a gradient operator is applied to the gray-level image, creating
the magnitude image s (x) and direction image ¢ (x). Now interpret the elements
of the direction image ¢ (x) as nodes in a graph, each with a weighting factor s (x).
Nodes x;, x; have arcs between them if the contour directions ¢ (x,), ¢ (x,) are ap-
propriately aligned with the arc directed in the same sense as the contour direction.
Figure 4.10 shows the interpretation. To generate Fig. 4.10b impose the following
restrictions. For an arc to connect from x; to x;, X; must be one of the three possi-
ble eight-neighbors in front of the contour direction ¢ (x,) and, furthermore, g (x;)

/
o

AIRrdesvd
:

v

=N

N ! 0

Fig. 4.10 Interpreting a gradient image as a graph (see text).

Sec. 44 Edge Following as Graph Searching 131

132

> T g(x)) > T, where T'is a chosen constant, and |{ [¢ (x;) — ¢ (x;)] mod 27}| <
/2. (Any or all of these restrictions may be modified to suit the requirements of a

particular problem.)
To generate a path in a graph from x4 to Xz one can apply the well-known

technique of heuristic search [Nilsson 1971, 1980]. The specific use of heuristic
search to follow edges in images was first proposed by [Martelli 1972]. Suppose:

1. That the path should follow contours that are directed from x4 to xg

2. That we have a method for generating the successor nodes of a given node
(such as the heuristic described above)

3. That we have an evaluation function f (x j) which is an estimate of the optimal
cost path from x 4 to x5 constrained to go through x;

Nilsson expresses f (x;) as the sum of two components: g (x,), the estimated cost
of journeying from the start node x4 to x;, and k (x;), the estimated cost of the path

from x; to x, the goal node.

With the foregoing preliminaries, the heuristic search algorithm (called the A
algorithm by Nilsson) can be stated as:

Algorithm 4.4: Heuristic Search (the A Algorithm)

1. ““Expand” the start node (put the successors on a list called OPEN with
pointers back to the start node).

2. Remove the node x; of minimum ffrom OPEN. If x; = xp, then stop. Trace
back through pointers to find optimal path. If OPEN is empty, fail.

3. Else expand node x;, putting successors on OPEN with pointers back to x;. Go
to step 2.

The component 4 (x;) plays an important role in the performance of the algorithm;
if 1 (x;) = O for all i, the algorithm is a minimum-cost search as opposed to a heuristic
search. If h(x;) > h*(x;) (the actual optimal cost), the algorithm may run faster,
but may miss the minimum-cost path. If #(x;) < A*(x,), the search will always
produce a minimum-cost path, provided that 4 also satisfies the following con-
sistency condition:

If for any two nodes X; and X, k (X;, X;) is the minimum cost of getting from
X, to x; (if possible), then

k(x;, Xj) = h*(x;) T h*(x_f)

With our edge elements, there is no guarantee that a path can be found since
there may be insurmountable gaps between x, and x. If finding the edge is cru-
cial, steps should be taken to interpolate edge elements prior to the search, or gaps
may be crossed by using the edge element definition of [Martelli 1972]. He defines

Ch. 4 Boundary Detection

edges on the image grid structure so that an edge can have a direction even though
there is no local gray-level change. This definition is depicted in Fig. 4.11a.

4.4.1 Good Evaluation Functions

A good evaluation function has components specific to the particular task as well as
components that are relatively task-independent. The latter components are dis-
cussed here.

1. Edge strength. If edge strength is a factor, the cost of adding a particular edge
element at x can be included as

M - s(x) where M = max s(x)

2. Curvature. If low-curvature boundaries are desirable, curvature can be meas-
ured as some monotonically increasing function of
difflg (x) — ¢(x))]
where diff measures the angle between the edge elements at x, and x;.
3. Proximity to ar approximation. If an approximate boundary is known, boun-
daries near this approximation can be favored by adding:
d = dist (x;,B)
to the cost measure. The dist operator measures the minimum distance of the
new point x; to the approximate boundary B.

4. Estimates of the distance to the goal. If the curve is reasonably linear, points near
the goal may be favored by estimating / as d (x;, Xg,), Where d is a distance
measure.

Specific implementations of these measures appear in [Ashkar and Modestino
1978; Lester et al. 1978].

4.4.2 Finding All the Boundaries

What if the objective is to find a// boundaries in the image using heuristic search?
In one system [Ramer 1975] Hueckel’s operator (Chapter 3) is used to obtain

. .

(a} (b} (c)

Fig. 4.11 Successor conventions in heuristic search (see text).

