The functions 4 (¢) and B (¢) are given by Fourier time series:

!

Amn(t) = Guno T 2 i COS Qmt/7) + i SIN (2m¢/7) (9.10)
i=1
1

Bon(t) = byuo + 2 Cpmi €08 2mt/7) + d,, sin Qart/7) (9.11)
i=1

where tis time, the a,,,i, bynis Coni> @and d,,,; are arbitrary real constants, and 7 the
period. Any continuous periodically moving surface on the sphere may be
represented by some selection of these real constants; in the cardiac application,
reasonable approximations to the temporal behavior are obtained with + < 3. Fig-
ure 9.10 shows three stages from a moving-harmonic-surface representation of the
heart in early systole. The atria, at the top, contract and pump blood into the ven-
tricles below, after which there is a ventricular contraction.

9.3 GENERALIZED CYLINDER REPRESENTATIONS

274

The volume of many biological and manufactured objects is naturally described as
the ‘“‘swept volume” of a two-dimensional set moved along some three-space
curve. Figure 9.11 shows a ‘‘translational sweep’” wherein a solid is represented as
the volume swept by a two-dimensional set when it is translated along a line. A
“rotational sweep’’ is similarly defined by rotating the two-dimensional set around
an axis. In “‘three-dimensional sweeps,’’ volumes are swept. In a “‘general’’ sweep
scheme, the two-dimensional set or volume is swept along an arbitrary space
curve, and the set may vary parametrically along the curve [Binford 1971; Soroka
and Bajcsy 1976; Soroka 1979a; 1979b; Shani 1980]. General sweeps are quite a po-
pular representation in computer vision, where they go by the name generalized
cylinders (sometimes ‘‘generalized cones’’).

Fig. 9.10 Three stages from a moving har-
monic surface (see text and color insert).

Ch. 9 Representations of Three-Dimensional Structures



Sweep

Fig. 9.11 A translational sweep.

A generalized cylinder (GC) is a solid whose axis is a 3-D space curve (Fig.
9.12a). At any point on the axis a closed cross section is defined. A usual restriction
is that the axis be normal to the cross section. Usually it is easiest to think of an axis
space curve and a cross section point set function, both parameterized by arc
length along the axis curve. For any solid, there are infinitely many pairs of axis
and cross section functions that can define it.

Generalized cylinders present certain technical subtleties in their definition.
For instance, can it be determined whether any two cross sections intersect, as they
would if the axis of a circular cylinder were sharply bent (Fig. 9.12b) ? If the solid is
defined as the volume swept by the cross section, there is no conceptual or compu-
tational problem. A problem might occur when computing the surface of such an
object. If the surface is expressed in terms of the axis and cross-section functions
(as below), the domain of objects must be limited so that the boundary formula
indeed gives only points on the boundary.

Generalized cylinders are intuitive and appealing. Let us grant that ‘‘patho-
logical”’ cases are barred, so that relatively simple mathematics is adequate for
representing them. There are still technical decisions to make about the represen-
tation. The axis curve presents no difficulties, but a usable representation for the
cross-section set is often not so straightforward. The main problem is to choose a
usable coordinate system in which to express the cross section.

9.3.1 Generalized Cylinder Coordinate Systems and Properties

Two mathematical functions defining axis and cross section for each point define a
unique solid with the ‘‘sweeping’” semantics described above. In a fixed Cartesian
coordinate system x, y, z, the axis may be represented parametrically as a function
of arc length s:

a(s) = (x(s), y(s), z(s)) (9.12)

It is convenient to have a local coordinate system defined with origin at each
point of a (s). It is in this coordinate system that the cross section is defined. This
system may change in orientation as the axis winds through space, or it may be
most natural for it not to be tied to the local behavior of the axis. For instance, im-
agine tying a knot in a solid rubber bar of square cross section. The cross section

Sec. 9.3 Generalized Cylinder Representations 275



276

(a) (b)

Fig. 9.12 (a) A generalized cylinder and some cross-sectional coordinate sys-
tems. (b) A possibly “pathological’’ situation. Cross sections may be simply
described as circles centered on the axis, but then their intersection makes volume
calculations (for instance) less straightforward.

will stay approximately a square, and (this is the point) will remain approximately
fixed in a coordinate system that twists and turns through space with the axis of the
bar. On the other hand, imagine bolt threads. They can be described by a single
cross section that stays fixed in a coordinate system that rotates as it moves along
the straight axis of the bolt. There is no a priori reason to suppose that such a useful
local coordinate system should twist along the GC axis.

