GEOMETRICAL
STRUCTURES I

Knowledge
base

Analogical
models

Analogical/
propositional
models

Generalized
image

Segmented
image

Geometric
structures

Relational
structures

Two-

Three-
dimensional

dimensional

228

Ultimately, one of the most important things to be determined from an image is
the shape of the objects in it. Shape is an intrinsic property of three-dimensional
objects; in a sense it is the primal intrinsic property for the vision system, from
which many others (surface normals, object boundaries) can be derived. It is pri-
mal in the sense that we associate the definitions of objects with shape, rather than
with color or reflectivity, for example.

Webster defines shape as ‘‘that quality of an [object] which depends on the
relative position of all points composing its outline or external surface.”” This
definition emphasizes the fact that we are aware of shapes through outlines and
surfaces of objects, both of which may be visually perceived. It also makes the dis-
tinction between the two-dimensional outline and the three-dimensional surface.
We preserve this distinction: Chapter 8 deals with two dimensional shapes,
Chapter 9 with three dimensional shapes.

If our goal is to understand flat images, why bring solids into consideration?
Our simple answer is that we believe in many cases vision without a ‘‘solid basis”’
is a practical impossibility. Much of the recent history of computer vision demon-
strates the advantages that can be gained by acknowledging the three-dimensional
world of objects. The appearance of objects in images may be understood by under-
standing the physics of objects and the imaging process. The purest form of two-
dimensional recognition, template matching, clearly does not practically extend to
a world where objects appear in arbitrary positions, much less to a world of nonri-
gid objects. It is true that in some important image understanding tasks (interpreta-
tion of chest radiographs, ERTS images or some microscope slides), the third
dimension is irrelevant. But where the three-dimensionality of objects is impor-
tant, the considerable effort necessary to develop a usable three-dimensional
model will always be amply repaid.

Shape recognition is doubtless one of the most important facilities of the
mammalian visual system. We have seen how important shape information can be

Part Il Geometrical Structures

extracted from images in early processing and segmentation. One of the major
challenges to computer vision is to represent shapes, or the important aspects of
shapes, so that they may be learned, matched against, recollected, and used. This
effort is hampered by several factors.

1. Shapes are often complex. Whereas color, motion, and intensity are relatively
simply quantified by a few well-understood parameters, shape is much more
subtle. Common manufactured or natural shapes are incredibly complex; they
may be represented “‘explicitly’’ (say by representing their surface) only with
hundreds of parameters. Worse, it is not clear what aspects of shapes are
important for applications such as recognition. An explicit and complete
representation may be computationally intractable for such basic uses as
matching. What ‘‘shape features’’ can be used to ease the burden of computa-
tion with complex shapes?

2. Introspection is no help. Human beings seem to have a large fraction of their
brains devoted to the single task of shape recognition. This important activity
is largely “‘wired in’’ at a level below our conscious introspection. Why is
shape recognition so easy for human beings and shape description so hard?
The fact that we have no precise language for shape may argue for the inacces-
sibility of our shape-processing algorithms or data structures. This lack of cog-
nitive leverage is a trifle daunting, especially when taken with the complexity
of everyday shapes.

3. There is little classical guidance. Mathematics traditionally has not concerned
itself with shape. For instance, only recently has there been a mathematical
definition of “‘rigid solid’’ that accords with our intuition and of set operations
on solids that preserve their solidity. The fact that such basic questions are
only now being addressed indicates that computer science must do more than
encode some already existing proven ideas. Thus we have the next point.

4. The discipline is young. Until very recently, human beings communicated about
complex shapes mainly through words, gestures, and two-dimensional draw-
ings. It was not until the advent of the digital computer that it became of
interest to represent complex shapes so that they could be specified to the
machine, manipulated, computed with, and represented as output graphics.
No generally accepted single representation scheme is available for all shapes;
several exist, each with its advantages and disadvantages. Algorithms for
manipulating shapes (for example, for computing how to move a sofa up a
flight of stairs, or computing the volume of a specified shape) are surprisingly
complex, and are research topics. Often the representations good for one appli-
cation, such as recognition, are not good for other computations.

It is the intention of this part of the book to indicate some of what is known
about the representation of shape. Although the details of geometric representa-
tions may be still under development, they are an essential part of our layered
computer vision organization. They are more abstract than segmented structures
and are distinguished from relational structures by their preponderance of metric
information.

