tersection at lower levels. In the converse case prune the tree sequentially by first
intersecting the resultant pruned tree with the right region strip.

Algorithm 8.5: Curve-Region Intersection
comment A Reference Procedure returns a pointer;
reference procedure CurveRegionInt(T1,72)

begin

A=T2

comment R is a global used by CRInt;

return (CRInt(7T1,72));

end;

reference procedure CRInt(T1,T2)
begin
begin Case StripInt(T1,T2) of
[Null or Primitive]
ifintersection (71,R, TRUE) = null then
ifInside(T'1,R) then return (7'1)
else return (null);
else return (T1),
[Possible] if T'1 is ““fatter’” then
begin
NT := NewRecord,
X (NT) X (T),
x, (NT) :=x, (T);
Wy (NT) =w (T),
w,(NT) := w,(T);
LSon(NT) := CRInt (LSon(T1),7T2);
RSon(NT) := CRInt (RSon(71),T2);
return(NT);
end
elsecomment T2 is “‘fatter”
Return (CRInt(CRInt(71,LSon(72)),RSon(T2)));
end;
end Case,
end;

The problem of intersecting two regions can be decomposed into two curve-region
intersection problems (Fig. 8.16). Thus algorithm 8.5 can also be used to solve the
region-region intersection problem:.

8.3 REGION REPRESENTATIONS
8.3.1 Spatial Occupancy Array
The most obvious and quite a useful representation for a region on a raster is a
membership predicate p(x, y) which takes the value 1 when point (x, y) is in the
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b. c. d.

Fig. 8.16 Decomposition of Region-Region Intersection. (a) Desired result.
(b) Portion of boundary generated by treating three-lobed region as a curve. (c)
Portion of boundary generated by treating five-lobed region as a curve. (d) Result
of union operation.

region and the value 0 otherwise. One easy way to implement such a function is
with a membership array, an array of 1’s and 0’s with the obvious interpretation.
Such arrays are quicky interrogated and also quite easily unioned, merged and in-
tersected by AND and OR operations, applied elementwise on the operand arrays.
The disadvantages of this representation are that it requires much space and does
not represent the boundary in a useful way.

8.3.2 y-Axis

A representation that is more compact and which offers reasonable algorithms for
intersection, merging, and union is the y-axis representation [Merrill 1973]. This is
a run-length encoding of the membership array, and as such it provides no explicit
boundary information. It is a list of lists. Each element on the main list corresponds
to a row of constant y in the image raster. Each row of constant y is encoded as a list
of x-coordinate points; the first x point at which the region is entered while moving
along that y row, then the x point at which the region is exited, then the x point at
which it next is entered, and so forth. The y-rows with no region points are omitted
from the main list. Thus, in a notation where successive levels of sublist are sur-
rounded by successive levels of parentheses, the y-axis encoding of a region is
shown in Fig. 8.17; here the first element of each sublist is the y coordinate,
followed by a list of “‘into’” and ““out of”’ x coordinates. Where a y coordinate con-

Fig. 8.17 p-axisregion
((245)(435) (53355)) representation.
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tains an isolated point in the region, this point is repeated in the x-axis representa-
tion, as shown by the example in Fig. 8.17. Thus ““lines’’ (regions of unit width)
can be easily (although not efficiently) represented in this system.

Union and intersection are implemented on y-axis representations as merge-
like operations which take time linearly proportional to the number of y rows. Two
instances of y-axis representations and the representation of their union are shown
in Fig. 8.18. Note that the union amounts to a merge of x elements along rows or-
ganized within a merge of rows themselves.

The y-axis representation is wasteful of space if the region being represented
is long, thin, and parallel to the y axis. In this case one is invited to encode it in x-
axis format, in an obvious extension. Working with mixed x-axis and y-axis for-
mats presents no conceptual difficulties, but considerable loss of convenience.

8.3.3 Quad Trees

Quad trees [Samet 1980] are a useful encoding of the spatial occupancy array. The
casiest way to understand quad trees is to consider pyramids as an intermediate
representation of the binary array. Figure 8.19 shows a pyramid (Section 3.7) made
from the base image (on the left). Each pixel in images above the lowest level has
one of three values, BLACK, WHITE, or GRAY. A pixel in a level above the base
is BLACK or WHITE if all its corresponding pixels in the next lower level are
BLACK or WHITE respectively. If some of the lower level pixels are BLACK and
others are WHITE, the corresponding pixel in the higher level is GRAY.

