Region
Growing | 5

5.1 REGIONS

Chapter 4 concentrated on the linear features (discontinuities of image gray level)
that often correspond to object boundaries, interesting surface detail, and so on.
The ““‘dual” problem to finding edges around regions of differing gray level is to
find the regions themselves. The goal of region growing is to use image characteris-
tics to map individual pixels in an input image to sets of pixels called regions. An
image region might correspond to a world object or a meaningful part of one.

Of course, very simple procedures will derive a boundary from a connected
region of pixels, and conversely can fill a boundary to obtain a region. There are
several reasons why both region growing and line finding survive as basic segmen-
tation techniques despite their redundant-seeming nature. Although perfect re-
gions and boundaries are interconvertible, the processing to find them initially
differs in character and applicability; besides, perfect edges or regions are not al-
ways required for an application. Region-finding and line-finding techniques can
cooperate to produce a more reliable segmentation.

The geometric characteristics of regions depend on the domain. Usually, they
are considered to be connected two-dimensional areas. Whether regions can be
disconnected, non-simply connected (have holes), should have smooth boun-
daries, and so forth depends on the region-growing technique and the goals of the
work. Ultimately, it is often the segmentation goal to partition the entire image
into quasi-disjoint regions. That is, regions have no two-dimensional overlaps, and
no pixel belongs to the interior of more than one region. However, there is no sin-
gle definition of region —they may be allowed to overlap, the whole image may not
be partitioned, and so forth.

Our discussion of region growers will begin with the most simple kinds and
progress to the more complex. The most primitive region growers use only aggre-
gates of properties of local groups of pixels to determine regions. More sophisti-
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cated techniques ‘‘grow’’ regions by merging more primitive regions. To do this in
a structured way requires sophisticated representations of the regions and boun-
daries. Also, the merging decisions can be complex, and can depend on descriptions
of the boundary structure separating regions in addition to the region semantics. A
good survey of early techniques is [Zucker 1976].

The techniques we consider are:

1. Local techniques. Pixels are placed in a region on the basis of their properties or
the properties of their close neighbors.

2. Global technigues. Pixels are grouped into regions on the basis of the properties
of large numbers of pixels distributed throughout the image.

3. Splitting and merging techniques. The foregoing techniques are related to indivi-
dual pixels or sets of pixels. State space techniques merge or split regions using
graph structures to represent the regions and boundaries. Both local and global
merging and splitting criteria can be used.

The effectiveness of region growing algorithms depends heavily on the appli-
cation area and input image. If the image is sufficiently simple, say a dark blob on a
light background, simple local techniques can be surprisingly effective. However,
on very difficult scenes, such as outdoor scenes, even the most sophisticated tech-
niques still may not produce a satisfactory segmentation. In this event, region
growing is sometimes used conservatively to preprocess the image for more
knowledgeable processes [Hanson and Riseman 1978].

In discussing the specific algorithms, the following definitions will be helpful.
Regions R, are considered to be sets of points with the following properties:

x, in aregion R is connected to x; iff there
is a sequence {x;, ..., x;} such that x, and x,, (5.1)
are connected and all the points are in R.

R is a connected region if the set of points x in R has the (5.2)
property that every pair of points is connected.

m
I, the entire image = |J R, (5.3)
k=1

RNAR=¢, i#=j (5.4)

A set of regions satisfying (5.2) through (5.4) is known as a partition. In seg-
mentation algorithms, each region often is a unique, homogeneous area. That is,
for some Boolean function H (R) that measures region homogeneity,

H(R,) = trueforall k (5.5)
H(R;\J R;) = false for i= (5.6)

Note that R, does not have to be connected. A weaker but still useful criterion is
that neighboring regions not be homogeneous.