A coordinate system that mirrors the local behavior of the GC axis space
curve is the ‘‘Frenet frame,’’ defined at each point on the GC axis. This frame pro-
vides much information about the GC-axis behavior. The GC axis point forms the
origin, and the three orthogonal directions are given by the vectors (¢, », £),
where

€ = unit vector tangent axis
v = unit vector direction of center of curvature of axis
normal curve

unit vector direction of center of torsion of axis

14

Consider the curve to be produced by a point moving at constant speed through
space; the distance the point travels is the parameter of the space curve [O’Neill
1966]. Since ¢ is of constant length, its derivative measures the way the GC axis
turns in space. Its derivative £ 'is orthogonal to £ and the length of £ ‘measures the
curvature « of the axis at that point. The unit vector in the direction of ¢'is ».
Where the curvature is not zero, a binormal vector { orthogonal to £ and v is
defined. This binormal ¢ is used to define the torsion 7 of the curve. The vectors £,
v, { obey Frenet’s formulae:

& =«xv
v =—«k&E+ 7L (9.13)
=

—TV

Ch. 9 Representations of Three-Dimensional Structures



where

]

Kk =curvature = —p' * E=p + £ (9.14)

T=torsion=w»"+{=—-v»- U (9.15)

The Frenet frame gives good information about the axis of the GC, but it has
certain problems. First, it is not well defined when the curvature of the GC axis is
zero. Second, it may not reflect known underlying physical principles that generate
the cross sections (as in the bolt thread example). A solution, adopted in [Agin
1972, Shani 1980], is to introduce an additional parameter that allows the cross
section to rotate about the local axis by an arbitrary amount. With this additional
degree of freedom comes an additional problem: How are successive cross sections
registered? Figure 9.13 shows two solutions in addition to the Frenet frame solu-
tion.

The cross sectional curve is usually defined to be in the »-{ plane, normal to
&, the local GC axis direction. The cross section may be described as a point set in
this plane, using inequalities expressed in the »—{ coordinate system. The cross
section boundary (outline curve) may be used instead, parameterized by another
parameter r. Let this curve be given by

cross section boundary = (x(r, 5), y(r, s))

The dependence on s reflects the fact that the cross section shape may vary along
the GC axis. The expression above is in world coordinates, but should be moved to

(= (L

(a) (b)

{c)

Fig. 9.13 (a) Local coordinates are the Frenet frame. Points A and B must correspond.
(b) Local coordinates are determined by the cross sectional shape. (c) Local coordinates are
determined by a heuristic transformation from world coordinates.

Sec. 9.3 Generalized Cylinder Representations 277



278

the local coordinates on the GC axis. A transformation of coordinates allows the
GC boundary to be expressed (if the GC is well behaved) as

B(r,s) =a(s) + x(r, s)v (s) + y(r, s)L (s) (9.16)

One of the advantages of the generalized cylinder representation is that it al-
lows many parameters of the solid to be easily calculated.

« In matching the GC to image data it is often necessary to search perpendicular
to a cross section. This direction is given from x(r, s), y (r, s) by ((dy/ds)v,
—(dx/ds)¥).

» The area of a cross section may be calculated from Eq. (8.16).

« The volume of a GC is given by the integral of: the area as a function of the axis
parameter multipled by the incremental path length of the GC axis, i.e.,

5
volume = f area(s) ds
0

9.3.2 Extracting Generalized Cylinders

Early work in biological form analysis provides an example of the process of fitting
a GC to real data and producing a description [Agin 1972]. One of the goals of this
work was to infer the stick figure skeleton of biological forms for use in matching
models also represented as skeletons. In Fig. 9.14 the process of inferring the axis
from the original stripe three-dimensional data is shown; the process iterates to-
ward a satisfactory fit, using only circular cross sections (a common constraint with
“generalized’’ cylinders). Figure 9.15 shows the data and the analysis of a complex

Fig. 9.14 Stages in extracting a
generalized cylinder description for a
circular cone. (a) Front view. (b) Initial
axis estimate. (c) Preliminary center and
= axis estimate. (d) Cone with smoothed
0 £ radius function. (¢) Completed analysis.

