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7.1 MOTION UNDERSTANDING

Motion imagery presents many interesting challenges to computer vision, but
static scene analysis received more attention in the 1960°s and 1970’s. In part, this
may have been due to a technical problem: With most types of input media and
domains, motion vision input is much more voluminous than static vision input.
However, we believe that a more basic problem has been the assumption that mo-
tion vision could best be understood (or implemented) as many static frames
analyzed very quickly, with results linked up in temporal sequence. This character-
ization of motion vision is extreme but perhaps illuminating. First, it assumes that
vision involves processing static scenes. Second, it acknowledges that massive
amounts of data may be required. Third, in it motion understanding degenerates
to a postprocessing step which is mostly a matching operation—the differences or
similarities between (understood) frames are analyzed and recorded. The extreme
“‘static is basic’’ view is that motion is an unnaturally complex or difficult problem
because it is ill suited to the techniques available. '

A modified view is that object motion provides good image cues for segmen-
tation, much as color might. This approach leads to the use of motion for segmen-
tation, so that motion gets a more basic role in the understanding process. In this
view, motion as such is useful for basic image understanding; a motion image se-
quence may actually be easier to understand than a static image, because the
effects of motion can help in segmentation. Recent examples may be found in
[Snyder 1981].

A further departure from the “‘static is basic’’ view is that motion under-
standing is qualitatively different from static vision. A logical extreme of this view
is that there are many visual processing operations whose primitives are points in
motion, and that in fact static vision is the puzzle, being ill-suited to the needs and
mechanisms of biological systems. Serious work in computer motion understand-
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ing has begun even more recently than computer vision as a whole, and it is too
early to dismiss any approach out of hand. There are domains and applications in
which the “‘static is basic’® paradigm seems natural, but it also seems very reason-
able that animals have perceptual systems or subsystems for which ‘“‘motion is
basic.”’

Section 7.2 is concerned with processing and understanding the “‘flow>’ of the
world image across the retina. Section 7.3 considers several techniques for under-
standing sequences of static images.

7.1.1 Domain Independent Understanding

Domain independent motion processing extracts information from time-varying
images using the weakest possible assumptions about the world. Processing that
merely transforms the input data into another image-like structure is in the pro-
vince of generalized image processing. However, if the motion processing aggre-
gates spatial information on the basis of a common feature, then the processing is a
form of segmentation.

The basic visual input for domain-independent work in motion vision under-
standing is optical flow. Although Helmholtz noted the striking immediacy of
three-dimensional perception mediated through motion [Helmholtz 1925], Gib-
son is usually credited with pioneering the theory that a primary visual stimulus for
motion is the flow of elements in the optic array, or pattern of luminance in the full
sphere of solid angle surrounding the observer [Gibson 1950, 1957, 1965, 1966].
Human beings undoubtedly are sensitive to optical flow, as evidenced by the
“looming”” reflex [Schiff 1965], the effect of flow on balance [Lee and Lishman
1975], and many other documented phenomena [Nakayama and Loomis 1974].
The basic input to an “‘optical flow understander’ is a continuously changing
visual field, which may be considered a field of vectors, each expressing the instan-
taneous change of position on the optic array of the image of a world point. A field
of such vectors is shown in Fig. 7.1. The extraction of the vectors from the chang-
ing image is a low-level operation often posited by optical flow research; one com-
putational mechanism was given in Chapter 3. Flow may also be approximated in
an image sequence by matching and difference operations (Section 7.3.1).

Computer vision researchers have recently begun to concern themselves
with both the geometry and computational mechanisms that might be useful in the
understanding of optical flow [Horn and Schunck 1980; Clocksin 1980; Prager
1979; Prazdny 1979; Lawton 1981]. Many formalisms are in use. Cartesian, polar
space, and spherical coordinates all have their appeal in different situations;
differential vector geometry and simple analytic geometry are both used; even the
geometry of the eye or camera varies from one study to another. This chapter does
not contain a ‘‘unified flow theory;”’ instead it briefly describes several approaches,
each of which uses a different aspect of optical flow.

7.1.2 Domain Dependent Understanding

The use of models, or at least stronger assumptions about the world, is comple-
mentary to domain-independent processing. The changing image, or even the field
of optical flow, can be treated as input to a model-driven vision process whose goal
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Fig. 7.1 An example of an optical flow field for an approaching ““hill.”” (a) The hill. (b)
Flow field.

is typically to segment the input into areas corresponding to meaningful world ob-
jects. The optical flow field becomes just another component of the generalized im-
age, together with intensity, texture, or color. Motion often reveals information
similar to that from range data; flow and range are discontinuous at object boun-
daries, surface orientation may be derived, and so forth. Object (or world) mo-
tions determine image (or retinal) motions; we shall be explicit about which
motion we mean when confusion can occur.