Part Ill Geometrical Structures 229

Representation of
Two-Dimensional
Geometric Structures 8

8.1 TWO-DIMENSIONAL GEOMETRIC STRUCTURES

The structures of this chapter are the intuitive ones of well-behaved planar regions
and curves. A mathematical characterization of these structures that bars ‘‘patho-
logical® cases (such as regions of a single point and space-filling curves) is possible
[Requicha 1977]. Basically the requirement is that regions be ‘‘homogeneously
two-dimensional’’ (contain no hanging or isolated structures of different
dimension—solids, lines or points). Similarly, curves should be homogeneously
one-dimensional. The property of regularity is sometimes important; a regular set
is one that is the closure of its interior (in the relevant one- or two-dimensional to-
pology). Intuitively, regularizing a two-dimensional set (taking the closure of its
interior) first removes any hanging one- and zero-dimensional parts, then covers
the remainder with a tight skin (Fig. 8.1). In computer vision, often regions and
curves are discrete, being defined on a raster of pixels or on an orthogonal grid of
possible primitive edge segments. It is frequently convenient to associate a direc-
tion with a curve, hence ordering the points along it and defining portions of the
plane to its left and right.

The one-dimensional closed curve that bounds a well-behaved region is an
unambiguous representation of it; Section 8.2 deals with representations of curves
and hence indirectly of regions. Section 8.3 deals with other unambiguous
representations of regions that are not based on the boundary. Sometimes unambi-
guous representation is not the issue; it may be important to have qualitative
description of a region (its size or shape, say). Section 8.4 presents several terse
descriptive properties for regions.

231

(a) (b) (c) (d)

Expanded view of
neighborhood

Fig. 8.1 (a, b, c) are Regions; (d) (¢) and (f) are not.

8.2 BOUNDARY REPRESENTATIONS

8.2.1 Polylines

The “‘two-point” form of a line segment (see Appendix 1) extends easily to the po-
iyline, which represents a concatenation of line segments as a list of points. Thus
the point list x;, X,, X; represents the concatenation of the line segments from x, to
x, and from x; to x;. If the first point is the same as the last, a closed boundary is
represented.

Polylines can approximate most useful curves to any desired degree of accu-
racy. One might think there is one obvious way to approximate a boundary curve
(or raw data) with a polygonal line. This is not so: many different approaches are
possible. Finding a satisfying polygonal approximation to a given curve basically
involves segmentation issues. The problem is to find corners or breakpoints that

232 Ch. 8 Representation of Two-Dimensional Geometric Structures

yield the ““best’’ polyline. As with region-based segmentation schemes, the ideas
here can be characterized by the concepts of merging and splitting. Splitting and
merging schemes may be combined, especially if the appropriate number of linear
segments is known beforehand. For details, see [Horowitz and Pavlidis 1976].

In a merging algorithm, points along a curve (possibly in image data) are con-
sidered in order and accepted into a linear segment as long as they fit sufficiently
well. When they do not, a new segment is begun. The efficiency and characteristics
of these schemes are quite variable, and endless variations on the general idea are
possible. A few examples of “‘one pass’’ merging schemes are given here: explicit
algorithms are available in [Pavlidis 1977].

If the boundary (represented on a discrete grid) is known to be piecewise
linear, it is specified by its breakpoints. To find them, one can look along the boun-
dary, monitoring the angle between two line segments. One segment is between
the current point and a point several points back along the boundary; the other is
between the current point and one several points forward. When the angle between
these segments reaches a maximum over some threshold, a breakpoint is declared
at the current point. This scheme does not adjust breakpoint positions, and so is
fast [Shirai 1975] but works best for piecewise linear input curves.

Tolerance-band solutions place a point on either side of the curve at the max-
imum allowable error distance, and then find the longest piece of the curve that
lies entirely between parallel lines through the two points [Tomek 1974]. This
method proceeds without breakpoint adjustment, and may not find the most
economical set of segments (Fig. 8.2).

An approximation of a curve with a polyline of minimum length in error by at
most a pixel is given in [Sklansky and Kibler 1976]. Each curve pixel is considered
a square and the resulting pixel structure is four-connected. The approximation
describes the shape of an elastic thread placed in the pixel structure (Fig. 8.3). The

Fig. 8.2 Simple tolerance-band solution (dotted lines). Better
solution (solid lines).