Ch. 9 Representations of Three-Dimensional Structures



(a)
(b)

Fig. 9.15 (a) TV image of a doll. (b) Completed analysis of doll.

biological form. In real data, complexly interrelated GCs are hard to decompose
into satisfactory subparts. Without that, the ability to form a satisfactory articulated
skeleton is severely restricted.

In later work, GCs with spline-based axes and cross sections were used to
model organs of the human abdomen [Shani 1980]. Figure 9.16 shows a rendition
of a GC fit to a human kidney.

9.3.3 A Discrete Volumetric Version of the Skeleton

An approximate volume representation that can be quite useful is based on an arti-
culated wire frame skeleton along which spheres (not cross sections) are placed.

Fig. 9.16 Generalized cylinder
representation of two kidneys and a
spinal column. This coarse, nominal
model is refined during examination of
CAT data (see Fig. 9.6).

Sec. 9.3 Generalized Cylinder Representations 279



This representation has some of the flavor of an approximate sweep representa-
tion. An example of the use of such a representation and a figure are given in Sec-
tion 7.3.4. This representation was originally conceived for graphics applications
(the spheres look the same from any viewpoint) [Badler and Bajcsy 1978]. Colli-
sion detection is easy, and three-dimensional objects can be decomposed into
spheres automatically [O’Rourke and Badler 1979]. From the spheres, the skele-
ton may be derived, and so may the surface of the solid. This representation is
especially apt for many computer vision applications involving nonrigid bodies if
strict surface and volumetric accuracy is not necessary [Badler and O’Rourke
1979].

9.4 VOLUMETRIC REPRESENTATIONS

280

Most world objects are solids, although usually only their surfaces are visible. A
representation of the objects in terms of more primitive solids is often useful and
can have pleasant properties of terseness, validity, and sometimes ease of compu-
tation. The representations given here are presented in order of increasing general-
ity; constructive solid geometry includes cell decomposition, which in turn in-
cludes spatial occupancy arrays.

Algorithms for processing volume-based representations are often of a
different flavor than surface-based algorithms. We give some examples in Section
9.4.4. Objects represented volumetrically can be depicted on raster graphics de-
vices by a “‘ray-casting’’ approach in which a line of sight is constructed through
the viewing plane for a set of raster points. The surface of the solid at its intersec-
tion with the line of sight determines the value of the display at the raster point.
Ray casting can produce hidden-line and shaded displays; graphics is only one of its
applications (Section 9.4.4).

9.4.1 Spatial Occupancy

Figure 9.17 shows that three-dimensional spatial occupancy representations are
the three-dimensional equivalent of the two-dimensional spatial occupancy
representations of Chapter 8. Volumes are represented as a three-dimensional ar-
ray of cells which may be marked as filled with matter or not. Spatial occupancy ar-
rays can require much storage if resolution is high, since space requirements in-
crease as the cube of linear resolution. In low-resolution work with irregular ob-
jects, such as arise in computer-aided tomography, spatial occupancy arrays are
very common. It is sometimes useful to convert an exact representation into an ap-
proximate spatial occupancy representation. Slices or sections through objects may
be easily produced. The spatial occupancy array may be run-length encoded (in
one dimension), or coded as blocks of different sizes; such schemes are actually
cell-decomposition schemes (Section 9.4.2).

With the declining cost of computer memory, explicit spatial occupancy ar-
rays may become increasingly common. The improvement of hardware facilities
for parallel computation will encourage the development of parallel algorithms to
compute properties of solids from these representations.

Ch. 9 Representations of Three-Dimensional Structures



Fig. 9.17 A solid (the shape of a
human red blood cell) approximated by
a volume occupancy array.

