where

V, = {a, b)
a b b b 001 0
Rb bbb — 01 01
b b b b 1 0 0 0

6.4 TEXTURE AS A PATTERN RECOGNITION PROBLEM

Many textures do not have the nice geometrical regularity of “‘reptile’” or ‘“‘wire
braid’’; instead, they exhibit variations that are not satisfactorily described by
shapes, but are best described by statistical models. Statistical pattern recognition is a
paradigm that can classify statistical variations in patterns. (There are other statisti-
cal methods of describing texture [Pratt et al. 1981], but we will focus on statistical
pattern recognition since it is the most widely used for computer vision purposes.)
There is a voluminous literature on pattern recognition, including several excel-
lent texts (e.g., [Fu 1968; Tou and Gonzalez 1974; Fukunaga 1972], and the ideas
have much wider application than their use here, but they seem particularly ap-
propriate for low-resolution textures, such as those seen in aerial images [Weszka
et al. 1976]. The pattern recognition approach to the problem is to classify in-
stances of a texture in an image into a set of classes. For example, given the tex-
tures in Fig. 6.15, the choice might be between the classes ‘‘orchard,”” ‘‘field,”
“‘residential,” ‘‘water.”

The basic notion of pattern recognition is the feature vector. The feature vec-
tor v is a set of measurements [vl -+ v,,} which is supposed to condense the
description of relevant properties of the textured image into a small, Euclidean
Jeature space of m dimensions. Each point in feature space represents a value for
the feature vector applied to a different image (or subimage) of texture. The meas-
urement values for a feature should be correlated with its class membership. Fig-
ure 6.16 shows a two-dimensional space in which the features exhibit the desired
correlation property. Feature vector values cluster according to the texture from
which they were derived. Figure 6.16 shows a bad choice of features (measure-
ments) which does not separate the different classes.

The pattern recognition paradigm divides the problem into two phases: train-
ing and test. Usually, during a training phase, feature vectors from known samples
are used to partition feature space into regions representing the different classes.
However, self teaching can be done; the classifier derives its own partitions.
Feature selection can be based on parametric or nonparametric models of the dis-
tributions of points in feature space. In the former case, analytic solutions are
sometimes available. In the latter, feature vectors are clustered into groups which
are taken to indicate partitions. During a test phase the feature-space partitions are
used to classify feature vectors from unknown samples. Figure 6.17 shows this
process.

Given that the data are reasonably well behaved, there are many methods for
clustering feature vectors [Fukunaga 1972; Tou and Gonzales 1974; Fu 1974].
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Fig. 6.15 Aerial image textures for
discrimination.
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Fig. 6.15 (cont.)

One popular way of doing this is to use prototype points for each class and a
nearest-neighbor rule [Cover 1968]:
assign v to class w; if i minimizes
mind (v, v,,)
i 1

where 5 is the prototype point for class w;.
Parametric techniques assume information about the feature vector probabil-

ity distributions to find rules that maximize the likelihood of correct classification:

assign v to class w; if i maximizes

max p (w;|v)
1
vy 2
+ +
++ o o ° o
o © on+0+
+ o D o o
o 8 ‘mBP 4
+
00000 ° o o
o o] 00 +
vy vy

(a) (b)
Fig. 6.16 Feature space for texture discrimination. (a) effective features (b)

ineffective features.
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(a) (b)
® Classified as w,

Fig. 6.17 Pattern recognition paradigm.

The distributions may also be used to formulate rules that minimize errors.

Picking good features is the essence of pattern recognition. No elaborate for-
malism will work well for bad features such as those of Fig. 6.15b. On the other
hand, almost any method will work for very good features. For this reason, texture
is a good domain for pattern recognition: it is fairly easy to define features that (1)
cluster in feature space according to different classes, and (2) can separate texture
classes.

The ensuing subsections describe features that have worked well. These sub-
sections are in reverse order from those of Section 6.2 in that we begin with
features defined on pixels—Fourier subspaces, gray-level dependencies—and con-
clude with features defined on higher-level texels such as regions. However, the
lesson is the same as with the grammatical approach: hard work spent in obtaining
high-level primitives can both improve and simplify the texture model. Space does
not permit a discussion of many texture features; instead, we limit ourselves to a
few representative samples. For further reading, see [Haralick 1978].