Sec. 8.2 Boundary Representations 233

234

Fig. 8.3 Minimum length polyline.

method tends to have difficulties with curves that are sharp relative to the grid size.

Another scheme, [Roberts 1965] is to keep a running least-squared-error
best-fit line calculation for points as they are merged into segments [Appendix 1].
When the residual (error) of a point goes over some threshold or the accumulated
error for a segment exceeds a threshold, a new segment is started. Difficulties arise
here because the concept of a breakpoint is nonexistent; they just occur at the in-
tersections of the best-fit lines, and without a phase of adjusting the set of points to
be fit by each line (analogous to breakpoint adjustment), they may not be intui-
tively appealing.

Generally, one-pass merging schemes do not produce the most satisfying po-
lylines possible under all conditions. Part of the problem is that breakpoints are
only introduced after the fit has deteriorated, usually indicating that an earlier
breakpoint would have been desirable.

In a splitting scheme, segments are divided (usually into two parts) as long as
they fail some fitting condition [Duda and Hart 1973; Turner 1974]. Algorithm 8.1
provides an example.

Algorithm 8.1: Curve Approximation

1. Given a curve as in Fig. 8.4a, draw a straight line between its end points (Fig.
8.4b).

2. For every point on the curve, compute its perpendicular distance to the
approximating (poly)line. If it is everywhere within some tolerance, exit.

3. Otherwise, pick the curve point farthest from the approximating (poly)line,
make it a new breakpoint (Fig. 8.4¢) and replace the relevant segment of poly-
line with two new line segments.

4. Recursively apply the algorithm to the two new segments (Fig. 8.4d).

A straightforward extension is needed to deal with the case of curve segments
parallel to the approximating one at maximum distance (Fig. 8.4¢).

Ch. 8 Representation of Two-Dimensional Geometric Structures

TANA

Fig. 8.4 Stagesin the recursive linear
(e} segmenter (see lext).

The area of a polygon may easily be computed from its polyline representa-
tion [Roberts 1965]. For a closed polyline of n points (x (i), y (i), i=0, ..., n — 1,
labeled clockwise around a polygonal boundary, the area of the polygon is

1 n—1
E) 2 ey — xyisn) (8.1)
i=0

where subscript calculations are modulo ». This formula can be proved by consid-
ering it as the sum of (signed) areas of triangles, each with a vertex at the origin, or
of parallelograms constructed by dropping perpendiculars from the polyline points
to an axis. This method specializes to chain codes, which are a limiting case of poly-
lines.

8.2.2 Chain Codes

Chain codes [Freeman 1974] consist of line segments that must lie on a fixed
grid with a fixed set of possible orientations. This structure may be efficiently
represented because of the constraints on its construction. Only a starting point is
represented by its location; the other points on a curve are represented by succes-
sive displacements from grid point to grid point along the curve. Since the grid is
uniform, direction is sufficient to characterize displacement. The grid is usually
considered to be four- or eight- connected; directions are assigned as in Fig. 8.5,
and each direction can be represented in 2 or 3 bits (it takes 18 bits to represent the
starting pointin a 512 x 512 image).

Chain codes may be made position-independent by ignoring the ‘start
point.”” If they represent closed boundaries they may be “‘start point normalized”’
by choosing the start point so that the resulting sequence of direction codes forms

Sec. 8.2 Boundary Representations 235

236

an integer of minimum magnitude. These normalizations may help in matching.
Periodic correlation (Section 3.2.1) can provide a measure of chain code similarity.
The chain codes without their start point information are considered to be periodic
functions of “‘arc length.” (Here the arc length is just the number of steps in the
chain code.) The correlation operation finds the (arc length) ‘displacement of the
functions at which they match up best as well as quantifying the goodness of the
match. It can be sensitive to slight differences in the code.

The ““derivative’” of the chain code is useful because it is invariant under
boundary rotation. The derivative (really a first difference mod 4 or 8) is simply
another sequence of numbers indicating the relative direction of chain code seg-
ments; the number of left hand turns of /2 or 7w /4 needed to achieve the direction
of the next chain segment.

Chain codes are also well-suited for merging of regions [Brice and Fennema
1970] using the data structure described in Section 5.4.1. However, the pleasant
properties for merging do not extend to union and intersection. Chain codes lend
themselves to efficient calculation of certain parameters of the curves, such as area.
Algorithm 8.2 computes the area enclosed by a four-neighbor chain code.