Ch. 5 Region Growing



5.2 ALOCAL TECHNIQUE: BLOB COLORING

The counterpart to the edge tracker for binary images is the blob-coloring algo-
rithm. Given a binary image containing four-connected blobs of 1’s on a back-
ground of 0’s, the objective is to ‘‘color each blob’”; that is, assign each blob a
different label. To do this, scan the image from left to right and top to bottom with
a special L-shaped template shown in Fig. 5.1. The coloring algorithm is as follows.

Algorithm 5.1: Blob Coloring
Let the initial color, k = 1. Scan the image from left to right and top to bottom.
If £ (x¢) = 0 then continue

else
begin

if (f(xy) =1and f(x;) =0)
then color (x) := color (xy)

if (f(x,) =1and f(xy) =0)
then color (x¢) := color (x;)

if (f(x,) =1land f(xy) =1)

then begin
color (x¢) := color (x;)
color (x;) is equivalent to color (x)
end

comment: two colors are equivalent.

lf(f(xL) o Oandf(xu) =0)
thencolor (x;) :=k; k:=k+1

comment: new color

end

After one complete scan of the image the color equivalences can be used to assure
that each object has only one color. This binary image algorithm can be used as a
simple region-grower for gray-level images with the following modifications. If in a

.

X, X, Fig. 5.1 L-shaped template for blob
coloring.
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gray-level image f (x.) is approximately equal to f(x,), assign x to the same re-
gion (blob) as x . This is equivalent to the condition f(x¢) = f(xy) = 1in Al-
gorithm 5.1. The modifications to the steps in the algorithm are straightforward.

5.3 GLOBAL TECHNIQUES: REGION GROWING VIA THRESHOLDING

Number
of
pixels

152

This approach assumes an object-background image and picks a threshold that
divides the image pixels into either object or background:

x is part of the Object iff f(x) > T
Otherwise it is part of the Background

The best way to pick the threshold T'is to search the histogram of gray levels,
assuming it is bimodal, and find the minimum separating the two peaks, as in Fig.
5.2. Finding the right valley between the peaks of a histogram can be difficult when
the histogram is not a smooth function. Smoothing the histogram can help but
does not guarantee that the correct minimum can be found. An elegant method for
treating bimodal images assumes that the histogram is the sum of two composite
normal functions and determines the valley location from the normal parameters
[Chow and Kaneko 1972].

The single-threshold method is useful in simple situations, but primitive. For
example, the region pixels may not be connected, and further processing such as
that described in Chapter 2 may be necessary to smooth region boundaries and re-
move noise. A common problem with this technique occurs when the image has a
background of varying gray level, or when collections we would like to call regions
vary smoothly in gray level by more than the threshold. Two modifications of the
threshold approach to ameliorate the difficulty are: (1) high-pass filter the image to
deemphasize the low-frequency background variation and then try the original
technique; and (2) use a spatially varying threshold method such as that of [Chow
and Kaneko 1972].

The Chow-Kaneko technique divides the image up into rectangular subim-
ages and computes a threshold for each subimage. A subimage can fail to have a
threshold if its gray-level histogram is not bimodal. Such subimages receive inter-

Gray level
Fig. 5.2 Threshold determination
Threshold from gray-level histogram.
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polated thresholds from neighboring subimages that are bimodal, and finally the
entire picture is thresholded by using the separate thresholds for each subimage.

5.3.1 Thresholding in Multidimensional Space

An interesting variation to the basic thresholding paradigm uses color images; the
basic digital picture function is vector-valued with red, blue, and green com-
ponents. This vector is augmented with possibly nonlinear combinations of these
values so that the augmented picture vector has a number of components. The
idea is to re-represent the color solid redundantly and hope to find color parame-
ters for which thresholding does the desired segmentation. One implementation of
this idea used the red, green, and blue color components; the intensity, saturation,
and hue components; and the N.T.S.C. Y, I, Q components (Chapter 2) [Ohlander
etal. 1979].

The idea of thresholding the components of a picture vector is used in a prim-
itive form for multispectral LANDSAT imagery [Robertson et al. 1973]. The novel
extension in this algorithm is the recursive application of this technique to nonrec-
tangular subregions.