6.4.1 Texture Energy

Fourier Domain Basis

If a texture is at all spatially periodic or directional, its power spectrum will
tend to have peaks for corresponding spatial frequencies. These peaks can form the
basis of features of a pattern recognition discriminator. One way to define features
is to search Fourier space directly [Bajcsy and Lieberman 1976]. Another is to par-
tition Fourier space into bins. Two kinds of bins, radial and angular, are commonly
used, as shown in Fig. 6.18. These bins, together with the Fourier power spectrum
are used to define features. If Fis the Fourier transform, the Fourier power spec-
trum is given by | F |2

Radial features are given by

Vriry ™ fle(u v)|? du dv (6.5)

Ch. 6 Texture



(a) (b)

Fig. 6.18 Partitioning the Fourier domain into bins.

where the limits of integration are defined by
rE<ut+ v < rf
0<uv<n-l
where [r; r,] is one of the radial bins and v is the vector (not related to v) defined

by different values of r, and r,. Radial features are correlated with texture coarse-
ness. A smooth texture will have high values of ¥, , for small radii, whereas a

coarse, grainy texture will tend to have relatively higher values for larger radii.
Features that measure angular orientation are given by

Vo0, = ff]F(u, v) 2 du dv (6.6)
where the limits of integration are defined by

.

0, < tan”! <8,

O0<uyv<n-1

where [0, 0,) is one of the sectors and v is defined by different values of 8, and ,.
These features exploit the sensitivity of the power spectrum to the directionality of
the texture. If a texture has as many lines or edges in a given direction 8, | F|? will
tend to have high values clustered around the direction in frequency space 6 +
/2.

Texture Energy in the Spatial Domain

From Section 2.2.4 we know that the Fourier approach could also be carried
out in the image domain. This is the approach taken in [Laws 1980]. The advantage
of this approach is that the basis is not the Fourier basis but a variant that is more
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matched to intuition about texture features. Figure 6.19 shows the most important
of Laws’ 12 basis functions.

The image is first histogram-equalized (Section 3.2). Then 12 new images are
made by convolving the original image with each of the basis functions (.e., £, =
f * hy for basis functions Ay, ..., h12). Then each of these images is transformed
into an ‘“‘energy’’ image by the following transformation: Each pixel in the con-
volved image is replaced by an average of the absolute values in a local window of
15 x 15 pixels centered over the pixel:

L= X (il D (6.7)
x,y" in window
The transformation f— f,, k = 1, ... 12 is termed a ‘“‘texture energy transform”’
by Laws and is analogous to the Fourier power spectrum. The f;, k = 1, ... 12
form a set of features for each point in the image which are used in a nearest-
neighbor classifier. Classification details may be found in [Laws 1980]. Our in-
terest is in the particular choice of basis functions used.

Figure 6.20 shows a composite of natural textures [Brodatz 1966] used in
Laws’s experiments. Each texture is digitized into a 128 x 128 pixel subimage. The
texture energy transforms were applied to this composite image and each pixel was
classified into one of the eight categories. The average classification accuracy was
about 87% for interior regions of the subimages. This is a very good result for tex-
tures that are similar.

6.4.2 Spatial Gray-Level Dependence

Spatial gray-level dependence (SGLD) matrices are one of the most popular
sources of features [Kruger et al. 1974; Hall et al. 1971; Haralick et al. 1973]. The
SGLD approach computes an intermediate matrix of measures from the digitized
image data, and then defines features as functions on this intermediate matrix.
Given an image f with a set of discrete gray levels I, we define for each of a set of
discrete values of dand @ the intermediate matrix S (d, @) as follows:

s(, Jjld, 8), an entry in the matrix, is the number of times gray level i is
oriented with respect to gray level jsuch that where
f(x) =i and f(y)=, then
y=x+ (dcosd, dsin6)

-1 -4 -6 —4 -1 1 -4 6 -4 1
-2 -8 -12 -8 -2 -4 16 -24 16 -4
0 0 0 O 6-24 36-24 6
2 8 12 8 2 -4 16 -24 16 —4
L 1 4 6 4 1 L 1 -4 6 —4 1-‘
-1 0 2 0 -i 1 0 2 0 -1
-2 0 4 0 -2 -4 0 8 0 -4
0 0 0 0 O =6 0 12 0 -6 Fig. 6.19 Laws’ basis functions (these
2 0 -4 0 2 -4 0 ¢ —4]  arethe low-order four of twelve actually
L1 0 -2 0 1 -1 0 2 0 -1 ysed).
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(b)