Such a pyramid is easy to construct. To convert the pyramid to a quad tree,
simply search the pyramid recursively from the top to the base. If an array element
in the pyramid is either BLACK or WHITE, form a terminal node of the
corresponding type. Otherwise, form a GRAY node with pointers to the results of

A B

[

(M2367)(227)(31133){(512)) ((134)(215)(32257)(422)}

AUB

(12467 (217)(31357)(422)(512))

Fig. 8.18 Two pointsets 4, B, and 4 U B, with their y-axis representations.
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Level O

gf(a

Level 1

Level 2

Level 3

Fig. 8.19 Pyramid used in quad tree construction. Letters correspond to pixels
in the pyramid that are either BLACK or WHITE.

the recursive examination of the four elements at the next level in the tree (Algo-
rithm 8.6).

Algorithm 8.6: Quad Tree Generation

Reference Procedure QuadTree (integer array pyramid; integer x, y, level);
CommentNW, NE, SW, SE are fields denoting the sons of a quadtree node;
Newnode(P);
TYPE(P) := Pyramid(IND (x,y,Level));
ifTYPE(P) = BLACK or WHITE then return (P)
else begin

SW(P):=QuadTree(Pyramid, 2#x, 2+y, Level + 1);

SE(P):=QuadTree(Pyramid, 2*x + 2xLevel, 2«y, Level + 1);
NW (P):=QuadTree(Pyramid, 2+x, 2=y + 2+Level, Level + 1);

NE(P):=QuadTree(Pyramid, 2x(x + Level), 2«(y + Level), Level + 1);
return (P)
end;
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Here an implementational point is that the entire pyramid fits into a linear array of
size 2(2%*'ev¢!) IND is an indexing function which extracts the appropriate value
given the x, y and level coordinates. The reader can apply this algorithm to the ex-
ample in Fig. 8.19 to verify that it creates the tree in Fig. 8.20.

The quad tree can be created directly from the base of the pyramid, but the al-
gorithm is more involved. This is because proceeding upward from the base, one
must sometimes defer the creation of black and white nodes. This algorithm is left
for the exercises [Samet 1980].

Many operations on quad trees are simple and elegant. For example, consider
the calculation of area [Schneier 1979]:

Algorithm 8.7: Area of a Quad Tree

Integer Procedure Area (reference QuadTree; integer height)
Begin
CommentNW, NE, SW, SE are fields denoting the sons of
a quadtree node;
BlackArea := 0,
ifTYPE(QuadTree) = GRAY then
forIin the set (NW, NE, SW, SE} do
BlackArea = BlackArea + Area(I(QuadTree), height-1)
else if TYPE(QuadTree) = BLACK then
BlackArea = BlackArea + 22°height.
return(BlackArea)
end;

Other examples may be found in the References and are pursued in the Exercises.
The quad tree and the associated pyramid have two related disadvantages as a

representation. The first is that the resolution cannot be extended to finer resolu-

tion after a grid size has been chosen. The second is that operations between quad

1.2 3 4 5 6 7 8 9 10 11 12

W Black
O White
O Gray

Fig. 8.20° Quad tree for the example in Fig. 8.19.
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trees tacitly assume that their pyramids are defined on the same grids. The grids
cannot be shifted or scaled without cumbersome conversion routines.

8.3.4 Medial Axis Transform

If the region is made of thin components, it can be well described for many pur-
poses by a ‘‘stick-figure’® skeleton. Skeletons may be derived by thinning algo-
rithms that preserve connectivity of regions; the medial axis transform (MAT), of
[Blum 1973; Marr 1977] is a well-known thinning algorithm.

The skeleton is defined in terms of the distance of a point x to a set 4:

d.(x, A) = inf{d (x, z)|z in 4} (8.15)

Popular metrics are the Euclidean, city block, and chessboard metrics
described in Chapter 2.

Let B be the set of boundary points. For each point P in a region, find its
closest neighbors (by some metric) on the region boundary. If more than one boun-
dary point is the minimum distance from x, then x is on the skeleton of the region.
The skeleton is the set of pairs {x, d,(x, B)} where d,(x, B) is the distance from x
to the boundary, as defined above (this is a definition, not an efficient algorithm.)
Since each x in the skeleton retains the information on the minimum distance to
the boundary, the original region may be recovered (conceptually) as the union of
“‘disks”” (in the proper metric) centered on the skeleton points.