The region partitioning is then as follows:

Algorithm 5.2: Region Growing via Recursive Splitting

1. Consider the entire image as a region and compute histograms for each of the
picture vector components.

2. Apply a peak-finding test to each histogram. If at least one component passes
the test, pick the component with the most significant peak and determine two
thresholds, one either side of the peak (Fig. 5.3). Use these thresholds to
divide the region into subregions.

3. Each subregion may have a ““noisy’’ boundary, so the binary representation of
the image achieved by thresholding is smoothed so that only a single con-
nected subregion remains. For binary smoothing see ch. 8 and [Rosenfeld and
Kak 1976].

4. Repeat steps 1 through 3 for each subregion until no new subregions are
created (no histograms have significant peaks).

A refinement of step 2 of this scheme is to create histograms in higher-
dimensional space [Hanson and Riseman 1978]. Multiple regions are often in the
same histogram peak when a single measurement is used. The advantage of the
multimeasurement histograms is that these different regions are often separated
into individual peaks, and hence the segmentation is improved. Figure 5.4 shows
some results using a three-dimensional RGB color space.

The figure shows the clear separation of peaks in the three-dimensional histo-
gram that is not evident in either of the one-dimensional histograms. How many
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Fig. 5.3 Peak detection and threshold determination. (a) Original image. (b) Histograms. (c) Image segments
resulting from first histogram peak.
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Fig. 5.3 (d) Final segments.

(d)

dimensions should be used? Obviously, there is a trade-off here: As the dimen-
sionality becomes larger, the discrimination improves, but the histograms are
more expensive to compute and noise effects may be more pronounced.

5.3.2 Hierarchical Refinement

This technique uses a pyramidal image representation (Section 3.7) [Harlow and
Eisenbeis 1973]. Region growing is applied to a coarse resolution image. When the
algorithm has terminated at one resolution level, the pixels near the boundaries of
regions are disassociated with their regions. The region-growing process is then re-
peated for just these pixels at a higher-resolution level. Figure 5.5 shows this struc-
ture.

5.4 SPLITTING AND MERGING

Given a set of regions R, k = 1,...,m, a low-level segmentation might require the
basic properties described in Section 5.1 to hold. The important properties from
the standpoint of segmentation are Egs. (5.5) and (5.6).

If Eq. (5.5) is not satisfied for some k, it means that that region is inhomo-
geneous and should be split into subregions. If Eq. (5.6) is not satisfied for some i
and j, then regions iand jare collectively homogeneous and should be merged into
a single region. .

In our previous discussions we used

true if all neighboring pairs of points
H(R) = in R aresuch that f(x) — f(y) < T (5.7
false otherwise

and

true if the pointsin R passa
H(R) = bimodality or peak test (5.8)
false otherwise

Sec. 5.4 Splitting and Merging 155
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Fig. 5.4 Multi-dimensional
histograms in segmentation. (a) Image.
(b) RGB histogram showing successive
planes through a 16 x 16 x 16 color
space. (c) Segments. (See color inserts.)
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Fig. 5.5 Hierarchical region refinement.

A way of working toward the satisfaction of these homogeneity criteria is the
split-and-merge algorithm [Horowitz and Pavlidis 1974]. To use the algorithm it is
necessary to organize the image pixels into a pyramidal grid structure of regions. In
this grid structure, regions are organized into groups of four. Any region can be
split into four subregions (except a region consisting of only one pixel), and the ap-
propriate groups of four can be merged into a single larger region. This structure is
incorporated into the following region-growing algorithm.

Algorithm 5.3: Region Growing via Split and Merge [Horowitz and Pavlidis
1974]

1. Pick any grid structure, and homogeneity property H. If for any region R in
that structure, H (R) = false, split that region into four subregions. If for any
four appropriate regions Ry ,..., Rya, H(Rpy U Ria U Ris U Rys) = true,
merge them into a single region. When no regions can be further split or
merged, stop.