Algorithm 8.2: Chain Code Area

Comment: For a four-neighbor code (0: +x, 1: +y, 2: —x, 3: —y) surrounding a
region in a counterclockwise sense, with starting point (x, y):
begin Chain Area,
1. area:=0;
2. yposition := y,
3. Foreachelement of chain code
case element-direction of
begin case
[0] area : = area-yposition;
(1] yposition : = yposition + 1;
[2] area := area + yposition;
[3] yposition : = yposition — 1;
end case; ‘
end Chain Area;

To merge two region boundaries is to remove any boundary they share, obtaining a
boundary for the region resulting from gluing the two abutting regions together.
As we saw in Chapter 5, the chain codes for neighboring regions are closely related
at their common boundary, being equal and opposite in a clearly defined sense (for
N-neighbor chain codes, one number is equal to the other plus N/2 modulo N (see
Chapter 5). This property allows such sections to be identified readily, and easily
scissored out to give a new merged boundary. As with polylines, it is not immedi-
ately obvious from a chain-coded boundary and a point whether the point is within
the boundary or outside. Many algorithms for use with chain code representations
may be found in [Freeman 1974; Gallus and Neurath 1970].

Ch. 8 Representation of Two-Dimensional Geometric Structures

J

S i |
[0 o e

—~———

: P N
f B -
{a) (b) Chaincode: 1110101030333032212322
{c) Derivative: 1003131331300133031130

Fig. 8.5 (a) Direction numbers for chain code elements. (b) Chain code for the
boundary shown. (c) Derivative of (b).

8.2.3 The s -s Curve

The y—s curve is like a continuous version of the chain code representation,; it is
the basis for several measures of shape. is the angle made between a fixed line
and a tangent to the boundary of a shape. It is plotted against s, the arc length of the
boundary traversed. For a closed boundary, the function is periodic, with a discon-
tinuous jump from 27 back to 0 as the tangent reattains the angle of the fixed line
after traversing the boundary.

Horizontal straight lines in the ¢y—s curve correspond to straight lines on the
boundary (¥ is not changing). Nonhorizontal straight lines correspond to seg-
ments of circles, since ¥ is changing at a constant rate. Thus the ¢—s curve itself
may be segmented into straight lines [Ambler et al. 1975], yielding a segmentation
of the boundary of the shape in terms of straight lines and circular arcs (Fig. 8.6).

27
14
T
L 1 s
(b)

s S
(\\)

(a)
(c)

Fig. 8.6 -5 segmentation. (a) Triangular curve and a tangent. (b) -5 curve showing re-
gions of high curvature. (c) Resultant segmentation.

Sec. 8.2 Boundary Representations 237

238

8.2.4 Fourier Descriptors

Fourier descriptors represent the boundary of a region as a periodic function which
can be expanded in a Fourier series. There are several possible parameterizations,
summarized in [Persoon and Fu 1974]. These frequency-domain descriptions pro-
vide an increasingly accurate characterization of shape as more coefficients are in-
cluded. In the infinite limit, they are unambiguous; individual coefficients are
descriptive representations indicating ‘‘lobedness’’ of various degrees.

The boundary itself may provide the parameters for the Fourier transform as
shown in Fig. 8.7. The parameterization of Fig. 8.7 gives the following series ex-
pansions:

S)
x(p) = EXkeka"g w, = 2m/P, P = perimeter (8.2)

where the discrete Fourier coefficients X, are given by

P
X, = 3 { x(5)e "0 gs 8.3)

A common feature for the Fourier descriptors is that typically the general
shape is given rather well by a few of the low-order terms in the expansion of the
boundary curve. Properly parameterized, the coefficients are independent of size,
translation, and rotation of the shape to be described. The descriptors do not lend
themselves well to reconstruction of the boundary; for one thing, the resulting
curve may not be closed if only a finite number of coefficients is used for the recon-
struction.

The ¥—s curve may be used as the basis for a Fourier transform shape
description [Barrow and Popplestone 1971]. ¢(s) is converted to ¢ (s): ¢ (s) =
¥ (s) — 27 s/P. This operation subtracts out the rising component. A number of
shape-indicating numbers arise from taking the root-mean-square amplitudes of
the Fourier components of ¢ (s), discarding phase information. The shape descrip-
tors are again indicative of the ‘‘lobedness”’ of the shape.