9.4.2 Cell Decomposition

In cell decomposition, cells are more complex in shape but still ‘‘quasi-disjoint”’
(do not share volumes), so the only combining operation is ‘‘glue” (Fig. 9.18).
Cells are usually restricted to have no holes (they are ‘‘simply connected’’). Cell
decompositions are not particularly concise; their construction (especially for
curved cells) is best left to programs. It seems difficult to convert other representa-
tions exactly into cell decompositions. Two useful cell decompositions are the
“‘oct-tree”” [Jackins and Tanimoto 1980] and the kd-tree [Bentley 1975]. They
both can be produced by recursive subdivision of volume; these schemes are the
three-dimensional analogs of pyramid data structures for two dimensional binary
images.

The quasi-disjointness of cell-decomposition and spatial-occupancy primi-
tives may be helpful in some algorithins. Mass properties (Section 9.4.4) may be
computed on the components and summed. It is possible to tell whether a solid is
connected and whether it has voids. Inhomogeneous objects (such as human ana-
tomy inside the thorax) can be represented easily with cell decomposition and spa-

= — e

Solid ’ @

Fig. 9.18 A volume and its cell decomposition.

Sec. 9.4 Volumetric Representations 281



282

tial occupancy. The CT number (transparency to x-rays) or a material code can be
kept in a cell instead of a single bit indication of *‘solid or space.”

9.4.3 Constructive Solid Geometry

Figure 9.19 shows one constructive solid geometry (CSG) scheme [Voelcker and
Requicha 1977; Boyse 1979]. Solids are represented as compositions, via set opera-
tions, of other solids which may have undergone rigid motions. At the lowest level
are primitive solids, which are bounded intersections of closed half-spaces defined
by some F(x, y, z) > 0, where Fis well-behaved (e.g., analytic). Usually, primi-
tives are entities such as arbitrarily scaled rectangular blocks, arbitrarily scaled
cylinders and cones, and spheres of arbitrary radius. They may be positioned arbi-
trarily in space.

Figure 9.20 shows a parameterized representation [Marr and Nishihara 1978;
Nishihara 1979] based on shapes (here cylinders) that might be extracted from an
image.

A CSG representation is an expression involving primitive solid and set
operators for combination and motion.

<CSGRep> ::= <primitive solid> |
MOVE <CSG Rep> BY <Motion Params> |
< CSG Rep> <Combine Op> <CSG Rep>

The combining operators are best taken to be regularized versions of set un-
ion, intersection, and difference (the complement is a possible operator, but it al-
lows unbounded solids from bounded primitives).

Regularity is a fundamental property of any set of points that models a solid.
In a given space, a set X is regular if X = kiX, where k and ;/ denote the closure and
interior operators. Intuitively, a regular set has no isolated or dangling boundary
points. The regularization r of a set X is defined by X = kiX. Regularization infor-
mally amounts to taking what is inside a set and covering that with a tight skin.
Regular sets are not closed under conventional set operations, but regularized

‘I Fig. 9.19 Constructive solid geometry
for the volume of Fig. 9.18.

Ch. 9 Representations of Three-Dimensional Structures



cylinder

? cow

=

thin-limb giraffe ape

il

limb quadruped biped bird
G C O
.
[j 9IS A
thick=limb human ostrich

dove

Fig. 9.20 A parameterized
constructive representation for animal
shapes.

operators do preserve regularity. Regularized operators are defined by
X <OP> * Y=r(X <OP> 7Y)

Regularity and regularized set operators provide a natural formalization of the
dimension-preserving property exhibited by many geometric algorithms, thus ob-
viating the need to enumerate many annoying ‘‘special cases.’’ Figure 9.21 illus-
trates conventional versus regularized intersection of two sets that are regular in

the plane.

If the primitives are unbounded, checking for boundedness of an object can
be difficult. If they are bounded, any CSG representation is a valid volume
representation. CSG can be inefficient for some geometric applications, such as a
line drawing display. (Converting the CSG representation to a boundary represen-
tation is the one way to proceed; see Section 9.4.4.)

ANB AN*B

Fig. 9.21 Conventional ([ ) and regularized ({7) *) polygon intersection.