2. If there are any neighboring regions R; and R; (perhaps of different sizes) such
that H (R;|J R;) = true, merge these regions.

5.4.1 State-Space Approach to Region Growing

The ““classical’® state-space approach of artificial intelligence [Nilsson 1971, 1980]
was first applied to region growing in [Brice and Fennema 1970] and significantly
extended in [Feldman and Yakimovsky 1974]. This approach regards the initial
two-dimensional image as a discrete state, where every sample point is a separate
region. Changes of state occur when a boundary between regions is either removed
or inserted. The problem then becomes one of searching allowable changes in state
to find the best partition.

Sec. 5.4 Splitting and Merging 157
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o GNP N G O Grey level data  representation [Brice and Fennema
+0 +0 +0 +0 + 1970].

An important part of the state-space approach is the use of data structures to
allow regions and boundaries to be manipulated as units. This moves away from
earlier techniques, which labeled each individual pixel according to its region. The
high-level data structures do away with this expensive practice by representing re-
gions with their boundaries and then keeping track of what happens to these boun-
daries during split-and merge-operations.

5.4.2 Low-level Boundary Data Structures

A useful representation for boundaries allows the splitting and merging of regions
to proceed in a simple manner [Brice and Fennema 1970]. This representation in-
troduces the notion of a supergrid S to the image grid G. These grids are shown in
Fig. 5.6, where - and + correspond to supergrid and O to the subgrid. The
representation is assumed to be four-connected (i.¢., x1 is a neighbor of x2 if||x1 —
x2[[< 1.

With this notation boundaries of regions are directed crack edges (see Sec.
3.1) at the points marked +. That is, if point x, is a neighbor of x ;and x; isina
different region than x;, insert two edges for the boundaries of the regions contain-
ing x; and x, at the point + separating them, such that each edge traverses its as-
sociated region in a counterclockwise sense. This makes merge operations very
simple: To merge regions R, and R,, remove edges of the opposite sense from the
boundary as shown in Fig. 5.7a. Similarly, to split a region along a line, insert edges
of the opposite sense in nearby points, as shown in Fig. 5.7b.

The method of [Brice and Fennema 1970] uses three criteria for merging re-
gions, reflecting a transition from local measurements to global measurements.
These criteria use measures of boundary strength s; and w;; defined as

s =17 (x) — Fx))| (5:9)

s S
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(a}
Fig. 5.7 Region operations on the grid structure of Fig. 5.6.
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L (b)

Fig. 5.7 (cont.)

where x; and x; are assumed to be on either side of a crack edge (Chapter 3). The
three criteria are applied sequentially in the following algorithm:

Algorithm 5.4: Region Growing via Boundary Melting (T,, k = 1, 2, 3 are
preset thresholds)

1. For all neighboring pairs of points, remove the boundary between x; and x; if
i#jand w; = 1. When no more boundaries can be removed, go to step 2:

2. Remove the boundary between R; and R; if

W

. S | (5.11)
min [p;, p;]

where Wis the sum of the w;; on the common boundary between R; and R,
that have perimeters p; and p; respectively. When no more boundaries can be
removed, go to step 3.

3. Remove the boundary between R; and R; if
W > T; (5.12)

5.4.3 Graph-Oriented Region Structures

The Brice-Fennema data structure stores boundaries explicitly but does not pro-
vide for explicit representation of regions. This is a drawback when regions must
be referred to as units. An adjunct scheme of region representation can be
developed using graph theory. This scheme represents both regions and their
boundaries explicitly, and this facilitates the storing and indexing of their semantic
properties.