Section 7.3 describes how knowledge of object motion phenomena can help
in segmenting the flow field. One useful assumption is that the world contains rigid
bodies. Tests for rigid bodies and calculations using data from them are quite
useful—for example, the three-dimensional position of four points on a rigid ob-
ject may be determined uniquely from three views (Section 7.3.2). A weaker ob-
ject model, that they are assemblies of compound rigid pendula (linkages), is
enough to accomplish successful segmentation of very sparse motion input which
consists only of images of the end points of links (Section 7.3.3). Section 7.3.4
describes work with a highly specific and detailed model which is used in several
ways to restrict low-level image processing and aid in three-dimensional interpreta-
tion of human motion images. Section 7.3.5 considers the processing of sequences
of segmented images.

The coherence of most three-dimensional objects and their continuity
through time are two general principles which, although occasionally violated,
guide many segmentation and point-matching heuristics. The assumed correspon-
dence of regions in images with objects is one example. Motion images provide
another example; object coherence implies the likelihood of many ‘‘continuity’’
(actually similarity) conditions on the positions and velocities of neighboring
image points.
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Here are five heuristics for use in matching points from images separated by a
small time interval [Prager 1979] (Fig. 7.2).

1. Maximum velocity. If a world point is known to have a maximum velocity ¥
with respect to a stationary imaging device, then it can move at most V dt
between two images made df time units apart. Thus given the location of the
point in one image (and some assumptions about depth), this constraint limits
where the point can appear on the second image.

2. Small velocity change. Since most visible physical objects have finite mass, this
heuristic is a conseqence of physical laws and the assumption of a “‘small inter-
val”’ between images. Of course, the definition of ‘‘small interval”’ depends on
the definition of the velocity changes one desires to measure.
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Fig. 7.2 Five heuristics.
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3. Common motion. Spatially coherent objects often appear in successive images
as regions of points sharing a ‘“‘common motion.’” It is interesting that such a
weak notion as common motion (and the related ‘‘common position”’) actu-
ally can serve to segment very sparse scenes of a few points with very complex
motion behavior if a long-enough sequence of images is used (Sections 7.3.3
and 7.3.4).

4. Consistent match. Two points from one image generally do not match a single
point from another image (exceptions arise from occlusions). This is one of
the main heuristics in the stereopsis algorithm described in Chapter 3.

5. Known motion. If a world model can supply information about object motions,
perhaps retinal motions can be derived, predicted, and recognized.

In the discussions to follow these heuristics (and others) are often used or
implicitly taken as principles. A careful catalog of the probable behavior of objects
in motion is often a useful practical adjunct to a mathematical treatment. The
mathematics itself must be based on a set of assumptions, and often these are
closely related to the phenomenological heuristics noted above.

7.2 UNDERSTANDING OPTICAL FLOW

This section describes some more direct calculations on optical flow, using no
other input information. Information may be obtained from flow that seems useful
both for survival in the world and (on a less existential level) for automated image
understanding. As with shape from shading research (Chapter 3), the paradigm
here is often to see mathematically what information resides in the input and to use
this to suggest mechanisms for doing the computation. The flow input is assumed
to be known (Chapter 3 showed how to derive optical flow by local analysis of
changing intensity in the image).

7.2.1 Focus of Expansion

As one moves through a world of static objects, the visual world as projected on the
retina seems to flow past. In fact, for a given direction of translatory motion and
direction of gaze, the world seems to be flowing out of one particular retinal point,
the focus of expansion (FOE). Each direction of motion and gaze induces a unique
FOE, which may be a point at infinity if the motion is parallel to the retinal (image)
plane.

These aspects of optical flow have been studied by computing the simulated
flow pattern an observer would see while moving through a ‘‘forest’” of vertical
cylinders [Prager 1979] or Gaussian hills and valleys [Lawton 1981]. Some sample
FOEs are shown in Fig. 7.3. Figure 7.3c shows a second FOE when the field of view
contains an object which is itself in motion.

