End Inner Loop
End Outer Loop

END

Algorithms such as this involve many technical issues, such as merging
coplanar faces, stitching edges together into faces, regularization of faces, remov-
ing multiple versions of edges. Boundary evaluation is inherently rather complex,
and depends on such things as the definition and representation of faces as well as
the geometric utilities taken as basic [Voelcker and Requicha 1981]. Boundary
evaluation is an example of exact conversion between significantly different
representations. Such conversions are useful, since no single representation seems
convenient for all geometric calculations.

9.5 UNDERSTANDING LINE DRAWINGS

“Engineering’’ line drawings have been (and to a great extent are still) the main
medium of communication between human beings about quantitative aspects of
three-dimensional objects. The line drawings of this section are only those which
are meant to represent a simple domain of polyhedral or simply curved objects. In-
terpretation of “‘naturalistic’” drawings (such as a sketchmap [Mackworth 1977]) is
another matter altogether.

Line drawings (even in a restricted domain) are often ambiguous; interpret-
ing them sometimes takes knowledge of everyday physics, and can require train-
ing. Such informed interpretation means that even drawings that are strictly non-
sense can be understood and interpreted as they were meant. Missing lines in
drawings of polyhedra are often so easy to supply as to pass unnoticed, or be ‘‘au-
tomatically supplied’” by our model-driven perception.

Generalizing the line drawing to three dimensions as a list of lines or points is
not enough to make an unambiguous representation, as is shown by Fig. 9.27,

Fig. 9.27 An ambiguous (wireframe) representations of a solid with two of
three possible interpretations.
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which illustrates that a set of vertices or edges can define many different solids. (It
is possible, however, to determine algorithmically all possible polyhedral boun-
daries described by a three-dimensional wireframe [Markowsky and Wesley
1980].). A line drawing nevertheless does convey three-dimensional information.
For any set of N projection specifications (e.g., viewpoint and camera transform), a
wire-frame object may be constructed that is ambiguous given the N projections.
However, for a given object, there is a maximum number of projections that can
determine the object unambiguously. The number depends on the number of
edges in the object [Shapira 1974]. Reconstruction of all solids represented by pro-
jections is possible [Wesley and Markowsky 19811].

Line drawings were a natural early target for computer vision for the follow-
ing reasons:

1. They are related closely to surface features of polyhedral scenes.

2. They may be represented exactly; the noise and incomplete visual processing
that may have affected the “‘line drawing extraction’’ can be modelled at will or
completely eliminated.

3. They present an interpretation problem that is significant but seems approach-
able.

The understanding of simple engineering (3-view) drawings was the first
stage in a versatile robot assembly system [Ejiri et al. 1971]. This application
underlined the fact that heuristics and conventions are indispensible in engineer-
ing drawing understanding. This section deals with the problem of ‘‘understand-
ing’” a single-view line drawing representation of scenes containing polyhedral and
simple curved objects like those in Fig. 9.28.

Our exposition follows a historical path, to show how early heuristic pro-
grams in the middle 1960s evolved into more theoretical insights in the early
1970s.

The first real computer vision program with representations of a three-
dimensional domain appeared around 1963 [Roberts 1965]. This system, ambi-
tious even by today’s standards, was to accept a digitized image of a polyhedral
scene and produce a line drawing of the scene as it would appear when viewed from
any requested viewpoint. This work addressed basic issues of imaging geometry,
feature finding, object representation, matching, and computer graphics.

Since then, several systems have appeared for accomplishing either the same
or similar results [Falk 1972; Shirai 1975; Turner 1974]. The line drawings of this
section can appear as intermediate representations in a working polyhedral vision
system, but they have also been studied in isolation. This topic took on a life of its
own and provides a very pretty example of the general idea of going to the three-
dimensional world of physics and geometry to understand the appearance of a
two-dimensional image. The later results can be used to understand more clearly
the successes and failures of early polyhedral vision systems. One form of under-
standing (line labelling) provided one of the first and most convincing demonstra-
tions of parallel constraint propagation as a control structure for a computer vision
process.
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Fig. 9.28 Several typical line drawing scenes for computer understanding.