Some common shapes have simply structured medial axis transform skele-
tons. In the Euclidean metric, a circle has a skeleton consisting of its central point.
A convex polygon has a skeleton consisting of linear segments; if the polygon is
nonconvex, the segments may be parabolic or linear. A simply connected polygon
has a skeleton that is a tree (a graph with no cycles). Some examples of medial axis
transform skeletons appear in Fig. 8.21.

The figure shows that the skeleton is sensitive to noise in the boundary.
Reducing this sensitivity may be accomplished by smoothing the boundary, using
a polygonal boundary approximation, or including only those points in the skele-
ton that are greater than some distance from the boundary. The latter scheme can
lead to disconnected skeletons.

Algorithm 8.8:  Medial Axis Transformation [Rosenfeld and Kak 1976]

Let region points have value 1 and exterior points value 0. These points define an
image f°(x). Let f*(x) be given by

fHx) = PAx) + d(min : 1)1, k>0

x,z) <

The points f*(x) will converge when k is equal to the maximum thickness of the
region. Where f*(x) has converged, the skeleton is defined as all points x such that

rHx) 2 42, d(x,z) < 1.
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Fig. 8.21 Medial Axis Transform skeletons (a), and the technique applied to
human cell nuclei (b). Shown in (b) are both the “‘normal”’ skeleton obtained by
measuring distances interior to the boundaries, and the exo-skeleton, obtained by
measuring distances exterior to the boundary.

This algorithm can produce disconnected skeletons for excursions or lobes off the
main body of the region. Elegant thinning algorithms to compute skeletons are
given in [Pavlidis 1977].

8.3.5 Decomposing Complex Regions
Much work has been done on the decomposition of point sets (usually polygons)
into a union of convex polygons. Such convex decompositions provide structural

analysis of a complex region that may be useful for matching different point sets.
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An example of the desired result in two dimensions is presented here, and the in-
terested reader may refer to [Pavlidis 1977] for the details. Such a decomposition is
not unique in general and in three dimensions, such difficulties arise that the prob-
lem is often called ill-formed or intractable [Voelcker and Requicha 1977].

The shapes of Fig. 8.22 have three ‘‘primary convex subsets’’ labeled X, Y,
and Z. They form different numbers of “‘nuclei’” (roughly, intersection sets). The
shape is described by a graph that has nodes for nuclei and primary convex subsets
and an arc between intersecting sets (Fig. 8.22c). Without nodes for the nuclei
(i.e., if only primary convex subsets and their intersections are represented), re-
gions with different topological connectedness can produce identical graphs (Fig.
8.22b).

8.4 SIMPLE SHAPE PROPERTIES

8.4.1 Area

The area of a region is a basic descriptive property. It is easily computed from curve
boundary representations (8.3.1) and thus also for chain codes (8.3.2); their con-

' X
y
Z
Z
(b)
X & 14 4
X
| A Y
z . Fig. 8.22 Decomposition of polygon
into primary convex subsets and nuclei
(c) (see text).
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tinuous analog is also useful. Consider a curve parameterized on arc length s so
that points (x, y) are given by functions (x (s), y (s))

P
- & _ | dx
area _{ (x Y ds) ds (8.16)

where Pis the perimeter.
8.4.2 Eccentricity

There are several measures of eccentricity, or “‘elongation’’. One of them is the ra-
tio of the length of maximum chord 4 to maximum chord B perpendicular to A
(Fig. 8.23).

Another reasonable measure is the ratio of the principal axes of inertia; this
measure can be based on boundary points or the entire region [Brown 1979]. An
(approximate) formula due to Tenenbaum for an arbitrary set of points starts with
the mean vector

Xp = i Y x (8.17)
R yingr
To compute the remaining parameters, first compute the jjth moments M
defined by
M’j = 2 (XQ - x)i(Y(} - y)f (818)
xin R

The orientation, 8, is given by

2M
6 = —!—tan”“‘( .

