) R 5

Fig. 4.14 Using least maximum cost in heuristic search to find cell boundaries in micro-
scope images. (a) A stage in the search process. (b) The completed boundary.

However, the price paid is the sacrifice of the mathematical guarantee of finding
the least-cost path. This could be reflected in unsatisfactory boundaries. This
method has been used in cineangiograms with satisfactory results [Ashkar and
Modestino 1978].

4.5 EDGE FOLLOWING AS DYNAMIC PROGRAMMING

4.5.1 Dynamic Programming

Dynamic programming [Bellman and Dreyfus 1962] is a technique for solving op-
timization problems when not all variables in the evaluation function are interre-
lated simultaneously. Consider the problem

max A (xq, x3, X3, x4) (4.8)

X

If nothing is known about A, the only technique that guarantees a global maximum
is exhaustive enumeration of all combinations of discrete values of xi,.. ., xa.
Suppose that

h() = h] (xl, xz) + hz (XQ, X3) + h3 (X3, X4) (49)

x1 only depends on x; in 4;. Maximize over x; in A; and tabulate the best value of
hy (x), x7) for each x:

S1 Gey) = max h; (xq, x,) (4.10)
X1

Since the values of #; and /3 do not depend on x;, they need not be considered at
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this point. Continue in this manner and eliminate x, by computing f5 (x3) as

fz (X3) = maX[f] (xz) + Ay ()Cz, X3)] (4.11)
X2
and
f3(xg) = max [f (x3) + A3(x3, x4)] (4.12)
x3
so that finally
max 4 = max f3 (x,) (4.13)
X; Xy

Generalizing the example to N variables, where f; (x;) = 0,
.fn-'l ('xn) = max [.fn*‘? (xn"-l) + hn—](xnglj xn)] (414)

n—1

X

max A(x;, ..., xy) = max fiy- Gxey)

N
If each x; took on 20 discrete values, then to compute fy (xy;) one must evaluate
the maximand for 20 different combinations of xy and xy.;, so that the resultant
computational effort involves (N — 1)20? + 20 such evaluations. This is a striking
improvement over exhaustive evaluation, which would involve 20" evaluations of
h!

Consider the artificial example summarized in Table 4.2. In this example,
each x can take on one of three discrete values. The #; are completely described by
their respective tables. For example, the value of 4,(0, 1) = 5. The solution steps
are summarized in Table 4.3. In step 1, for each x, the value of x, that maximizes
#1(x,, x,) is computed. This is the largest entry in each of the columns of 4. Store
the function value as f; (x,) and the optimizing value of x; also as a function of x,.
In step 2, add f;(x,) to h,(x,, x3). This is done by adding f; to each row of #,,
thus computing the quantity inside the braces of (4.11). Now to complete step 2,
for each x3, compute the x, that maximizes s, + f by selecting the largest entry
in each row of the appropriate table. The rest of the steps are straightforward once
these are understood. The solution is found by tracing back through the tables. For
example, for x4 = 2 we see that the best x; is —1, and therefore the best x, is 3 and
x1 is 1. This step is denoted by arrows.

Table 4.2
DEFINITION OF h
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Xy X5 X4
1 2 3 -1 0 1 1 2 3
X1 X2 X3
0 5 7 3 1 1 7 1 =1 7 9 8
1 2 1 8 2 1 1 3 0 2 3 6
2 6 3 3 3 5 6 2 1 5 4 1
hy hy hg
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Table 4.3
METHOD OF SOLUTION USING DYNAMIC PROGRAMMING

X2 fi X4
1 6 2
Step 1
2 7 0
9| = |
-
i
\
\\__‘
et
~
<
\\
X5 \
X =1 0 1 X3 fs Xy }
/
1 |7 |13 ] 2 ,@ 13 @/
Step 2 F/
2 8 8 \ 0 14 3
\
\
O|® SIEE
N
N
~
B
~
~
~
~
~
~
~
N
X4 \
1 2 3 X4 fs Xz N\
Xq \
\
\
ol 1IDEN
Step 3 /f
IREE O
1 15 14 11 3 21 -1

Step 4:  Optimal x;s are found by examing tables
(dashed line shows the order in which they
are recovered).

Solution: h* =22
x{=1,x3=3,x=-1,x;=2
4.5.2 Dynamic Programming for Images
To formulate the boundary-following procedure as dynamic programming, one

must define an evaluation function that embodies a notion of the **best boundary”
[Montanari 1971; Ballard 1976]. Suppose that a local edge detection operator is ap-
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plied to a gray-level picture to produce edge magnitude and direction information.
Then one possible criterion for a ‘‘good boundary’’ is a weighted sum of high cu-
mulative edge strength and low cumulative curvature; that is, for an r-segment
curve,

n n—1 ;
hxy,....x,) = 2 s(x) +a) q(x;, Xeq) (4.16)
k=1 k=1
where the implicit constraint is that consecutive x,’s must be grid neighbors:
Ik = xaI<V2 4.17)
g (xXy, Xp11) = diff [ (x;), & (x;41)] (4.18)

where « is negative. The function g we take to be edge strength, i.e., g(x) = s(x).
Notice that this evaluation function is in the form of (4.9) and can be optimized in
stages:

fo (x)=0 (4.19)

f] (Xz) = max [S(X]) e aq(xl, Xz) + fo(Xl)] (4.20)
Xg

fk (X;H_]) = max [S (Xk) + ag (Xk, Xk+l) + fk—l(xk)] (421)
Xk

These equations can be put into the following steps:

Algorithm 4.5: Dynamic Programming for Edge Finding

1. Setk =1
Consider only x such that s (x) > T, For each of these x, define low-curvature
pixels ‘““in front of * the contour direction.

