Some
Mathematical Tools
Appendix 1

A1.1 COORDINATE SYSTEMS

A1.1.1 Cartesian

The familiar two- and three-dimensional rectangular (Cartesian) coordinate sys-
tems are the most generally useful ones in describing geometry for computer vi-
sion. Most common is a right-handed three-dimensional system (Fig. A1.1.). The
coordinates of a point are the perpendicular projections of its location onto the
coordinate axes. The two-dimensional coordinate system divides two-dimensional
space into quadrants, the three-dimensional system divides three-space into oc-
tants.

A1.1.2 Polar and Polar Space

Coordinate systems that measure locations partially in terms of angles are in many
cases more natural than Cartesian coordinates. For instance, locations with respect

X Fig. Al.1 Cartesian coordinate systems.
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to the pan-tilt head of a camera or a robot arm may most naturally be described us-
ing angles. Two- and three-dimensional polar coordinate systems are shown in Fig.
Al.2.
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In these coordinate systems, the Cartesian quadrants or octants in which points fall
are often of interest because many trigonometric functions determine only an an-
gle modulo 7/2 or 7 (one or two quadrants) and more information is necessery to
determine the quadrant. Familiar examples are the inverse angle functions (such
as arctangent), whose results are ambiguous between two angles.

A1.1.3 Spherical and Cylindrical

The spherical and cylindrical systems are shown in Fig. A1.3.
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Fig. A1.2 Polar and polar space
X coordinate systems.
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A1.1.4 Homogeneous Coordinates

Fig. A1.3 Spherical and cylindrical
coordinate systems.
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Homogeneous coordinates are a very useful tool in computer vision (and com-
puter graphics) because they allow many important geometric transformations to
be represented uniformly and elegantly (see Section A1.7). Homogeneous coordi-
nates are redundant: a point in Cartesian n-space is represented by a line in homo-
geneous (n + 1)-space. Thus each (unique) Cartesian coordinate point
corresponds to infinitely many homogeneous coordinates.

Cartesian Coordinates Homogeneous Coordinates

(x, y, ) (wx, wy, wz, w)
X Lz (x, », z, w)
woowow
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Here x, y, z, and w are real numbers, wx, wy, and wz are the products of the two
reals, and x/wand so on are the indicated quotients.

A1.2. TRIGONOMETRY

A1.2.1 Plane Trigonometry

Referring to Fig. Al.4, define

sine:

c

sin (4) (sometimes sin 4) = 2
cosine: cos (4) (orcos A) = %

tangent:  tan (4) (or tan 4) = 2

The inverse functions arcsin, arccos, and arctan (also written sin”™!, cos™!, tan™!)

map a value into an angle. There are many useful trigonometric identities; some of
the most commeon are the following.

tan (x) = sin () _ —tan(—x)
cos (x)

sin (x + y) = sin (x) cos (y) + cos (x) sin (y)
cos (x + y) = cos (x) cos (y) — sin (x) sin (y)

_ _tan (x) ¥ tan (y)
tan (x + y) = 1 = tan (x) tan(y)

In any triangle with angles A, B, C opposite sides a, b, ¢, the Law of Sines holds:

a ...-b . ¢
sin A sin B sin C

as does the Law of Cosines:

a’= b2+ ¢ =2bc cos A4
a=bcosC+ccosB

b C  Fig. Al.4 Plane right triangle.
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A1.2.2. Spherical Trigonometry

The sides of a spherical triangle (Fig. A1.5) are measured by the angle they sub-
tend at the sphere center; its angles by the angle they subtend on the face of the
sphere.

Some useful spherical trigonometric identities are the following.

sind _ sinB _ sinC

sin a sin b sin ¢

cosh cos(c + 0)

cosa = cosbh cosc + sinb sinc cos 4 =
cos@

Where tan 8 = tan b cos A,

cosA = —cosB cosC + sin B sin C cosa

A1.3. VECTORS

Vectors are both a notational convenience and a representation of a geometric con-
cept. The familiar interpretation of a vector v as a directed line segment allows for a
geometrical interpretation of many useful vector operations and properties. A
more general notion of an n-dimensional vector v = (v}, vy, ..., v,) is that of an
n-tuple abiding by mathematical laws of composition and transformation. A vector
may be written horizontally (a row vector) or vertically (a column vector).