2 My — Moy,
and the approximate eccentricity eis

e = (M20 - M02)2 + 4M“
area

) + n(-”z—) (8.19)

(8.20)

8.4.3 Euler Number

The Euler number is a topological property defining the set of objects that are
equivalent under ‘‘rubber-sheet’’ deformations of the plane. It describes the con-
nectedness of a region, not its shape. A connected region is one in which all pairs of
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points may be connected by a curve lying entirely in the region. If a complex two-
dimensional object is considered to be a set of connected regions, where each one
can have holes, the Euler number for such an object is defined as

(number of connected regions) — (number of holes)

The number of holes is one less than the connected regions in the set complement
of the object.

8.4.4 Compactness

One measure of compactness (not compactness in the sense of point-set topology)
is the ratio (perimeter?)/area, which is dimensionless and minimized by a disk.
This measure is computed easily from the chain-code representation of the boun-
dary where the length of an individual segment of eight-neighbor chain code is
given by (+/2) if the (eight-neighbor) direction is odd and by 1 if the direction is
even. The area is computed by a modification of Algorithm 8.2 and the perimeter
may be accumulated at the same time.

For small discrete objects, this measure may not be satisfactory; another
measure is based on a model of the boundary as a thin springy wire [Young et al.
1974]. The normalized ‘‘bending energy’’ of the wire is given by

E= |k (s)|*ds (8.21)

o&_\ e

1
P

where « is curvature. This measure is minimized by a circle. E can be computed
from the chain code representation by recognizing that k = 4 8/dS, and also from
the Fourier coefficients mentioned below since

2 2

2 2
Ik ()| = % 3 %S-; (8.22)
so that E, using Parseval’s theorem, is
Y ew)*(J X |2 + | 7D (8.23)

=—00

where X, = (X, ¥,) are the Fourier descriptor coefficients in (8.2).

8.4.5 Slope Density Function

The y—s curve can be the basis for the slope density function (SDF) [Nahin 1974].
The SDF is the histogram or frequency distribution of ¢ collected over the boun-
dary. An example is shown in Fig. 8.24. The SDF is flat for a circle (or in a continu-
ous universe, any shape with a monotonically varying ¢); straight sides stand out
sharply, as do sharp corners, which in a continuous universe leave gaps in the his-
togram. The SDF is the signature of the yr—s curve along the i axis.
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Fig. 8.24 The Slope Density Function for three curves: a triangular blob, a cir-
cle, and a square.

8.4.6 Signatures

By definition, a projection is not an information-preserving transformation. But
Section 2.3.4 showed that (as with Fourier descriptors,) enough projections allow
reconstruction of the region to any desired degree of accuracy. (This observation
forms the basis for computer assisted tomography.)

Given a binary image f (x) = 0 or 1, define the horizontal signature p (x) as

p&) = [ £ y) (8.24)
y

p (x) is simply the projection of p onto the x axis. Similarly, define p (y), the verti-
cal signature, as

) = [rx (8.25)

Maxima and minima of signatures are often useful for establishing preliminary
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landmarks in an image to reduce subsequent search effort [Kruger et al. 1972]
(Fig. 8.25). If the region is not binary, but consists of a density function, Eq. (8.24)
may still be used. Polar projections may be useful characterizations if the point of
projection is chosen carefully.

Another idea is to provide a number of projections, ¢, ..., g,, the ith one
based on the ith sublist in each row in a y-axis-like region representation. This
technique is more sensitive to non-convexities and holes than is a regular projec-
tion (Fig. 8.26).

8.4.7 Concavity Tree

Concavity trees [Sklansky 1972] represent information necessary to fill in local in-
dentations of the boundary as far as the convex hull and to study the shape of the
resultant concavities.

A region S'is convex iff for any x; and x, in S, the straight line segment con-
necting x; and x; is also contained in S. The convex hull of an object S is the small-
est Hsuch that

SCH

and His convex.