Fig. 6.20 (a) Texture composite. (b) Classification.
Note that we the gray-level values appear as indices of the matrix .S, implying that
they are taken from some well-ordered discrete set 0, ..., K. Since
S5(d,0) =S50+ x).

common practice is to restrict  to multiples of w/4. Furthermore, information is
not usually retained at both # and 8 + w. The reasoning for the latter step is that
for most texture discrimination tasks, the information is redundant. Thus we
define

S(d0)=1%I[S(d8)+5(d e+ )

The intermediate matrices S yield potential features. Commonly used features are:

1. Energy
K K
Ed6)=3Y Y [SG jld 0] (6.8)
i=0 j=0
2. Entropy
K K
H(d, ) =YY SG jld 8 log £, j|d &) (6.9)
i=0 j=0

3. Correlation

K K
Y Y G—p)G—p)SG jld 0)

C(d, 9) = =220 (6.10)
0,0,
4. [Inertia
K K
1de)=3% Y (i-7)25G, jld ) (6.11)
i=0 j=0
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5. Local Homogeneity

L(d, 8) = 2 2 = S, jld, 0) (6.12)
i=0 j=0 14 (
where S (i, j|d, 0) is the (i, j) th element of (d, @), and
By = f i f SG, jld, 6) (6.13a)
i=0 j=0
= )E J )lf S, jla, 8) (6.13b)
i=0 =0
K K
o2=Y (i-uJ)?Y fG jld 6) (6.13c)
i=0 j=0
and
K K
=3 (G-u)?*2 £G jld,6) (6.13d)
i=0 i=0

One important aspect of this approach is that the features chosen do not have
psychological correlates [Tamura et al. 1978]. For example, none of the measures
described would take on specific values corresponding to our notions of ““rough”
or “‘smooth.”” Also, the texture gradient is difficult to define in terms of SGLD
feature values [Bajcsy and Lieberman 1976].

6.4.3 Region Texels

Region texels are an image-based way of defining primitives above the level of pix-
els. Rather than defining features directly as functions of pixels, a region segmen-
tation of the image is created first. Features can then be defined in terms of the
shape of the resultant regions, which are often more intuitive than the pixel-
related features. Naturally, the approach of using edge elements is also possible.
We shall discuss this in the context of texture gradients.

The idea of using regions as texture primitives was pursued in [Maleson et al.
1977]. In that implementation, all regions are ultimately modeled as ellipses and a
corresponding five-parameter shape description is computed for each region.
These parameters only define gross region shape, but the five-parameter primi-
tives seem to work well for many domains. The texture image is segmented into
regions in two steps. Initially, the modified version of Algorithm 5.1 that works for
gray-level images is used. Figure 6.21 shows this example of the segmentation ap-
plied to a sample of ‘‘straw’’ texture. Next, parameters of the region grower are
controlled so as to encourage convex regions which are fit with ellipses. Figure 6.22
shows the resultant ellipses for the ““straw’’ texture. One set of ellipse parameters
is xq, a, b, @ where xg is the origin, a and b are the major and minor axis lengths
and 6 is the orientation of the major axis (Appendix 1). Besides these shape param-
eters, elliptical texels are also described by their average gray level. Figure 6.23
gives a qualitative indication of how ranges on feature values reflect different tex-
els.
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(a) Image (b) With Region Boundaries
Fig. 6.21 Region segmentation for straw texture.

6.5 THE TEXTURE GRADIENT

The importance of texture in determining surface orientation was described by
Gibson [Gibson 1950]. There are three ways in which this can be done. These
methods are depicted in Fig. 6.24. All these methods assume that the texture is
embedded on a planar surface.

First, if the texture image has been segmented into primitives, the maximum
rate of change of the projected size of these primitives constrains the orientation of

Fig. 6.22 Ellipses for straw texture.
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Average eccentricity Fig. 6.23 Features defined on ellipses.

the plane in the following manner. The direction of maximum rate of change of
projected primitive size is the direction of the texture gradient. The orientation of
this direction with respect to the image coordinate frame determines how much
the plane is rotated about the camera line of sight. The magnitude of the gradient
can help determine how much the plane is tilted with respect to the camera, but
knowledge about the camera geometry is also required. We have seen these ideas
before in the form of gradient space; the rotation and tilt characterization is a polar
coordinate representation of gradients.

(a) (b} {c)

Fig. 6.24 Methods for calculating surface orientation from texture.
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The second way to measure surface orientation is by knowing the shape of
the texel itself. For example, a texture composed of circles appears as ellipses on
the tilted surface. The orientation of the principal axes defines rotation with respect
to the camera, and the ratio of minor to major axes defines tilt [Stevens 1979].