9.5.1 Matching Line Drawings to Three-dimensional Primitives

Roberts desires to interpret a line drawing such as Fig. 9.28a in terms of a small set
of three polyhedral primitives, shown in Fig. 9.29. A simple polyhedron in a scene
is regarded as an instance of a transformed primitive, where a transform may in-
volve scaling along the three coordinate axes, translation, and rotation. Compound
polyhedra, such as Fig. 9.28a, are regarded as simple polyhedra “‘glued together.”
(A cell-decomposition representation is thus used for compound polyhedra.) The
program is first to derive from the scene the identity of the primitive objects used
to construct it (including details of the construction of compound polyhedra).
Next, it is to discover the transformations applied to the primitives to obtain the
particular incarnations making up the scene. Finally, to demonstrate its under-
standing, it should be able to construct a line drawing of the scene from any
viewpoint, using its derived description.

To understand a part of the scene, the program first decides which primitive it
comes from, and then derives the transformation the primitive underwent to ap-
pear as it does in the scene. Identifying primitives is done by matching ‘‘topologi-
cal”’ features of the line drawing (configurations of faces, lines, and vertices) with
those of the model primitives; matching features induce a match between scene
and model points. At least four noncoplanar matching points are needed to derive
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Fig. 9.29 Primitive objects for scene construction.

a transformation. Tentative topological matches are checked by a metrical process
which determines whether a primitive can allowably be transformed into the re-
quired shape, and if so whether it lies completely inside the observed polyhedra.
Since the same image can result from a close small scene or a distant large one, as-
sumptions about the location of the supporting surface and how objects are placed
on it are used to fix the distance.

The three primitives all have convex polygons as faces, which project onto
the line drawing as convex polygons. The faces all have three, four, or six sides, so
faces that have not suffered occlusion or merging with another face while forming a
compound polyhedron appear convex, have three, four, or six sides, and have no
sides that are the uprights of *“T vertices”” (which result from occlusion). Polygons
that pass these three tests are ‘“‘approved’” and are remembered on a list of possible
primitive faces (Fig. 9.30).

In searching for points to identify between the scene and the primitives, the
program looks for topological structures (Fig. 9.31) in decreasing order of efficacy,
extracts the highest-quality information, reinterprets the scene, and searches
again.

When a transformed primitive is identified in the scene, it is notionally
unglued and removed, the resulting new visible lines are filled in, and the new
scene is analyzed. Roberts’s algorithm is not infallible, but it was pioneering work
and is a sound starting point for the study of polyhedral scene analysis.

9.5.2 Grouping Regions into Bodies

A program by Guzman [Guzman 1969] takes as input a drawing of a polyhedral
scene which may be quite complicated (Fig. 9.28b). The lines divide the drawing
into a number of polygonal regions, and the goal of the program is just to group
these regions into sets, each set corresponding to one polyhedral ‘‘block.”” Any
reasonable description of an ambiguous scene is satisfactory. One could say that
Guzman was addressing a polyhedral version of the general question of how hu-
man beings segment the world into objects.

A

T Fig. 9.30 Approved and nonapproved
C A polygons in a line drawing: A: approved;
C: Concave; T: T-joint; S: Wrong
number of sides.
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Fig. 9.31 Topological match structures of Roberts.

(

The idea once again is to accumulate local evidence from the scene, and then
to group polygons on the basis of this evidence. The evidence takes the form of
““links”” which link two regions if they may belong to the same body; links are
planted around vertices, which are classified into types, each type always planting
the same links (Fig. 9.32). No links are made with the background region.

Scenes are interpreted by grouping according to regions/links, using fairly
complex rules, including ‘‘inhibitory links’’ that preclude two neighboring regions
from being in the same body.