The scheme is based on a special graph called the region adjacency graph, and
its “*dual graph.” In the region adjacency graph, nodes are regions and arcs exist
between neighboring regions. This scheme is useful as a way of keeping track of re-
gions, even when they are inscribed on arbitrary nonplanar surfaces (Chapter 9).
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Consider the regions of an image shown in Fig. 5.8a. The region adjacency
graph has a node in each region and an arc crossing each separate boundary seg-
ment. To allow a uniform treatment of these structures, define an artificial region
that surrounds the image. This node is shown in Fig. 5.8b. For regions on a plane,
the region adjacency graph is planar (can lie in a plane with no arcs intersecting)
and its edges are undirected. The ‘‘dual” of this graph is also of interest. To con-
stuct the dual of the adjacency graph, simply place nodes in each separate region
and connect them with arcs wherever the regions are separated by an arc in the ad-
jacency graph. Figure 5.8c shows that the dual of the region adjacency graph is like
the original region boundary map; in Fig. 5.8b each arc may be associated with a
specific boundary segment and each node with a junction between three or more
boundary segments. By maintaining both the region adjacency graph and its dual,
one can merge regions using the following algorithm:

Algorithm 5.5: Merging Using the Region-Adjacency Graph and Its Dual
Task: Merge neighboring regions R; and R;.
Phase 1. Update the region-adjacency graph.

1. Place edges between R; and all neighboring regions of R; (excluding, of
course, R;) that do not already have edges between themselves and R;.

2. Delete R; and all its associated edges.
Phase 2. Take care of the dual.

1. Delete the edges in the dual corresponding to the borders between R, and R ;.
2. Foreach of the nodes associated with these edges:

(a) if the resultant degree of the node is less than or equal to 2, delete the
node and join the two dangling edges into a single edge.

(b) otherwise, update the labels of the edges that were associated with j
to reflect the new region label /.

Figure 5.9 shows these operations.

5.5 INCORPORATION OF SEMANTICS

160

Up to this point in our treatment of region growers, domain-dependent “‘seman-
tics’’ has not explicitly appeared. In other words, region-merging decisions were
based on raw image data and rather weak heuristics of general applicability about
the likely shape of boundaries. As in early processing, the use of domain-
dependent knowledge can affect region finding. Possible interpretations of regions
can affect the splitting and merging process. For example, in an outdoor scene pos-
sible region interpretations might be sky, grass, or car. This kind of knowledge is
quite separate from but related to measurable region properties such as intensity
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(a)

(b}

Fig. 5.8 (a) Animage partition. (b)
The region adjacency graph (solid lines).
(c) The dual of the adjacency graph
(solid lines).

and hue. An example shows how semantic labels for regions can guide the merging
process. This approach was originally developed in [Feldman and Yakimovsky
1974]. it has found application in several complex vision systems [Barrow and
Tenenbaum 1977; Hanson and Riseman 1978].

Early steps in the Feldman-Yakimovsky region grower used essentially the
same steps as Brice-Fennema. Once regions attain significant size, semantic cri-

(a) (b)

Fig. 5.9 Merging operations using the region adjacency graph and its dual. (a) Before
merging regions separated by dark boundary line. (b) After merging.
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teria are used. The region growing consists of four steps, as summed up in the fol-
lowing algorithm:

Algorithm 5.6 Semantic Region Growing

Nonsemantic Criteria
T, and T, are preset thresholds

1. Merge regions j, ;j as long as they have one weak separating edge until no two
regions pass this test.

2. Mergeregions i, jwhere S(i, j) < T,where

where ¢; and ¢, are constants,
(area;)” + (area;)”
perimeter; - perimeter;

aij =

until no two regions pass this test. (This is a similar criterion to Algorithm 5.4,
step 2.)

Semantic Criteria

3. Let B;; be the boundary between R, and R;. Evaluate each B; with a Bayesian
decision function that measures the (conditional) probability that Bj; separates
two regions R, and R; of the same interpretation. Merge R, and R, if this condi-
tional probability is less than some threshold. Repeat step 3 until no regions
pass the threshold test.

4. Evaluate the interpretation of each region R; with a Bayesian decision function
that measures the (conditional) probability that an interpretation is the correct
one for that region. Assign the interpretation to the region with the highest
confidence of correct interpretation. Update the conditional probabilities for
different interpretations of neighbors. Repeat the entire process until all re-
gions have interpretation assignments.