Sec. 9.4 Volumetric Representations

283



284

9.4.4 Algorithms for Solid Representations

Set Membership Classification

The set membership classification (SMC) function M takes a candidate point
set C and a reference set .S, and returns the points of C that are in S, out of S, and
on the boundary of S.

(CinS, CoutS, ConS) = M(C, S)

Figure 9.22a shows line—polygon classification.

SMC is a generalization of set intersection [Tilove 1980]. It is a useful
geometric utility; polygon-polygon classification is generalized clipping, and
volume—volume classification detects solid interference. Line-solid classification

(b)

Fig. 9.22 (a) The set membership classification (SMC) function M (L, P) finds
the portions of the candidate set L (here a line) that are in, on, and out of a refer-

ence set (here a polygon) P. (b) Image produced by ray casting, a special case of
SMC.

Ch. 9 Representations of Three-Dimensional Structures



may be used for ray casting visualization techniques to generate images of a known
three-dimensional representation (Fig. 9.22b).

An algorithm for SMC illustrates a ‘‘divide and conquer”’ approach to com-
puting on CSG. Recall that CSG is like a tree of set operations, whose leaves are
primitive sets which usually are simple solids such as cylinders, spheres, and
blocks. Presumably classification can be more easily computed with these simple
sets as reference than with complex unions, intersections, and differences as refer-
ence.

The idea is that the classification of a set C with respect to a complex object S
defined in CSG may be determined recursively. Any internal node § in the CSG
tree is an operation node. It has left and right arguments and an operation OpofS.
Each subtree is itself a CSG subtree or a primitive.

M (X, S) = IF Sis a primitive THEN prim—M (X, S)
ELSE Combine (M (X, left—subtree(S),
M (X, right—subtree(S),
OPofS);

Prim-M is the easily computed classification with respect to a simple primi-
tive solid. The Combine operation is a nontrivial calculation that combines the
subresults to produce a more complex classification. It is illustrated in two dimen-
sions for line classification in Fig. 9.23. Having classified the line L against the po-
Iygon P1 and P2, the classifications can be combined to produce the classification
for P1 () P2. Precise rules for combine may be written for (regularized) union,
intersection, and set difference. An important point is that when a point is in the
“on’” set of §; and in the ‘“‘on’” set of S;, the result of the combination depends on
extra information. In Fig. 9.23, segments X and Y both result from this ON-ON
case of combine, but segment X is OUT of the boundary of the intersection and ¥
is IN the intersection. The ambiguity must be resolved by keeping ‘‘neighborhood
information”’ (local geometry) attached to point sets, and combining the neighbor-
hoods along with the classifications. The technical problems surrounding combine
can be solved, and SMC is basic in several solid geometric modeling systems
[Boyse 1979; Voelcker et al. 1978; Brown et al. 1978].

Mass Properties

The analog of many two-dimensional geometric properties is to be found in
““mass properties,”” which are defined by volume integrals over a solid. The four
types of mass properties. commonly of interest are:

Volume: V=f du
5

fxdu

Centroid: e.g. GC,, = S—V

Sec. 9.4 Volumetric Representations 285



P1

Out On Out On Out In Out

(a)

P2

(b)

P1 NP2 N\
Out
Out Out On 4\ % In Out Out
TR | e e o e ] SRR s . e
\ T Sl W?\
0
\ ) Qut \

{c)

Fig. 9.23 Combining line-polygon classifications (a) and (b) must produce the
classification {(c).

Moment of (9.17)
Inertia:e.g. I, = m f (? + 2% du
8

Product of
Inertia:e.g. P, = m f xy du
5

286 Ch. 9 Representations of Three-Dimensional Structures



where m is a density measure, du the volume differential, and integrals are taken
over the volume.

Measures such as these are not necessarily easy to compute from a given
representation. The calculation of mass properties of solids from various represen-
tations is discussed in [Lee and Requicha 1980]. The approaches suggested by the
representations are shown in Fig. 9.24.