Sec. 44 Edge Following as Graph Searching 133

134

strokes, another name for the magnitude and direction of the local gray-level
changes. Then these strokes are combined by heuristic search to form sequences
of edge elements called streaks. Streaks are an intermediate organization which are
used to assure a slightly broader coherence than is provided by the individual
Hueckel edges. A bidirectional search is used with four eight-neighbors defined in
front of the edge and four eight-neighbors behind the edge, as shown in Fig. 4.11b.
The search algorithm is as follows:

1. Scan the stroke (edge) array for the most prominent edge.

2. Search in front of the edge until no more successors exist (i.e., a gap is encoun-
tered).

3. Search behind the edge until no more predecessors exist.

4. If the bidirectional search generates a path of 3 or more strokes, the path is a
streak. Store it in a streak list and go to step 1.

Strokes that are part of a streak cannot be reused; they are marked when used
and subsequently skipped.

There are other heuristic procedures for pruning the streaks to retain only
prime streaks. These are shown in Fig. 4.12. They are essentially similar to the re-

){/‘frf
’)/f//
e i
7
,;///
Z%
’_’_—V"".—-‘— A 11”4‘#\
\ \
o T {

Fig.' 4,12 Operations in the creation of prime streaks.

Ch. 4 Boundary Detection

(a) (b)

(c) (d)

(e) (f)
Fig. 4.13 Ramer’s results.

laxation operations described in Section 3.3.5. The resultant streaks must still be
analyzed to determine the objects they represent. Nevertheless, this method
represents a cogent attempt to organize bottom-up edge following in an image. Fig.
4.13 shows an example of Ramer’s technique.

Sec. 4.4 Edge Following as Graph Searching 135

136

4.4.3 Alternatives to the A Algorithm

The primary disadvantage with the heuristic search method is that the algorithm
must keep track of a set of current best paths (nodes), and this set may become
very large. These nodes represent tip nodes for the portion of the tree of possible
paths that has been already examined. Also, since all the costs are nonnegative, a
good path may eventually look expensive compared to tip nodes near the start
node. Thus, paths from these newer nodes will be extended by the algorithm even
though, from a practical standpoint, they are unlikely. Because of these disadvan-
tages, other less rigorous search procedures have proven to be more practical, five
of which are described below.

Pruning the Tree of Alternatives

At various points in the algorithm the tip nodes on the OPEN list can be
pruned in some way. For example, paths that are short or have a high cost per unit
length can be discriminated against. This pruning operation can be carried out
whenever the number of alternative tip nodes exceeds some bound.

Modified Depth-First Search

Depth-first search is a meaningful concept if the search space is structured as
a tree. Depth-first search means always evaluating the most recent expanded son.
This type of search is performed if the OPEN list is structured as a stack in the A
algorithm and the top node is always evaluated next. Modifications to this method
use an evaluation function f to rate the successor nodes and expand the best of
these. Practical examples can be seen in [Ballard and Sklansky 1976; Wechsler and
Sklansky 1977; Persoon 1976].

Least Maximum Cost

In this elegant idea [Lester 1978], only the maximume-cost arc of each path is
kept as an estimate of g. This is like finding a mountain pass at minimum altitude.
The advantage is that g does not build up continuously with depth in the search
tree, so that good paths may be followed for a long time. This technique has been
applied to finding the boundaries of blood cells in optical microscope images. Some
results are shown in Fig. 4.14.

Branch and Bound

The crux of this method is to have some upper bound on the cost of the path
[Chien and Fu 1974]. This may be known beforehand or may be computed by actu-
ally generating a path between the desired end points. Also, the evaluation func-
tion must be monotonically increasing with the length of the path. With these con-
ditions we start generating paths, excluding partial paths when they exceed the
current bound.

Modified Heuristic Search

Sometimes an evaluation function that assigns negative costs leads to good
results. Thus good paths keep getting better with respect to the evaluation func-
tion, avoiding the problem of having to look at all paths near the starting point.

Ch. 4 Boundary Detection

) R 5

Fig. 4.14 Using least maximum cost in heuristic search to find cell boundaries in micro-
scope images. (a) A stage in the search process. (b) The completed boundary.

However, the price paid is the sacrifice of the mathematical guarantee of finding
the least-cost path. This could be reflected in unsatisfactory boundaries. This
method has been used in cineangiograms with satisfactory results [Ashkar and
Modestino 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 1962] is a technique for solving op-
timization problems when not all variables in the evaluation function are interre-
lated simultaneously. Consider the problem

max A (xq, x3, X3, x4) (4.8)

X

If nothing is known about A, the only technique that guarantees a global maximum
is exhaustive enumeration of all combinations of discrete values of xi,.. ., xa.
Suppose that

h() = h] (xl, xz) + hz (XQ, X3) + h3 (X3, X4) (49)

x1 only depends on x; in 4;. Maximize over x; in A; and tabulate the best value of
hy (x), x7) for each x:

S1 Gey) = max h; (xq, x,) (4.10)
X1

Since the values of #; and /3 do not depend on x;, they need not be considered at

Sec. 4.5 Edge following as Dynamic Programming 137

	4.4 Edge Following as Graph Searching, p.131
	4.4.1 Good Evaluation Functions, p.133
	4.4.2 Finding All the Boundaries, p.133
	4.4.3 Alternatives to the A Algorithm, p.136