The final form of the program performs reasonably well on scenes without ac-
cidents of visual alignment, but it is a maze of special cases and exceptions, and
seems to shed little light on what is going on in known polyhedral line-drawing per-
ception. One might well ask where the links come from; no justification of why
they are correct is given. Further ([Mackworth 1973]), Guzman can accept as one
body the two regions in Fig. 9.33a. Finally, one feels a little dissatisfied with a
scheme that just answers ‘‘one body”’ to a scene like Fig. 9.33b, instead of answer-
ing ‘‘pyramid on cube’’ or ‘‘two wedges,”’ for example.

Guzman’s method is correct for a world of convex isolated trihedral polyhe-
dra: it is extended by ad hoc adjustments based on various potentially conflicting
items of evidence from the line drawing. Ultimately it performs adequately with a

- much increased range of scenes, albeit not very elegantly. Further progress in the
line drawing domain came about when attention was directed at the three-
dimensional causes of the different vertex types.

A

FORK ARROW ELL
PSI T PEAK Fig. 9.32 Links around vertices.
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(a} (b)

Fig. 9.33 (a) Non-polyhedral scene. (b) Two wedges or a pyramid on cube.

9.5.3 Labeling Lines

Huffman and Clowes independently concerned themselves with scenes similar to
Guzman’s, not excluding non-simply connected polyhedra, but excluding ac-
cidents of alignment [Huffman 1971; Clowes 1971]. They desired to say more
about the scene than just which regions arose from single bodies; they wanted to
ascribe interpretations to the lines. Figure 9.34 shows a cube resting on the floor;
lines labeled with a + are caused by a convex edge, those labeled with a — are
caused by a concave edge, and those labeled with a > are caused by matter occlud-
ing a surface behind it. The occluding matter is to the right of the line looking in
the direction of the >, the occluded surface is to the left. If the cube were floating,
one would label the lowest lines with < instead of with —. The shadow line labels
(arrows) were not used by Huffman.

A systematic investigation can find the types of lines possibly seen around a
trihedral corner; such corners can be classified by how many octants of space are
filled by matter around them (one for the corner of a cube, seven for the inside
corner of a room, etc.). By considering all possible trihedral corners as seen from

Fig. 9.34 A block resting on its
bottom surface.
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all possible viewpoints, Huffman and Clowes found that without occlusion, just
four vertex types and only a few of the possible labelings of lines meeting at a ver-
tex can occur. Figure 9.35 shows views of one- and three-octant corners which give
rise to all possible vertices for these corner types. The vertices appear in the first
two rows of Table 9.1, which is a catalogue of all possible vertices, including those
arising from occlusion, in this restricted world of trihedral polyhedra. It is easy to
imagine extending the catalog to include vertices for other corner types.

It is important to note that there are four possible labels for each line (+ — >
<), and thus 4° = 64 possible labels for the fork, arrow, and T and 16 possible la-
bels for the ell. In the catalog, however, only 3/64, 3/64, 4/64, and 6/16, respec-
tively, of the possible labels actually occur. Thus only a small fraction of possible
labels can occur in a scene.

The main observation that lets line-labeling analysis work is the coherence
rule: In a real polyhedral scene, no line may change its interpretation (label) between
vertices. For example, what is wrong with scenes like Fig. 9.36 is that they cannot
be coherently labeled; lines change their interpretation within the impossible ob-
ject. Perhaps the lines in drawings of real scenes can be interpreted quickly because
the small percentage of meaningful labelings interacts with the coherence rule to
reduce drastically the number of explanations for the scene.