One method is based on decomposing the solid into quasi-disjoint cells. An
integral property of the cell decomposition is just the sum of the property for each
of the cells. Hence if computing the property for the cells is easy, the calculation is
easy for the whole volume. One is invited to decompose the body into simple cells,
such as columns or cubes, as shown in Fig. 9.25. The resulting calculations, per-
formed to reasonable error bounds on fairly complex volumes, take unacceptably
long for the pure spatial occupancy enumeration, but are acceptable for the column
and block decompositions. (The column decomposition corresponds to a ray cast-
ing approach.) The block decomposition method can be programmed using oct-
trees or kd-trees in a manner reminiscent of the Warnock hidden-line algorithm
[Warnock 1969], in which the blocks are found automatically, and their size dimin-
ishes as increased resolution is needed in the solid. In calculating from a construc-
tive solid geometry representation, the same divide-and-conquer strategy that is
useful for SMC may be applied. Again, it recursively solves subproblems induced
by the set operators (Fig. 9.26). The strategy is less appealing here since the
number of subproblems can grow exponentially in the worst case.

In boundary representations, one can perhaps directly integrate over the
boundary in a three-dimensional version of the polygon area calculation given in
Chapter 8. This method is often impossible for curved surfaces, which, however,
may be approximated by planar faces. An alternative is to use the divergence

Simple-

Pure

o Spatial Cell Boundary
primitive enum'’s decomp’s Sweeo reps
instances reps
i i« {1) Direct
Special {/ i’;‘:'s?lt B dinf::slioolr:al integration Divide and
Tortiiag \_disjointedness separability 12) Divergence COnNQuer
N theorem

—

Property-
value
reps

Fig. 9.24 ‘“‘Natural’’ approaches to computing mass properties from several
representations.

Sec. 9.4 Volumetric Representations 287



288

(a)

(b}

CSG rep \

Fig. 9.25 Cell decompositions for
(c) mass properties.

theorem (Gauss’s theorem). The divergence is a scalar quantity defined at any point
in a vector field by writing the vector function as

G(x,y,z)=Plx, y,2)i+ 0 y 2)j + R(x, y, 2)k. (9.18)
The divergence is
T e L R (9.19)
Xy z

There is always a function G such that div G = f(x, y, z) for any continuous func-
tion £ (fcomputes the integral property of interest.) Thus

[ rav=[divG av 9.20)

5

But the divergence theorem states that

J divG av =% [ Gn, aF, 9.21)
s "F;

where F; is a face of the solid S, n; is the unit normal to F;, and dF; the surface
differential. Again this formula works well for planar faces, but may require ap-
proximation techniques for curved faces with complex boundaries.

Boundary Evaluation
The calculation of a face-based surface (boundary) representation from a

Ch. 9 Representations of Three-Dimensional Structures



« Divide and conquer

Reduction formula

bt by
heele b

Example

S

[

_ Fig. 9.26 Recursive problem
Is=Ig +Ig~Tang~lane~Ignctlananc dg ition f 5
ecomp.osmon Or mass property
[} 1} calculation.

CSG representation is called boundary evaluation. It is an example of representation
conversion. Both the CSG and boundary are usually unambiguous representations
of a volume; a CSG expression (a solid) has just one boundary, but a boundary
(representing a solid) usually has many CSG expressions. Since a solid may be put
together from primitives in many ways, the mapping back from boundary to CSG
is not usually attempted (but see [Markovsky and Wesley 1980, Wesley and Mar-
kovsky 19811).

One style of boundary evaluation is based on the following observations
[Voelcker and Requicha 1980; Boyse 1979].

« Boundaries of composite objects may be computed from certain set-theoretic
formulae. For (regularized) intersection of two objects Sand 7, the formula is

(SN ' D=0GS N7 J G N »sT)
U'Gs N TN ki(SsN"T)
where () * and | * are regularized intersection and union: b, i, and k are the

boundary, interior, and closure operators. (Recall that ki is r, the regularization
operator).

« Faces of composite objects can arise only from faces of primitives.
« Faces are either bounded by edges or are self-closing (as is the sphere).

9.22)

These observations and the existence of the classification operation motivate
the grand strategy that follows (ignoring several important details and concentrat-
ing on the core of the algorithm.)