Our first model of the imaging situation is a simplification of the imaging
geometry given in Appendix 1. Let the viewpoint be at the origin with the view
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(c)

Fig. 7.3 FOE for rectilinear observer motion. (a) An image. (b) Later image. (c) Flow
shows different FOEs for static floor and moving object.

direction out along the positive Z axis, and let the focal length £ = 1. Then the per-
spective distortion equations simplify to

X (7.1)
4

X

A= (7.2)

In the next two sections the letters u, v, and w (sometimes written as func-
tions of 1) denote world point velocity components, or the time derivatives of
world coordinates (x, y, z). Observer motion with instantaneous velocity (—dx/d,
—dy/dt, —dz/dt) = (—u, —v, —w), keeping the coordinate system attached to the
viewpoint, gives points in a stationary world a relative velocity (u, v, w). Consider a
point located at (xg, yq, zo) at some initial time. After a time interval ¢, its image
will be at

xo+ ut yo+ vt
Z()"‘WI’ZQ‘F wt

(x), y) = (7.3)
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As ¢t varies, this parametric ‘“flow-path’” equation is that of a straight line; as ¢ goes
to minus infinity, the image of the point travels back along the straight line toward
a particular point on the image, namely,

(7.4)

FOE = |-%,
w

L
w

This focus of expansion is where the optical flow originates on the image. If the ob-
server changes direction (or objects in the world change their direction), the FOE
changes as well.

7.2.2 Adjacency, Depth, and Collision

The flow path equation of a point moving with a constant velocity reveals informa-
tion about its depth in z. The information is not provided directly, since all flow
paths for points at a given depth do not look alike. However, there is the elegant re-
lation

D) _ z(1)
vie)  w() (.5)

Here again wis dz/dt, and Vis dD/dt. D is the distance along the straight flow path
from the FOE to the image of the point. Thus the distance/velocity ratio of the
point’s image is the same as the distance/velocity ratio of the world point. This
result is basic, but perhaps not immediately obvious.

The above relation is called the time-to-adjacency relation, because the
right-hand side, z/w, is the z-distance of the point from the image plane divided by
its velocity toward the plane. It is thus the time until the point passes through the
image plane. This basic time interval is clearly useful when dealing with world ob-
jects; it changes when the magnitude of the world point’s velocity (or the
observer’s) changes.

Knowing the depth of any point determines the depth of all others of the
same velocity w, for it follows from the two time to adjacency equations of
the points that

Zl(t)Dz(I) Vy (I)
Vz(I)D 1 (f)

The time-to-adjacency equation allows easy determination of the world coor-

dinates of a point, scaled by its z velocity. If the observer is mobile and in control of

his own velocity, and if the world is stationary, such scaled coordinates may be use-
ful. Using the perspective distortion equations,

(7.6)

Zz(f) =

2() = 20D 7.7
y() = LBDW 7.8)
x() = 20D (7.9)
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As a last example, let us relate optical flow to the sensing of impending colli-
sions with world objects. The focal point of the imaging system, or origin of coordi-
nates, is at any instant headed ‘‘toward the focus of expansion,”” whose image
coordinates are (1/w, v/w). Itis thus traveling in the direction

0= («i’;, ;‘;_,1) (7.10)

and is following at any instant a path in the environment instantaneously defined
by the parametric equation

(x,y3,2) =10=1t(%, L 1) (7.11)
W w

where racts like a real scalar measure of time. Given this vector expression for the
path of the observer, one can apply well-known vector formulas from analytic solid
geometry to derive useful information about the relation of this path to world
points, which are also vectors.

For example, the position P along the observer’s path at which a world point
approaches closest is given by

0(0 - x)
P=——7— 7.12
©-0) .12
where O is the direction of observer motion and x the position of the world point.
Here the period (.) is the dot product operator. The squared distance Q? between

the observer and the world point at closest approach is then
0= (x-x) — x-0)2/(0-0) (7.13)

7.2.3 Surface Orientation and Edge Detection

It is possible to derive surface orientation and to characterize certain types of sur-
face discontinuities (edges) by their motion. A formalism, computer program, and
biologically motivated computational mechanism for these calculations was
developed in [Clocksin 1980].

This section outlines mainly the surface orientation aspect of this work. As
usual, the model is for a monocular observer, whose focal point is the origin of
coordinates. An unusual feature of the model is that the observer has a spherical
retina. The world is thus projected onto an ‘‘image unit sphere” instead of an im-
age plane. World points and surface orientation are represented in an observer-
centered Cartesian coordinate system. The image sphere has a spherical coordi-
nate system which may be considered as ‘‘longitude’ ¢ and ‘‘latitude’” ¢. These
coordinates bear no relation to the orientation of the retina. World points are then
determined by their image coordinates and a range r. An observer-centered Carte-
sian coordinate system is also useful; it is related to the sphere as shown in Fig. 7.4,
and by the transformations given in Appendix 1.