X2

3

(xy (s}, x5 {5))

Fig. 8.7 Parameterization for Fourier
— X, Series Expansion.

Ch. 8 Representation of Two-Dimensional Geometric Structures

8.2.5 Conic Sections

Polynomials are a natural choice for curve representation, and certain polynomials
of degree 2 (namely, circles and ellipses) are closed curves and hence define re-
gions. Circles may be represented with three parameters, ellipses by five, and gen-
eral conics by six. Thus the coefficients or parameters of conic sections are terse
representations. Conics are often good models for physical curves such as the
edges of manufactured objects.

Conics are commonly used to represent general curves approximately [Paton
1970]. Conics have some annoying properties, however; an important one is the
difficulty of producing a well-behaved conic from noisy data to be fitted. Unless
one is careful in defining the error measure [Turner 1974], a ““least-squared error”’
fit of a conic to data points yields a conic which is a nonintuitive shape or even of a
surprising type (such as a hyperbola when an ellipse was expected). Conic
representations and algorithms are explored in Appendix 1.

8.2.6 B-Splines

Interpolative techniques may be used to yield approximate representations. B-
splines are a popular choice of piecewise polynomial interpolant. Introduced in
computer aided design and computer graphics, these classes of curves provide ade-
quate aesthetic content for much design and also have many useful analytic proper-
ties. Usually, the fact that the curves are ““interpolating’’ is not very relevant. What
is relevant is that they have predictable properties which make them easy to mani-
pulate in image processing, that they ‘‘look good’ to human beings, that they
closely approximate curves of interest in nature, and so forth. Several schemes ex-
ist for constructing complex curves that are useful in geometric modeling, and de-
tailed expositions are to be found in [deBoor 1978; Barnhill and Riesenfeld 1974].
The B-spline formulation is one of the simplest that still has properties useful for
interactive modeling and the extraction from raw data.

B-splines are piecewise polynomial curves which are related to a guiding po-
lygon. Cubic polynomials are the most frequently used for splines since they are the
lowest order in which the curvature can change sign. An example of the relation-
ship between the guiding polygon and its spline curve is shown in Fig. 8.8. Splines
are useful in computer vision because they allow accurate, manipulable internal
models of complex shapes. The models may be used to guide and monitor seg-
mentation and recognition tasks. Interactive generation of complex shape models
is possible with B-splines, and the fact that the complex spline curves have terse
representations (as their guiding polygons) allows programs to manipulate them
easily.

Spline approximations have good computational properties as well as good
representational ones. First, they are variation diminishing. This means that the
curve is guaranteed to ‘‘vary less’’ than its guiding polygon (many interpolation
schemes have a tendency to oscillate between sample points). In fact, the curve is
guaranteed to lie between the convex hull of groups of n + 1 consecutive points
where nis the de;gree of the interpolating polynomial (Fig. 8.9.) The second advan-

Sec. 8.2 Boundary Representations 239

Fig. 8.8 A spline curve and its guiding
polygon.

tage is that the interpolation is local; if a point on the guiding polygon is moved,
the effects are intuitive and limited to nearby points on the spline. A third advan-
tage is directly related to its use in vision; a technique for matching a spline-
represented boundary curve against raw data is to search perpendicular to the
spline for edges whose direction is parallel to the spline curve and location perpen-
dicular to the spline curve. Perpendicular and parallel directions are computable
directly from the parameters representing the spline.

B-Spline Mathematics

The interpolant through a given set of points x;, i = 1, ..., nis x(s), a vector
valued piecewise polynomial function of the parameter s, s changes uniformly
between data points. For convenience, assume that x(/) = x,, that is: s assumes
integer values at data points, and s = 1, ..., n. Each piece of x(s) is a cubic polyno-

(a)

(b} (e}~

Fig. 8.9 The spline of degree » must lie in the convex hull formed by consecu-
tive groups of n + 1 points. (a) # = 1 (linear). (b) n = 2 (quadratic). (c) n =3
(cubic).