Sec. 9.4 Volumetric Representations 289



1. Find all possible (‘“‘tentative’’) edges for each face of each primitive in the
composite.

2. Classify each tentative edge with respect to the composite solid.
3. The ON portions of those edges must be enough to define the boundary.

Given the grand strategy, several algorithms of varying sophistication are
possible, depending on what edges should be classified (how to generate tentative
edges), in what order they should be classified, and how classification is done. The
following algorithm is very simple (but very inefficient); useful algorithms are
rather more complex.

Algorithm 9.1: CSG to Boundary Conversion (top-level control loop)

Input: Solid defined by CSG expression of regularized set operations applied to
primitive solids.

Output: “Bfaces’’ in the object boundary. Bfaces are represented by their bounding
edges. They may have little relation to the ““intuitive faces’ of the boundary; they
may overlap each other, and a Bface may be disconnected (specify more than one
region). Edges may appear many times. The Bface-oriented boundary may be pro-
cessed to remove repetition and merge Bfaces into more intuitively appealing
boundary faces.

BEGIN

Form a list PFaces of all (“‘intuitive’”) faces of primitive solids involved in the
CSG expression, and an initially empty list BFaces to hold the output faces.

For every PFace F1 in PFaces:
Create a B-Face called ThisBFace, initially with no edges in it.

For every PFace F2 after F1 in the PFaces list (this generates all distinct pairs of
PFaces just once):

Intersect F1 and F2 to get TEdges, a set of edges tentatively on the boundary
of the solid. If F1 and F2 do not intersect or intersect only in a point, TEdges
is empty. If they intersect in a line, TEdges is the single resulting edge. If they
intersect in a two-dimensional region, TEdges contains the bounding edges
of the intersection region.

Classify every TEdge in TEdges with respect to the whole solid (the CSG ex-
pression). Put TEdges that are ON the solid boundary into ThisBFace.

If ThisBFace is not empty, put it into BFaces.

290 Ch. 9 Representations of Three-Dimensional Structures



End Inner Loop
End Outer Loop

END

Algorithms such as this involve many technical issues, such as merging
coplanar faces, stitching edges together into faces, regularization of faces, remov-
ing multiple versions of edges. Boundary evaluation is inherently rather complex,
and depends on such things as the definition and representation of faces as well as
the geometric utilities taken as basic [Voelcker and Requicha 1981]. Boundary
evaluation is an example of exact conversion between significantly different
representations. Such conversions are useful, since no single representation seems
convenient for all geometric calculations.

9.5 UNDERSTANDING LINE DRAWINGS

“Engineering’’ line drawings have been (and to a great extent are still) the main
medium of communication between human beings about quantitative aspects of
three-dimensional objects. The line drawings of this section are only those which
are meant to represent a simple domain of polyhedral or simply curved objects. In-
terpretation of “‘naturalistic’” drawings (such as a sketchmap [Mackworth 1977]) is
another matter altogether.

Line drawings (even in a restricted domain) are often ambiguous; interpret-
ing them sometimes takes knowledge of everyday physics, and can require train-
ing. Such informed interpretation means that even drawings that are strictly non-
sense can be understood and interpreted as they were meant. Missing lines in
drawings of polyhedra are often so easy to supply as to pass unnoticed, or be ‘‘au-
tomatically supplied’” by our model-driven perception.

Generalizing the line drawing to three dimensions as a list of lines or points is
not enough to make an unambiguous representation, as is shown by Fig. 9.27,

Fig. 9.27 An ambiguous (wireframe) representations of a solid with two of
three possible interpretations.

Sec. 9.5 Understanding Line Drawings 291



	9.3 Generalized Cylinder Representations, p.274
	9.3.1 Generalized Cylinder Coordinate Systems and Properties, p.275
	9.3.2 Extracting Generalized Cylinders, p.278
	9.3.3 A Discrete Volumetric Version of the Skeleton, p.279
	9.4 Volumetric Representations, p.280
	9.4.1 Spatial Occupancy, p.280
	9.4.2 Cell Decomposition, p.281
	9.4.3 Constructive Solid Geometry, p.282
	9.4.4 Algorithms for Solid Representations, p.284