How does line labeling relate to Guzman? A labeled-line description clearly
indicates the grouping of regions into bodies, and also rejects scenes like Fig.
9.33a, which cannot be coherently labeled with labels from the catalog. The origin
of Guzman’s links can be explained this way: consider again the world of convex
polyhedra; the only labels from the catalog that are possible are shown in Fig.
9.37a. Further, it is clear that a convex edge has two faces of the same body on ei-
ther side of it, and an occluding edge has faces from two different bodies on either
side of it. A convex label means the regions on either side of it should be linked;
this is Guzman’s link-planting rule (Fig. 9.37b). The inhibition rules are a further
corollary of the labels; they are to suppress links across an edge if evidence that it

Fig. 9.35 Different views of various
corner types.
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must be occluding is supplied by the vertex at its other end (Fig. 9.37c). When ver-
tices at both ends of a line agree that the line is convex, Guzman would have
planted two links; this is in fact the strongest evidence that the regions are part of
the same body. If just one vertex gives evidence that the edge has a link, a decision
based on heuristics is made; the coherence rule is being used implicitly by Guz-
man. The same physical and geometric reality is driving both his scheme and that
of Huffman.

The labeling scheme explained here still has problems: syntactically nonsen-
sical scenes are coherently labeled (Fig. 9.38a); scenes are given geometrically im-
possible labels (Fig. 9.38b); and scenes that cannot arise from polyhedra are easily
labelled (Fig. 9.38c). It is very hard to see how a labeling scheme can detect the il-
legality of scenes like (Fig. 9.38¢c); the problem is not that the edges are incorrectly
labeled, but that the faces cannot be planar.

Concern with this last-mentioned problem led to a program (see the next sec-
tion) that can obtain information about a polyhedral scene equivalent to labeling it,

Fig. 9.36 An impossible object.
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Fig. 9.37 The relation of links to labels. (a) Line labels. (b) Link planting ver-

tices. (c) Inhibitory links.
and also can reject non-polyhedra as impossible. There has also been an exciting
denoument to the line-labeling idea [Waltz 1975; Turner 1974].

Waltz extends the line labels to include shadows, three illumination codes for
each face on the side of an edge, and the separability of bodies in the scene at
cracks and concave edges; this brings the number of line labels possible up to just
below 100. He also extends the possible vertex types, so that many vertices of four
lines occur. He can deal with scenes such as the one shown in Fig. 9.28c.

The combinatorial consequence of these extensions is clear; the possible ver-
tex labelings multiply enormously. The first interesting thing Waltz discovered was
that despite the combinatorics, as more information is coded into the lines, the
smaller becomes the percentage of geometrically meaningful labels for a vertex. In
his final version, only approximately 0.03 percent of the possible arrow labels can
occur, and for some vertices the percentage is approximately 0.000001 .

The second interesting thing Waltz did was to use a constraint-propagating la-
beling algorithm which very quickly eliminates labels for a vertex that is impossible
given the neighboring vertices and the coherence rule, which places constraints on
labelings. The small number of meaningful labels for a vertex imposes severe con-
straints on the labeling of neighboring vertices. By the coherence rule, the con-
straints may be passed around the scene from each vertex to its neighbors; elim-
inating a label for a vertex may render neighboring labels illegal as well, and so on
recursively.

BN

.H Fig. 9.38 Nonsense labelings and

(a) b) ©) nonpolyhedra.
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Waltz found that for scenes of moderate complexity, eliminating all impossi-
ble labelings left only one, the correct one. The labeling process, which might have
been expected to involve much search, usually involved none. This constraint pro-
pagation is an example of parallel constraint satisfaction, and is discussed in
Chapter 12 in a broader context. In the event that a vertex is left with several labels
after all junction coherence constraints have been applied, they all participate in
some legal labeling. At this point one can resort to tree search to find the explicit la-
belings, or one can apply more constraints. Many such constraints, heuristic and
geometric, may be imagined. For instance, a constraint could involve color edge
profiles. If two aligned edges are separated by some (possibly occluding) structure,
but still divide faces of the same color, they should have the same label. Another
important constraint concerns how face planarity constrains line orientations.