Finally, if the texture is composed of a regular grid of texels, we can compute
vanishing points. For a perspective image, vanishing points on a plane P are the
projection onto the image plane of the points at infinity in a given direction. In the
examples here, the texels themselves are (conveniently) small line segments on a
plane that are oriented in two orthogonal directions in the physical world. The gen-
eral method applies whenever the placement tesselation defines lines of texels.
Two vanishing points that arise from texels on the same surface can be used to
determine orientation as follows. The line joining the vanishing points provides
the orientation of the surface and the vertical position of the plane with respect to
the z axis (i.e., the intersection of the line joining the vanishing points with x = 0)
determines the tilt of the plane.

Line segment textures indicate vanishing points [Kender 1978]. As shown in
Fig. 6.25, these segments could arise quite naturally from an urban image of the
windows of a building which has been processed with an edge operator.

As discussed in Chapter 4, lines in images can be detected by detecting their
parameters with a Hough algorithm. For example, by using the line parameteriza-
tion

xcosf + ysinf = r

and by knowing the orientation of the line in terms of its gradient g = (Ax, Ay), a
line segment (x, y, Ax, Ay) can be mapped into r, 8 space by using the relations

- Axx + Ay (6.14)
VAx? + Ay’
§ = tan~! Ay (6.13)
Ax

These relationships can be derived by using Fig. 6.26 and some geometry. The
Cartesian coordinates of the r—# space vector are given by

EX (6.16)
lel? ]g

Fig. 6.25 Orthogonal line segments comprising a texture.
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Ay
x, y) \ Ax

N Fig. 6.26 r-0 transform.

Using this transformation, the set of line segments L, shown in Fig. 6.27 are all
mapped into a single point in r—6 space. Furthermore, the set of lines L, which
have the same vanishing point (x, y,) project onto a circle in r—8 space with the
line segment ((0, 0), (x, y,)) as a diameter. This scheme has two drawbacks: (1)
vanishing points at infinity.are projected into infinity, and (2) circles require some
effort to detect. Hence we are motivated to use the transform (x, y, Ax, Ay) —

—'I—C—, @] for some constant k. Now vanishing points at infinity are projected into the
r

origin and the locus of the set of points L, is now a line. This line is perpendicular

to the vector x, and il o units from the origin, as shown in Fig. 6.28. It can be

I,
detected by a second stage of the Hough transform; each point a is mapped into an

r'—8' space. For every a, compute all the r, 8" such that
acos®’ + bsin®' = ¢ (6.17)

and increment that location in the appropriate r’, #' accumulator array. In this
second space a vanishing point is detected as

. (6.18)

(6.19)

(x,.y,)

(a) (b)
Fig. 6.27 Detecting the vanishing point with the Hough transform.
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(@) (b}
Fig. 6.28 Vanishing point loci.

In Kender’s application the texels and their placement tesselation are similar in
that the primitives are parallel to arcs in the placement tesselation graph. In a more
general application the tesselation could be computed by connecting the centers of
primitives.

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8

EXERCISES

Devise a computer algorithm that, given a set of texels from each of a set of different
“windows’’ of the textured image, checks to see of the resolution is appropriate. In
other words, try to formalize the discussion of resolution in Section 6.2.

Are any of the grammars in Section 6.3 suitable for a parallel implementation (i.e.,
parallel application of rules)? Discuss, illustrating your arguments with examples or
counterexamples from each of the three main grammatical types (shape, tree, and ar-
ray grammars).

Are shape, array, and tree grammars context free or context-sensitive as defined?
Can such grammars be translated into “‘traditional’” (string) grammars? If not, how
are they different; and if so, why are they useful?

Show how the generalized Hough transform (Section 4.3) could be applied to texel
detection.

In an outdoors scene, there is the problem of different scales. For example, consider
the grass. Grass that is close to an observer will appear ‘‘sharp’” and composed of
primitive elements, yet grass distant from an observer will be much more ‘“‘fuzzy”’
and homogeneous. Describe how one might handle this problem.

The texture energy transform (Section 6.4.1) is equivalent to a set of Fourier-domain
operations. How do the texture energy features compare with the ring and sector
features?

The texture gradient is presumably a gradient in some aspect of texture. What aspect
is it, and how might it be quantified so that texture descriptions can be made gradient
independent?

Write a texture region grower and apply it to natural scenes.
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