240 Ch. 8 Representation of Two-Dimensional Geometric Structures

mial. Globally, x(s) has three orders of continuity across data points (i.e., up to
continuity of second derivative: curvature). Formally, x(s) is defined as

x(s) = ril v;B,(s) (8.4)
i=0

The v, are coefficients representing the curve x(s). They also turn out to be the
vertices of the guiding polygon. They are a dual to the set of points x;; each can be
derived from the other. The » data points x determine n v’s. There are actually
n +2 v’s; the additional two coefficients are determined from boundary conditions.
For example, if the curvature at the end points is to be 0,

v = Lot v) .5)
2
(vn—l s vn-v'-])
Y=t g

Thus only nof the n + 2 coefficients are selectable. 7

The basis functions B;(s) are nonnegative and have a limited support, that is,
each B; is non-zero only for s between i — 2 and i + 2, as shown in Fig. 8.10. The
limited support means that on a given span (i, i + 1) there are only four basis func-
tions that are nonzero, namely: B;_;(s), B;(s), B;;,(s), and B;,(s). Figure 8.11
shows this configuration. Thus, to calculate x(s,) for some sg, simply find in which
span it resides, and then use only four terms in the summation (8.4), since there
are only four basis functions which are non-zero there.

The basis functions B;(s) are, themselves, piecewise cubic polynomials and
their definition depends on the relative size (in parameter space) of the spans
under their support. If the spans are of uniform size (e.g., unity), then all the basis
functions have the same form and are merely translates of each other. Moreover,
each of the basis functions, on its nonzero support, is made of four pieces. So, in
Fig. 8.11 in the span (i, i + 1) appear: the fourth piece of B;_;(s), the third piece of
B, (s), the second piece of B;.(s), and the first piece of B,.,(s). Call these pieces
C;o(s), ..., C, 3(s) respectively; then x (s) on the interval (i, i +1) is given by:

x(s) = Ciy 3(s)vi—y + C;2(s)v,;
+ Ci+1,l(5)"i+1 + Cr+2,0(3)"j+2

No matter what i is, C;; will have the same shape; this property allows a
simplification in calculations. Define four primitive basis functions, and interpolate
along the curve by parameter shifting:

C.."J'(S)= C.‘J(S_’) l=0, ...,n+]; J=0, 1_, 2,3 (86)
(

A Fig. 8.10 Uniform B-spline: B;(s). Its
t i i 2 oy ¥ - support is non-zero only for s between

i—2 i—1 i i+1 i+2 s i—2andi+ 2.

Sec. 8.2 - Boundary Representations 241

B{s)
i+2

Bls)

i+1

B(s)
=1
Bi(s)

e

i i+1 s

Fig. 8.11 The only four basis functions that are non-zero over the span (i
i + 1). Only the overlapping parts on this span are shown.

To find x(s¢), if s¢ is in the span (i, i+ 1), use the formula:

x(s) =v,_1C3(s— D) +v,Cy(s— 1) + v, 1C1(s— i) + v,;,Co(s — i) (8.7
where the C;(¢) are given by:
i
Co(t) = 3
LA 2
i i 3:6+3z +1
A
C,(1) = i’___g’_‘“‘_
43 2.
Cy(0) = t +3t6 3r+1

Formal derivations may be found in [Barnhill and Riesenfeld 1974; deBoor 1978].
Useful Formulae

The formulae may be simplified still further. x(s) is calculated in pieces (seg-.
ments); define the segments x; (¢) where tranges from 0 to 1. Then

x,;(00=x; fori=1,..,n—-1

and
x,-1(1) = x, (8.8)
In matrix notation, and explicitly calculating the definition of the cubic polynomi-
als C;(¢),
% (e Bl IO v Y e il (8.9)
where [C] is the matrix:
-1 3 =31
113 -6 30
e (o (RN o SR
1 4 1 0

242 Ch. 8 Representation of Two-Dimensional Geometric Structures

The ith column in the matrix [C] in Eq. (8.9) above is the coefficients of the cubic
polynomial C;(¢) (i=0, 1, 2, 3).