Figure 8.27 shows a region, the steps in the derivation of the concavity tree,
and the concavity tree itself.
8.4.8 Shape Numbers

For closed curves and a 3-bit chain code (together with a controlled digitization
scheme), many chain-coded boundaries can be given a unique shape number [Bri-

Heart Analysis: Papillary Muscles

Signature

Fig. 8.25 The use of signatures to
locate a left ventricle cross section in
ultrasound data. (Quter curves are
smoothed versions of inner signatures.)
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(a) (b) (c)

Fig. 8.26 A shape (a) and projections; from the first (b) and second (c) sublists
of the y-axis representation.

biesca and Guzman 1979]. The shape number is related to the resolution of the
digitization scheme. In a multiple resolution pyramid of digitization grids, every
possible shape can be represented as a path through a tree. At each grid resolu-
tion corresponding to a level in the tree, there are a finite number of possible
shapes. Moving up the tree, the coarser grids tend to blur distinctions between
different shapes until at some resolution they are identical. This level can be used
as a similarity measure between shapes. The basic idea behind shape numbers is
the following. Consider all the possible closed boundaries with » chain segments.
These form the possible shapes of “‘order n.”” The chain encoding for a particular
boundary can be made unique by interpreting the chain-code direction sequence
as a number and picking the start point that minimizes this number. Notice that
the orders of shape numbers must be even on rectangular grids since a curve of
odd order cannot close.
Algorithm 8.9 generates a shape number of order n.

Object, O

Fig. 8.27 Concavities of an object and
the concavity tree.
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Algorithm 8.9: Making a Shape Number of Order n

1. Choose the maximal diameter of the shape as one of the coordinate axes.
2. Find the smallest rectangle that has a side parallel to this axis and just covers
the shape.

3. From the possible rectangles of order n, find the one that best approximates
the rectangle in step 2. Scale this rectangle so that the length of the longest side
equals that of the major axis, and center it over the shape.

4. Setall the pixels falling more than 50% inside the region to 1, and the rest to 0.

5. Find the derivative of the chain encoded boundary of the region of 1’s from
step 4.

6. Normalize this number by rotating the digits until the number is minimum.
The normalized number is the shape number.

Figure 8.28 shows these steps.

Order = 26 23

ey
DN s s

(1 (2} and (3)

Y
W -1

2« >0

W - =

(4)

Chaincode: 010303001000323232222
Derivative: 200202120110020201111

(5)

21211
02010
00202011110201020020212011

(6)
Fig. 8.28 Stepsin determining a shape number (see text).
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Generating a shape number of a specific order may be tricky, as there is a
chance that the resulting shape number may be greater than order » due to deep
concavities in the boundary. In this case, the generation procedure can be re-
peated for smaller values of » until a shape number of » digits is found. Even this
strategy may sometimes fail. The shape number may not exist in special cases
such as boundaries with narrow indentations. These features may cause step 4 in
Algorithm 8.11 to fail in the following way. Even though the rectangle of step 3
was of order n, the resultant boundary may have a different order. Nevertheless,
for the vast majority of cases, a shape number can be computed.

The degree of similarity for two shapes is the largest order for which their
shape numbers are the same. The ‘‘distance” between two shapes is the inverse
of their degree of similarity. This distance is an u/tradistance rather than a norm:

d(s,§) =0
d(§,, §,) =20 for §; # §, (8.26)
d(S;, $3) < max(d(S; S,), d(S,, S3))
Figure 8.29 shows the similarity tree for six shapes as computed from their shape
numbers. When the shape number is well defined, it is a useful measure since it is

unique (for each order), it is invariant under rotation and scale changes of an ob-
ject, and it provides a metric by which shapes can be compared.

® Sl — ABCDEF
@ ABCDEF

® w o|0
=]

M MmO O W b
8
[o]

Fig. 8.29 Six shapes, their similarity trees, and the ultradistances between the shapes.
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EXERCISES

8.1 Consider a region segmentation where regions are of two types: (1) filled in and (2)
with holes. Relate the number of junctions, boundaries, and filled-in regions to the
Euler number.

8.2 Write a procedure for finding where two chain codes intersect.

8.3 Devise algorithms to intersect and union two regions in the y-axis representation.

8.4 Show that the number of intersections of the curves under a clear strip intersection
is odd.

8.5 Modify Algorithm 8.4 to work with strip trees with varying numbers of sons.

8.6 Derive Eq. (8.9) from Eq. (8.7).

8.7 Show that Egs. (8.12) and (8.13) are equivalent.

8.8 Given two points X; and X, and slopes ¢ (x;) and ¢ (x,), find the ellipse with major
axis a that fits the points.

8.9 Write a procedure to intersect two regions represented by quad trees, producing the
quad tree of the intersection.

8.10 Determine the shape numbers for (a) a circle and (b) an octagon. What is the dis-
tance between them?
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