Scenes with missing lines may be labeled; one merely adds to the legal vertex
catalog the vertices that result if lines are missing from legal vertices. This idea has
the drawbacks of increasing the vertex catalog and widening the notion of con-
sistency, but can be useful.

Another extension to line labeling is that of [Kanade 1978]. This extension
considers not only solid polyhedra but objects (including nonclosed *‘shells’’)
made up of planar faces. This extension has been called origami world after the art
of making objects from folded (mostly planar) paper. An example from origami
world is the box in Fig. 9.39a. A quick check shows that this cannot be labeled with
the Huffman-Clowes label set. It can be labeled using the origami world label set
(Table 9.2) and its interpretation is shown in Fig. 9.39b.

Table 9.2

EXPANDED JUNCTION TABLE
ELL FORK
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Fig. 9.39 (a) Box. (b) Labeled edges according to origami world label set.

The vertex labels may be extended to include scenes with cylinders, cones,
spheres, tori, and other simple curves. In expanded domains the notion of “‘legal
line drawing’’ becomes very imprecise. In any event the number of vertex types
and labels grow explosively, and the coherence rule must be modified to cope with
the fact that lines can change their interpretation between vertices and can tail off
into nothing, and that one region can attain all three of Waltz’s illumination types
[Turner 1974, Chakravarty 1979]. The domain is of scenes such as appear in Fig.
9.28d.

9.5.4 Reasoning About Planes

The deficiencies in the scene line-labeling algorithms prompted a consideration of
the geometrical foundations of the junction labels [Mackworth 1973, Sugihara
1981]. This work seeks to answer the same sorts of questions as do labeling pro-
grams, but also to take account of objects that cannot possibly be planar polyhedra,
such as those of Fig. 9.40. Neither approach uses a catalog of junction labels, but
relies instead on ideas of geometric coherence. The basis is a plane-oriented for-
mulation rather than a line-oriented one.

Gradient Space

Mackworth’s program relies heavily on the relation of polyhedral surface gra-
dients to the lines in the image (recall section 3.5.2). Image information from
orthographic projections of planar polyhedral scenes may be related to gradient in-
formation in a useful way. An image line L is the projection of a three-space line M
arising from the intersection of two faces lying in distinct planes IT, and IT, of gra-
dients (py, ¢;) and (py, g;). With the (p, ¢) coordinate system superimposed on
the image (x, y) coordinate system, there is the following constraint. The orienta-
tion of L constrains the gradients of I1; and IT,; specifically, the line L is perpendic-
ular to the line G between (py, g,) and (p,, g,) (Fig. 9.41).

Fig. 9.40 Labelable but not planar polyhedra.
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7 APy az) Fig. 9.41 Gradient space constraint.

The result is easily shown. With orthographic projection, the origin may be
moved of the image plane to be in L without loss of generality. Then L is defined
by its direction vector (A, ) = (cos#, sinf). The three-space point on II;
corresponding to (0,0) may be expressed as (0,0,k,), and at (A, u) the
corresponding point is (A, w, Ap; + mg, + k). Thus moving along M (which is in
I1,) from (x, y) = (0,0) to (x, y) — (A, ») moves along —z by Ap; + ug,. The
coordinates of a unit vector on L can then be expressed as (A, u, Ap; + wg;). But
Lis alsoin Il,, and this argument may be repeated for I1,, using p; and ¢;,. Thus

Api+ugr=Apy+ g (9.23)
or
) (pa—p, ga—q) =0 (9.24)

Equation (9.24) is a dot product set equal to zero, showing that its two vector
operands are orthogonal, which was to be shown.

Every picture line results from the intersection of two planes, and so it has a
line associated with it in gradient space which is perpendicular to it. Furthermore,
if the gradients of the surfaces are on the same side of the picture line as their sur-
faces, the edge was convex; if the gradients are on opposite sides of the line from
their causing surfaces, the edge was concave (Fig. 9.42). For every junction in the
image there are just two ways the gradients can be arranged to satisfy the perpendi-
cularity requirement (Fig. 9.43). In the first, all edges are convex, in the second,
concave. Switching interpretations from one to the other by negating gradients is
the psychological ‘‘Necker reversal.”’