The flow of the image of a freely moving world point may be found through
the following derivation. As before, let the world velocity of the point (possibly in-
duced by observer motion) (dx/dt, dy/dt, dz/df) be written (u, v, w). Similarly,
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Fig. 7.4 Spherical coordinate system, and the definition of o and 7.
write the angular velocities of the image point in the 8 and ¢ directions as

dé
&= — 7.14
o (7.14)

_ d¢
€ - (7.15)

Then from the coordinate transformation equations of Appendix 1,
y = xtané (7.16)

Differentiating and solving for d6/dt (written as 8) gives
pom Lz 1ANE (7.17)
x sect

Substituting for x its spherical coordinate expression r sin¢ cos@ and simplifying
yields the general expression for flow in the # direction:

5 — vcosﬂ_—usmﬂ (7.18)
r sing

The derivation of € proceeds from the coordinate transformation equation
Z=rCos¢ (7.19)

Differentiating, solving for d¢/dt (written as €), and using
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dr _ xu + yv + zw
—_——= 7.20
dt r ( )

yields the general expression for flow in the ¢ direction:

€ — (xu + yv -i;zlw) coshp — rw 1.21)
r<sing
As usual, general point motions are rather complicated to deal with, and
more constraints are needed if the optic flow is to be ““inverted’’ to discover much
about the outside world. Let us then make the simplification that the world is sta-
tionary and the observer is traveling along the z direction at some speed S (This as-
sumption is briefly discussed below.) Explicitly, suppose that

u=0 v=0 w=-S

Substituting these into the general flow equations (7.18) and (7.21) yields
simplified flow equations:

5=0 (7.22)

Ssing
r

€= (7.23)
Thus ris a function of @ and ¢ and therefore soise.

It is this simplified flow equation which forms the basis for surface orientation
calculation and edge detection. The goals are to assign to any point in the flow field
one of three interpretations: edge, surface, or space and also to derive the type of
edge and the orientation of the surface.

To find surface orientation, represent the surface normal of a surface T by
two angles o and 7 defined as in Fig. 7.4 with the two planes of o and 7 being the
RZ and QR planes, respectively. The slant is measured relative to the line of sight,
denoted by R in the figure. o and 7 correspond to depth changes in ‘‘depth
profiles’ oriented along lines of constant 8 and ¢, respectively. Thus,

tano = % T‘-)% (7.24)
ar

t = |—|— 7.25

ant = (7.25)

Surface orientation is defined by ¢ and 7 or equivalently by their tangents. A
surface perpendicular to the line of sight haso = 7 = 0.

Equations (7.24) and (7.25) assume the range ris known. However, one can
determine them without knowing r through the simplified flow equation, Eq.
(7.23). The latter may be written

e Ssin¢g
€@, ¢)

where € (#, ¢) gives the flow in the ¢ direction. Differentiating this with respect to
# and ¢ gives
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ar g £.cos ¢ — sir21 ¢ (9e/0¢) (7.26)

d¢ €
dr _ _ Ssin¢ (9¢/96)
390 g (7.27)

These last three equations may be substituted into Egs. (7.24) and (7.25), and the
results may then be simplified to the following surface orientation equations:

tano = cot¢ — %lne (7.28)

__90
tanT = 30 (Ine) (7.29)

These tangents are thus easily computed from optical flow. The result does
not depend on velocity, and no depth scaling is required. In fact, absolute depth is
not computable unless we know more, such as the observer speed.

Turning briefly to edge perception: Although physical edges are a depth
phenomenon, in flow they are mirrored by €, the flow measure that allows deter-
mination of orientation without depth. In particular, it is possible to demonstrate
that the Laplacian of € has singularities where the Laplacian of depth has singulari-
ties. An arc on the sphere projects out onto a ““depth profile’’ in the world, along
which depth may vary. If the arc is parameterized by «, relations among the depth
profile, flow profile, and the singularities in flow are shown in Fig. 7.5. Thus the
Laplacian of € provides information about edge type but not about edge depth.

The formal derivations are at an end. Implementing them in a computer pro-
gram or in a biological system requires solutions to several technical problems.
More details on the implementation of this model on a computer and a possible
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implementation using low-level physiological vision primitives appear in [Clocksin
1980]. There are some data on human performance for the types of tasks at-
tempted by the program. The assumption of a fixed environment basically implies
that flow motions in the environment are likely to be interpreted as observer mo-
tions. This view is rather strikingly borne out by ‘‘swaying room”’ experiments
[Lee and Lishman 1975], in which a subject stands in a swayable visual environ-
ment. (A large, low-mass bottomless box suspended from above may be lowered
around the subject, giving him a room-like visual environment.) When the hang-
ing “‘room’ is made to sway, the subject inside tends to lose balance. Further,
moving surfaces in the real world are quite often objects of interest, such as an-
imals.