3. Each of these pixels may have a curve emanating from it. For k=1, the curve
is one pixel in length. Join the curve to x that optimizes the left-hand side of
the recursion equation.

4. If k=N, pick the best fy_ and stop. Otherwise, set k = k + 1 and go to step
2.

This algorithm can be generalized to the case of picking a curve emanating from x
(that we have already generated): Find the end of that curve, and join the best of
three curves emanating from the end of that curve. Figure 4.15 shows this process.
The equations for the general case are
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Fig. 4.15 DP optimization for boundary tracing.

f[)(xl) E0

Ji X)) = max[s(x;) + aq (x4, 1(x441))
Xk

 EEAEY S

+ fi-1 (x)] (4.22)

where the curve length n is related to « by a building sequence 7 (/) such that » (1)
=1,n(L) = N,and n(I) — n(I—1) is a member of {n(k)|k =1, ..., | — 1}.
Also, #(x;) is a function that extracts the tail pixel of the curve headed by x,.
Further details may be found in [Ballard 1976].

Results from the area of tumor detection in radiographs give a sense of this
method’s performance. Here it is known that the boundary inscribes an approxi-
mately circular tumor, so that circular cues can be used to assist the search. In Fig.
4.16, (a) shows the image containing the tumor, (b) shows the cues, and (c) shows
the boundary found by dynamic programming overlaid on the image.

Another application of dynamic programming may be found in the pseudo-
parallel road finder of Barrow [Barrow 1976].

4.5.3 Lower Resolution Evaluation Functions

In the dynamic programming formulation just developed, the components g (x;)
and g (x;, x,.1) in the evaluation function are very localized; the variables x for
successive sand g are in fact constrained to be grid neighbors. This need not be the
case: The x can be very distant from each other without altering the basic tech-
nique. Furthermore, the functions g and g need not be local gradient and absolute
curvature, respectively, but can be any functions defined on permissible x. This
general formulation of the problem for images was first described by [Fischler and
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(a)

Fig. 4.16 Results of DP in boundary
tracing. (a) Image containing tumor. (b)
Contour cues. (¢) Resultant boundary.

(c)

Elschlager 1973]. The Fischler and Elschlager formulation models an object as a
set of parts and relations between parts, represented as a graph. Template func-
tions, denoted by g (x), measure how well a part of the model matches a part of the
image at the point x. (These local functions may be defined in any manner whatso-
ever.) “Relational functions,” denoted by g, (x, y), measure how well the posi-
tion of the match of the kth part at (x) agrees with the position of the match of the
Jjth part at (y).

The basic notions are shown by a technique simplified from [Chien and Fu
1974] to find the boundaries of lungs in chest films. The lung boundaries are
modeled with a polygonal approximation defined by the five key points. These
points are the top of the lung, the two clavicle-lung junctions, and the two lower
corners. To locate these points, local functions g (x,) are defined which should be
maximized when the corresponding point x, is correctly determined. Similarly,
q (x, xj-) is a function relating points x; and x;. In their case, Chien and Fu used
the following functions:
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T(x) = template centered at x computed as
an aggregate of a set of chest radiographs
T(x — x,)f(x)
8 () = 2 =777

and
0 (x4, x;) = expected angular orientation of x; from x;

g (x, x;) = |6 (x,, x;) —arctan oL
X — xj-
With this formulation no further modifications are necessary and the solution may
be obtained by solving Egs. (4.19) through (4.21), as before. For purposes of com-
parison, this method was formalized using a lower-resolution objective function.
Figure 4.17 shows Chien and Fu’s results using this method with five template
functions.

4.5.4 Theoretical Questions about Dynamic Programming

The Interaction Graph

This graph describes the interdependence of variables in the objective func-
tion. In the examples the interaction graph was simple: Each variable depended on
only two others, resulting in the graph of Fig. 4.18a. A more complicated case is
the one in 4.18b, which describes an objective function of the following form:

h() = hl (x1- XQ) + hz (X2, X3, Xq) + h3 (X_}, X4, Xs, Xﬁ)
For these cases the dynamic programming technique still applies, but the computa-
tional effort increases exponentially with the number of interdependencies. For
example, to eliminate x, in A5, all possible combinations of x; and x4 must be con-
sidered. To eliminate x; in k3, all possible combinations of x4, x5, and x4, and so
forth.
Dynamic Programming versus Heuristic Search

It has been shown [Martelli 1976] that for finding a path in a graph between
two points, which is an abstraction of the work we are doing here, heuristic search
methods can be more efficient than dynamic programming methods. However, the
point to remember about dynamic programming is that it efficiently builds paths
from multiple starting points. If this is required by a particular task, then dynamic
programming would be the method of choice, unless a very powerful heuristic
were available.