Notice that if an image junction is a three-space polyhedral vertex, each edge
of the vertex is the intersection of two face planes. If the corresponding gradients
are connected, a ‘‘dual” (p, g) space representation of the (x ,y) space junction is
formed. The connected (p, g) gradient points form a polygon whose edges are per-
pendicular to the junction lines in (x, y) space. The polygon is larger if the three-
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Fig. 9.42 Relation of gradients, image and world structures. (a) Image. (b)

World. (c) Gradients.
dimensional corner is sharper, and shrinks toward the junction point as the corner
gets blunter.

Interpreting Drawings

It is possible to use these geometric results to interpret the lines in orthogo-
nally projected polyhedral scenes as being “‘connect’ (i.e., as being between two
connected faces) or occluding. It can also be determined if connect edges are con-
vex or concave, and for occluding edges which surface is in front. Hidden parts of
the scene may sometimes be reconstructed. The orientation of each surface and
edge in the scene may be found. Thus a program can determine that input such as
Fig. 9.40 is not a planar-faced polyhedron [Mackworth 1973]. Sugihara’s work gen-
eralizes Mackworth’s; it does not use gradient space and does not rely on ortho-
graphic projection.
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G, Gy G,
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Fig. 9.43 A scene junction and two resulting triangles in gradient space.

Mackworth’s procedure to establish connect edges produces the most con-
nected interpretation first (a nonconnected interpretation is just a collection of
floating faces which line up by accident to give the line drawing). The background
region is the first to be interpreted; that is, means to have its gradient fixed in gra-
dient space. After a region is interpreted, the region having the most lines in com-
mon with regions so far interpreted is interpreted next.

The image of a scene is given in Fig. 9.44a; it is interpreted as follows. No
coherent interpretation is possible with five or four connect edges. Trying for three
connect edges, the program interprets A by arbitrarily picking a gradient for the
surface A represents (the background). It picks the origin of gradient space. In
order to be able to reason about lines in the image, it needs to have an interpreted
region on either side of the line, so it must interpret another region. It picks B (C
would be as good).

The lines bounding B are examined to see if they are connect. Line 1 is con-
sidered. If it is connect, the gradient space dual of it will be perpendicular to it
through the gradient space point representing surface 4 (i.e., the origin). Now
another arbitrary choice: The gradient corresponding to surface B is placed at unit
distance from the origin, thus “imagining’ the second gradient in a row. From
now on, the gradients are more strongly located. The arbitrary scaling and point of
origin imposed by these first two choices can be changed later if that is important.

In gradient space, the situation is now shown in Fig. 9.44b. Now consider
line 2; to establish it as a connect edge, Gz = (pg, 1) (the gradient space point
corresponding to the surface B) must lie on a line perpendicular to 2 through G 4
(Fig. 9.44c). This cannot happen; the situation with 1 and 2 both connect is in-
coherent. Thus, with a line 1 connect edge, 2 must be occluding. This sort of in-
coherency result was what kept the program from finding four or five edges con-
nect. Further interpretation involves assigning gradients and vertices into the
developing diagram in a noncontradictory, maximally connected manner (Fig.
9.44d).