A survey of depth perception experiments [Braunstein 1976] points to mo-
tion as the dominant indicator of surface orientation perception. Random-dot
displays of monocular flow patterns [Rogers and Graham 1979] evoke striking per-
ceptions of solid oriented surfaces; flow may be adequate for shape and depth per-
ception even with no other depth information. The experiments on perception of
““edges,”” or discontinuities in flow caused by discontinuities in depth of textured
surfaces, are less common. However, there have been enough (o provide some
confirmation of the model.

The computational model is consistent with and has correctly predicted
psychological data on human thresholds for slant and edge perception in optical
flow fields. (The thresholds are on the amount of slant to the surface and the depth
difference of the edge sides.) The computational model can be used to determine
range, but only to poor accuracy; this happens to correspond with the human trait
that orientation is much more accurately determined by flow than is range. Quanti-
tatively, the accuracy of orientation and range determinations are the same for the
model and for human beings under similar conditions.

7.2.4 Egomotion

It is possible to extract information about complex observer motions from optical
flow, although at considerable computational cost. In one formulation [Prazdny
1979], a model observer is allowed to follow any space curve in an environment of
stationary objects, while at the same time turning its head. It is possible to derive
formulae that determine the observer’s instantaneous velocity vector and head ro-
tational vector from a small number (six) of flow vectors in the image on a (stand-
ard flat) retina.

The equations that describe flow given observer motion and head rotation
can be quite compactly written by using vector operators and a polar coordinate
system (similar to that of the last section). The inherent elegance and power of the
vector operations is well displayed in these calculations. Inverting the equations
results in a system of three cubic equations of 20 terms each. Such a system can be
solved by normal methods for simultaneous nonlinear equations, but the solutions
tend to be relatively sensitive to noise. In the noise-free case, the method seems to
perform quite adequately.

The calculation yields a method for deriving relative depth, or the ratio of the
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distances of points from the observer. An approximation to surface orientation
may be obtained using several relative depth measurements in a small area and as-
suming that the surface normal varies slowly in tne area.

7.3 UNDERSTANDING IMAGE SEQUENCES

An image sequence is an ordered set of images. The image sequences of interest
here are samplings of four-dimensional space-time. Commonly, as in a movie, the
images are two-dimensional projections of a three-dimensional physical world, se-
quenced through time. Sometimes the sequence consists of two-dimensional im-
ages of essentially two-dimensional slices of the three-dimensional world, se-
quenced through the third spatial dimension. Some of the techniques in this sec-
tion are useful in interpreting the three-dimensional nature of objects from such
spatial image sequences, but the main concern here is with temporal image se-
quences. In many practical applications, the input must be such a sequence, and
continuous motion must be inferred from discrete location differences of image
points. The thrust of work under these assumptions is often to extend static image
understanding by making models that incorporate or explain objects in motion, ex-
tending segmentation to work across time [Thompson 1979, Tsotsos 1980].

When asked why he was listening to a metronome ticking, Ezra Pound is said
to have replied that he did not listen to the ticks, but to the ‘‘spaces between
them.”” Like Pound, we take the ticks, or images, as given, and are really in-
terested in what goes on ‘‘between the ticks.”” We usually want to determine and
describe how the images are related to each other. This information must be
derived from the static images, and two approaches immediately present them-
selves: broadly, the first is to look for differences between the images, and the
second is to look for similarities.

These two approaches are complementary, and are often used together. A
general paradigm for object-oriented motion analysis is the following:

1. Segment (describe) the individual images. This process may be complex,
yielding a relational structure or a segmentation into regions or edges. An im-
portant special case is the one in which the description (segmentation) process
is null and the description is just the image itself. For example, an initial high-
level static description is impossible if motion is to be used as an aid to seg-
mentation.

2. Compute and describe the differences or similarities between the descriptions
(or undescribed images).

3. Build a description of the sequence as a whole from the single-frame primitives
and descriptions of difference or similarity that are relevant to the purpose at
hand.

7.3.1 Calculating Flow from Discrete Images

This method is a form of disparity calculation that is not only used for flow calcula-
tions, but may also be used for stereo matching or tracking applications. The com-
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