4,6 CONTOUR FOLLOWING
If nothing is known about the boundary shape, but regions have been found in the
image, the boundary is recovered by one of the simplest edge-following opera-
tions: “‘blob finding’’ in images. The ideas are easiest to present for binary images:
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T

Pixels S =
(a) (b)

Fig. 4.17 Results of using local templates and global relations. (a) Model. (b) Results.

Given a binary image, the goal is find the boundaries of all distinct regions in the
image.

This can be done simply by a procedure that functions like Papert’s turtle
[Papert 1973; Duda and Hart 1973]:

1. Scan the image until a region pixel is encountered.
2. Ifitis aregion pixel, turn left and step; else, turn right and step.
3. Terminate upon return to the starting pixel.

Figure 4.19 shows the path traced out by the procedure. This procedure requires
the region to be four-connected for a consistent boundary. Parts of an eight-
connected region can be missed. Also, some bookkeeping is necessary to generate
an exact sequence of boundary pixels without duplications.

A slightly more elaborate algorithm due to [Rosenfeld 1968] generates the
boundary pixels exactly. It works by first finding a four-connected background
pixel from a known boundary pixel. The next boundary pixel is the first pixel en-
countered when the eight neighbors are examined in a counter clockwise order
from the background pixel. Many details have to be introduced into algorithms
that follow contours of irregular eight-connected figures. A good exposition of
these is given in [Rosenfeld and Kak 1976].

4.6.1 Extension to Gray-Level Images

The main idea behind contour following is to start with a point that is believed to
be on the boundary and to keep extending the boundary by adding points in the
contour directions. The details of these operations vary from task to task. The gen-
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Fig. 4.18 Interaction graphs for DP (see text).

eralization of the contour follower to gray-level images uses local gradients with a
magnitude s(x) and direction ¢ (x) associated with each point x. ¢ points in the
direction of maximum change. If x is on the boundary of an image object, neigh-
boring points on the boundary should be in the general direction of the contour
directions, ¢(x) + @/2, as shown by Fig. 4.20. A representative procedure is

adapted from [Martelli 1976]:

1. Assume that an edge has been detected up to a point x;. Move to the point x;
adjacent to x; in the direction perpendicular to the gradient of x;. Apply the
gradient operator to x ; if its magnitude is greater than (some) threshold, this

point is added to the edge.

2. Otherwise, compute the average gray level of the 3 X 3 array centered on x;,
compare it with a suitably chosen threshold, and determine whether x; is in-

side or outside the object.

3. Make another attempt with a point x, adjacent to x; in the direction perpendic-
ular to the gradient at x; plus or minus (7/4), according to the outcome of the

previous test.
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Fig. 4.19 Finding the boundary in a

binary image.

145



146

\

NN

N

Local edge

~y Search  Fig. 4.20 Angular orientations for
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4.6.2 Generalization to Higher-Dimensional Image Data

The generalization of contour following to higher-dimensional spaces is straight-
forward [Liu 1977; Herman and Liu 1978]. The search involved is, in fact, slightly
more complex than contour following and is more like the graph searching
methods described in Section 4.4. Higher-dimensional image spaces arise when the
image has more than two spatial dimensions, is time-varying, or both. In these im-
ages the notion of a gradient is the same (a vector describing the maximum gray-
level change and its corresponding direction), but the intuitive interpretation of
the corresponding edge element may be difficult. In three dimensions, edge ele-
ments are primitive surface elements, separating volumes of differing gray level.
The objective of contour following is to link together neighboring surface elements
with high gradient modulus values and similar orientations into larger boundaries.
In four dimensions, ‘‘edge elements’ are primitive volumes; contour following
links neighboring volumes with similar gradients.

The contour following approach works well when there is little noise present
and no “‘spurious’’ boundaries. Unfortunately, if either of these conditions is
present, the contour-following algorithms are generally unsatisfactory; they are
easily thwarted by gaps in the data produced by noise, and readily follow spurious
boundaries. The methods described earlier in this chapter attempt to overcome
these difficulties through more elaborate models of the boundary structure.

EXERCISES

4.1 Specify a heuristic search algorithm that will work with “‘crack’’ edges such as those in
Fig. 3.12.

4.2 Describe a modification of Algorithm 4.2 to detect parabolae in gray-level images.

4.3 Suppose that a relation 4 (x), x¢) is added to the model described by Fig. 4.18a so
that now the interaction graph is cyclical. Show formally how this changes the optimi-
zation steps described by Egs. (4.11) through (4.13).

4.4 Show formally that the Hough technique without gradient direction information is
equivalent to template matching (Chapter 3).
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4.5 Extend the Hough technique for ellipses described by Egs. (4.7a) through (4.7d) to
ellipses oriented at an arbitrary angle @ to the x axis.

4.6 Show how to use the generalized Hough technique to detect hexagons.
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