The next part of the program determines convexity or concavity of the lines.
The final part of the program looks at occlusion. It also suggests hidden surfaces
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Fig. 9.44 (a) Polyhedral scene considered by Mackworth. (b) Partial interpretation.
(c) Continued interpretation. (d) Occluding and connect interpretations. (e) Final interpre-
tation.

and thus hidden lines that are consistent with the interpretation (Fig. 9.44e). This
figure in gradient space resembles a tetrahedron, as well it might; it is formed in
the same way as the graph-theoretic dual (point per face, edge per edge, face per
point) which defines dual graphs and dual polyhedra; the tetrahedron is self-dual.
The arbitrary choices of gradient reflect degrees of freedom in the drawing that are
also identified by Sugihara.
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Skewed Symmetry

Many planar objects are symmetrical about an axis. This axis and another,
which is perpendicular to the first and in the plane of the object, form a natural
orthogonal coordinate system for the object. If the plane of the object is perpendic-
ular to the line of sight from the viewpoint, the coordinate axes appear to be at
right angles. If the object is tilted from this position, the axes appear skewed. Some
examples are shown in Fig. 9.45.

A skewed symmetry may or may not reflect a real symmetry; the object may
itself be skewed. However, if the skewed symmetry results from a tilted real sym-
metry, a constraint in gradient space may be developed for the object’s orientation
[Kanade 1979].

An imaged unit vector inclined at « inscribed on a plane at orientation (p, g)
must have three-dimensional coordinates given by

(cos @, sine, pcosa + gsina)

Thus if the two axes of skewed symmetry make angles of @ and 8 with the image x
axis, the two vectors in three-space @ and b must have coordinates

a= (cose, sina, pcosa + gsina)
and
b = (cosB, sinB, pcosB + gsingB)

Since these vectors reflect a real symmetry, they must be perpendicular (i.e.,
a-b=0),o0r

cos (@ — B) + (pcosa + gsina) (pcosB + gsinB) =0 (9.25)
By rotating the pand gaxes by A = (« + 8)/2, thatis
p'=pcosh+ gsinA

g =—psinA + g coshi

Fig. 9.45 Skewed symmetries. (a,b,c)
are examples. (d) Each skewed
(d) symmetry defines two axes.
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Equation (9.25) can be put into the form

l} — ¢?%sin?| L

7| = —cos (y)

7] 2
cos
3 2

where y = a—f. Thus the gradient of the object must lie on a hyperbola with axis
tilted A from the x axis, and with asymptotes perpendicular to the directions of «
and 3. This constraint is shown in Fig. 9.46.

To show how skewed symmetry can be exploited to interpret objects with
planar faces, reconsider the example of Fig. 9.43. In that example the three con-
vex edges constrained the gradients of the corresponding faces to be at the vertices
of a triangle, but the size or position of the triangle in gradient space was unknown.
However, skewed symmetry applied to each face introduces three hyperbola upon
which the gradients must lie. The only way that both the skewed symmetry con-
straint and triangle constraint can be satisfied simultaneously is shown in Fig.
9.47 —the combined constraints have uniquely determined the face orientations.

EXERCISES

9.1 Derive an expression for the volume of an object represented by spherical harmonics
oforder M = 1.

9.2 Derive an expression for the perpendicular to the surface of an object represented by
spherical harmonics in terms of the appropriate derivatives.

9.3 Derive an expression for the angle centroid of each of the spherical harmonic func-
tions for M < 2.

9.4 Label the lines in the objects of Fig. 9.48.

Exercises

Fig. 9.46 Skewed symmetry constraint
in gradient space.
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Fig. 9.47 Using skewed symmetry to orient the faces of a cube. (a) The cube.
(b) Skewed symmetries. (c) skewed symmetries and junction constraint plotted in
gradient space. (d) another possible object obeying the constraints.

Give two sets of CSG primitives with same domain.

Show that the dual of the plane of interpretation for a line and the duals of the two
planes that meet in the edge causing the line are all on the dual of the edge.

Prove (Section 9.3.1) that in the Frenet frame £ ’ is perpendicular to £.
Write the precise rules for combining classification results for |J *, (M *, and —
operations.

Find two interpretations of the tetrahedron of Fig. 9.44a that differ in convexity or
concavity of lines. (Hint: The concave interpretation has an accident of alignment.)
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Fig. 9.48 Objects for labeling.
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