The semantic portion of algorithm 5.6 had the goal of maximizing an evalua-
tion function measuring the probability of a correct interpretation (labeled parti-
tion), given the measurements on the boundaries and regions of the partition. An
expression for the evaluation function is (for a given partition and interpretations X
and 1):

max I1 {P[B isaboundary between X and Y | measurementson B,]}
, LS ' !

x I1 {P[R; isan X | measurements on R,]}

x I1 {P[R; isan Y | measurements on R,]}
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where P stands for probability and I is the product operator.

How are these terms to be computed? Ideally, each conditional probability
function should be known to a reasonable degree of accuracy; then the terms can
be obtained by lookup.

However, the straightforward computation and representation of the condi-
tional probability functions requires a massive amount of work and storage. An
approximation used in [Feldman and Yakimovsky 1974] is to quantize the mea-
surements and represent them in terms of a classification tree. The conditional
probabilities can then be computed from data at the leaves of the tree. Figure 5.10
shows a hypothetical tree for the region measurements of intensity and hue, and
interpretations ROAD, SKY, and CAR. Figure 5.11 shows the equivalent tree for
two boundary measurements m and n and the same interpretations. These two
figures indicate that P[R;isa CAR|0 < i< L,0 < 2 < H|l =, and P[B; divides
two car regions | M, < m < My41, N, < n < N = . These trees were created
by laborious trials with correct segmentations of test images.

Now, finally, consider again step 3 of Algorithm 5.6. The probability that a
boundary B;; between regions R; and R; is false is given by

Piarse P, J_?P/ (5.13)
where
P, = X {P[B, is between two subregions X | B;’s measurements]} (5.14a)
x{P[R; is X | measl}x{P[R; is X | meas]}
P, =Y, {P[B; isbetween X and Y | meas]} (5.14b)
Xy
x {P[R; is X | meas I}x{P[R; is ¥ | meas]) .

Fig. 5.10 Hypothetical classification tree for region measurements showing a
particular branch for specific ranges of intensity and hue.
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4 Road/sky
1 Road/car
3 Sky/car

2 Road/road
2 Car/car
1 Sky/sky

Fig. 5.11 Hypothetical classification
tree for boundary measurements
showing a specific branch for specific
ranges of two measurements mand n.

And for step 4 of the algorithm,

PIR; is X1 | meas]
PIR; is X2 | meas]

Confidence; = (5.15)

where X1, X2 are the first and second most likely interpretations, respectively.
After the region is assigned interpretation X 1, the neighbors are updated using

51

5.2

53

5.4

5.5

5.6

5.7

PR, is X | meas]:=Prob [R/ is X | meas] (5.16)

x P[B; is between X and X1 | meas]

EXERCISES

In Algorithm 5.1, show how one can handle the case where colors are equivalent. Do
you need more than one pass over the image?

Show for the heuristic of Eq. (5.11) that

(@) IT, =2 WT, > P;

® P, <P +I1(1/T,—2)
where P, is the perimeter of R;|J R j» I is the perimeter common to both jand j
and P,, = min (P; P;). What does part (b) imply about the relation between T’ and
P,?
Write a ‘‘histogram-peak” finder; that is, detect satisfying valleys in histograms
separating intuitive hills or peaks.
Suppose that regions are represented by a neighbor list structure. Each region has an
associated list of neighboring regions. Design a region-merging algorithm based on
this structure.
Why do junctions of regions in segmented images tend to be trihedral?
Regions, boundaries, and junctions are the structures behind the region-adjacency
graph and its dual. Generalize these structures to three dimensions. Is another struc-
ture needed?
Generalize the graph of Figure 5.8 to three dimensions and develop the merging algo-
rithm analogous to Algorithm 5.5. (Hint: see Exercise 5.6.)
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