There is a distinction between open and closed curves. For open curves the
boundary conditions must be used to solve for the two additional coefficients, as
above. For closed curves, simply

Yo =V, and Ypor1 = V1 (8.10)

The relation between the different v, and x; is summarized as follows. For open
curves with zero curvature at the endpoints:

6 0 1 ¥o Xo

1 4 1 ¥i X
1451 V-1 X,y-1

0 6 V”J 3

and for closed curves:
4 1 i1 [%o
=1 - (8.11)
1 4 1] v, X,
1 f"* Vi Xy

Equation (8.10) gives the relationship between the points on the guiding po-
Iygon and the points on the spline. It may be derived from Eq. (3.9) with 7 =0 (see
exercises). To interpolate between these points, use a value of ¢ between the ex-
tremes of 0 and 1. Choosing ¢t = k dtfor k=0, ..., n where n dr = 1 and substituting
into Eq. (8.9) yields

X (k dt) = [(k de)>(k d)*k d 1 [ClIvi_y, ¥, Vigy, Vil (8.12)

This can be decomposed [Wu et al. 1977; Gordon 1969] into the following equa-
tion.

o] [1 ¥l &7 ¥i-1
_ 10 11 t ‘
1 1 1 1 1 1 -1 1 dt \ (8.13)
00 1fl! Vi+2
The tangent at a curve is obtained by differentiation: ' Vi1
20030,,—13—31‘“‘
x';(kdt) = I] [l 1 0 2dt 3 -6 3 0]Vt (8.14)
TR 0 0 1 =3 0 3 0offvi

Sec. 8.2 Boundary Representations 243

244

8.2.7 Strip Trees

In many computational problems there are space-time trade-offs. A nonredundant
explicit representation for a general discrete curve, such as a chain code, is terse
but may be difficult to use for certain computations. On the other hand, a represen-
tation for curves may take up much space but allow operations on those curves be
very efficient. A representation with the latter property is strip trees [Ballard 1981].
Strip trees are closed under intersection and union operations, and these opera-
tions may be efficiently implemented.

A strip tree is a binary tree. The datum at each node is a eight-tuple, of which
six entries define a strip (rectangle) and two denote addresses of the sons (if any).
Thus each strip is defined by a six-tuple S (x,, x,, w) as shown in Fig. 8.12. (Only
five parameters are necessary to define an arbitrary rectangle, but the redundant
representation proves useful in union and intersection algorithms to follow.)

The tree can be created from any curve by the following recursive procedure,
which is very similar to Algorithm 8.1.

Algorithm 8.3: Making a Strip Tree

Find the smallest rectangle with a side parallel to the line segment [x, x,,) that just
covers all the points. This rectangle is the datum for the root node of a tree. Pick a
point x, that touches one of the sides of the rectangle. Repeat the above process
for the two sublists [xo, ..., X,) and [x,, ..., x,,). These become sons of the root
node. Repeat the process until the approximation is accurate enough.

The half-open interval facilitates the computations to follow. In the example
above the point x, explicitly appears in both subtrees but implementationally need
not be part of the left one. Figure 8.13 shows the strip tree construction process.

Intersecting Two Curves via Strip Trees

Consider what happens when a strip from one tree intersects a strip from
another, as shown in Fig. 8.14. If the strips do not intersect, the underlying curves

Fig. 8.12 Strip definition.

Ch. 8 Representation of Two-Dimensional Geometric Structures

~ FoRMAT: [s]e [[[we]]
BEDEoann
;
EOEERLA GlEECT R

7

>
CREELED FEEDEE

¥ <

Fig. 8.13 Strip tree construction process.

do not intersect. If the strips do intersect, the underlying curves may or may not.
To determine which, the computation may be applied recursively. At the leaf level
of the tree defined as the primitive level, the problem can always be resolved.

Algorithm 8.4: Intersecting Two Strip Trees Representing Curves

Boolean Procedure Treelnt (T1, T2, L)
Begin
case intersection type of two strips T'1 and T2 of
begin case
[primitive] return (true)
[nulll return (false)
[possible] I T2 is the “fatter’’ strip
return (Treelnt(T'1,LSon(72) or Treelnt(71,RSon(T2))
Eisereturn (Treelnt(LSon(71),7T2) or Treelnt(RSon(71),72));
end case;
end;

ey
o

NULL POSSIBLE

Fig. 8.14 Types of strip intersections.
(a) Two kinds of intersections: NULL on
the left; various POSSIBLE intersections
on the right. (b) Under certain
conditions the underlying curves must
intersect.

Sec. 8.2 Boundary Representations 245

The “Union” of Two Strip Trees

The “‘union’’ of two strip trees may be defined as a strip that covers both of
the two root strips. The two curves defined by [x', ..., x',), [x", ..., X"',,) are
treated as two concatenated lists. That is, the resultant ordering is such that xy =
X0, X;pen+1 = X, This construction is shown in Fig. 8.15.

Closed Curves Represented by Strip Trees

A region may be represented by its (closed) boundary. The strip-tree con-
struction method described in Algorithm 8.3 works for closed curves and, inciden-
tally, also for self-intersecting curves. Furthermore, if a region is not simply con-
nected (has ‘‘holes’’) it can still be represented as a strip tree which at some level
has connected primitives.

Many useful operations on regions can be carried out with strip trees. Exam-
ples are intersection between a curve and a region and intersecting two regions.
Another example is the determination of whether a point is inside a region.
Roughly, if any semi-infinite line terminating at the point intersects the boundary
of the region an odd number of times, the point is inside. The implied algorithm is
computationally simplified for strip trees in the following manner:

Point Membership Property. To decide whether a point z is a member of a region
represented by a strip tree, compute the number of nondegenerate intersec-
tions of the strip tree with any semi-infinite strip L which has ||w|= 0 and
emanates from z. If this number is odd, the point is inside the region.

This is because for clear intersections the underlying curves may intersect more
than once but must intersect an odd number of times. A potential difficulty exists
when the strip L is tangent to the curve. To overcome this difficulty in practice, a
different L. may be used.

Intersecting a Curve with a Region

The strategy behind intersecting a strip tree representing a curve with a strip
tree representing a region is to create a new tree for the portion of the curve that
overlaps the region. This can be done by trimming the original curve strip tree.
Trimming is done efficiently by taking advantage of an obvious property of the in-
tersection process:

Pruning Property: Consider two strips S¢ from T and S, from T,,. If the inter-
section of S with T, is null, then (a) if any point on S¢ is inside T,, the entire
tree whose root strip is S¢ is inside or on 7, and (b) if any point on S¢ is out-
side of T, then the entire tree whose root strip is S is outside T,.

Fig. 8.15 Construction for “‘union’” of
strip trees representing two curves.

This leads to the Algorithm 8.5 for curve-region intersection using trees. If
the curve strip is “fatter” (i.e., has more area), copy the node and resolve the in-

246 Ch. 8 Representation of Two-Dimensional Geometric Structures

tersection at lower levels. In the converse case prune the tree sequentially by first
intersecting the resultant pruned tree with the right region strip.

Algorithm 8.5: Curve-Region Intersection
comment A Reference Procedure returns a pointer;
reference procedure CurveRegionInt(T1,72)

begin

A=T2

comment R is a global used by CRInt;

return (CRInt(7T1,72));

end;

reference procedure CRInt(T1,T2)
begin
begin Case StripInt(T1,T2) of
[Null or Primitive]
ifintersection (71,R, TRUE) = null then
ifInside(T'1,R) then return (7'1)
else return (null);
else return (T1),
[Possible] if T'1 is ““fatter’” then
begin
NT := NewRecord,
X (NT) X (T),
x, (NT) :=x, (T);
Wy (NT) =w (T),
w,(NT) := w,(T);
LSon(NT) := CRInt (LSon(T1),7T2);
RSon(NT) := CRInt (RSon(71),T2);
return(NT);
end
elsecomment T2 is “‘fatter”
Return (CRInt(CRInt(71,LSon(72)),RSon(T2)));
end;
end Case,
end;

The problem of intersecting two regions can be decomposed into two curve-region
intersection problems (Fig. 8.16). Thus algorithm 8.5 can also be used to solve the
region-region intersection problem:.

8.3 REGION REPRESENTATIONS
8.3.1 Spatial Occupancy Array
The most obvious and quite a useful representation for a region on a raster is a
membership predicate p(x, y) which takes the value 1 when point (x, y) is in the

Sec.8.3 Region Representations 247

	Part 3 Geometrical Structures, p.227
	Chapter 8 Representation of Two-Dimensional Geometric Structures, p.231
	8.1 Two-Dimensional Geometric Structures, p.231
	8.2 Boundary Representations, p.232
	8.2.1 Polylines, p.232
	8.2.2 Chain Codes, p.235
	8.2.3 The Psi-s Curve, p.237
	8.2.4 Fourier Descriptors, p.238
	8.2.5 Conic Sections, p.239
	8.2.6 B-Splines, p.239
	8.2.7 Strip Trees, p.244