A point in n-space is characterized by its » coordinates, which are often writ-
ten as a vector. A point at X, ¥, Z coordinates x, y, and z is written as a vector x
whose three components are (x, y, z). Such a vector may be visualized as a
directed line segment, or arrow, with its tail at the origin of coordinates and its
head at the point at (x, y, z). The same vector may represent instead the direction
in which it points—toward the point (x, y, z) starting from the origin. An impor-
tant type of direction vector is the normal vector, which is a vector in a direction
perpendicular to a surface, plane, or line.

Vectors of equal dimension are equal if they are equal componentwise. Vec-
tors may be multiplied by scalars. This corresponds to stretching or shrinking the
vector arrow along its original direction.

Ax = (\xy, Axy, ..., AX,)

A 4 c Fig. A1.5 Spherical triangle.
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Vector addition and subtraction is defined componentwise, only between vectors
of equal dimension. Geometrically, to add two vectors x and y, put y’s tail at x’s
head and the sum is the vector from x’s tail to y’s head. To subtract y from x, put
y’s head at x’s head; the difference is the vector from x’s tail to y’s tail.

x+xy=0; xyLx2F s ..., X, £ Y,)

The length (or magnitude) of a vector is computed by an n-dimensional version of
Euclidean distance.

Ix|= (x{ +xF + -+ +xD)*

A vector of unit length is a unit vector. The unit vectors in the three usual Carte-
sian coordinate directions have special names.

i=(1,0,0)
j=1(0,1,0)
k=1(0,0,1)

The inner (or scalar, or dot) product of two vectors is defined as follows.
x -y =1x[ly|cos® = xyy; +.aps + <o+ Xep,

Here 6 is the angle between the two vectors. The dot product of two nonzero
numbers is 0 if and only if they are orthogonal (perpendicular). The projection of x
onto y (the component of vector x in the direction y) is

|x|cos® = XY,
lyl

Other identities of interest:

X sy iy
x-y+z)=x-y+x-2z
Ax-y)=0x) -y=x-Qy)
x-x=|x?
The cross (or vector) product of two three-dimensional vectors is defined as
follows.

x Xy = (X293 = X3p2, X3¥1 — X1¥3, X1¥2 — X2)1)

Generally, the cross product of x and y is a vector perpendicular to both x and y.
The magnitude of the cross product depends on the angle # between the two vec-
tors.

[x x y|=|x]|[y|siné

Thus the magnitude of the product is zero for two nonzero vectors if and only if
they are parallel.
Vectors and matrices allow for the short formal expression of many symbolic
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expressions. One such example is the formal determinant (Section Al.4) which
expresses the definition of the cross product given above in a more easily remem-

bered form.
i j k
x Xy=det|x; x3 x3
Yi Y2 >3
Also,

XXy=-yXx
xx(yxz)=xXy*xxxz

AMx X y)=AxXy=xXD\y

ixj=k
jxk=i
kxi=j
The triple scalar product is x - (y x z), and is equivalent to the value of the
determinant
X X2 X3
det |y1 »y2 3
Z] 23 23

The triple vector product is

xx(yxz)=Kx -Dy— (x-y)z

A1.4. MATRICES

A matrix A4 is a two-dimensional array of elements; if it has m rows and » columns
it is of dimension m X n, and the element in the ith row and jth column may be
named a;. If m or n = 1, a row matrix or column matrix results, which is often
called a vector. There is considerable punning among scalar, vector and matrix
representations and operations when the same dimensionality is involved (the 1 x
1 matrix may sometimes be treated as a scalar, for instance). Usually, this practice
is harmless, but occasionally the difference is important.

A matrix is sometimes most naturally treated as a collection of vectors, and
sometimes an m X nmatrix Mis written as

M=1[a a - a,l

Sec. A1.4 Matrices 471
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or

where the a’s are column vectors and the b’s are row vectors.

Two matrices A and B are equal if their dimensionality is the same and they
are equal elementwise. Like a vector, a matrix may be multiplied (elementwise) by
a scalar. Matrix addition and subtraction proceeds elementwise between matrices
of like dimensionality. For a scalar k£ and matrices 4, B, and C of like dimensional-
ity the following is true.

A=B*C ifay=b;+*c; 1<ism 1<jsn

Two matrices 4 and B are conformable for multiplication if the number of
columns of 4 equals the number of rows of B. The product is defined as

C = AB where anelement ¢; is defined by ¢; = X ayby
k

Thus each element of C is computed as an inner product of a row of 4 with a
column of B. Matrix multiplication is associative but not commutative in general.
The multiplicative identity in matrix algebra is called the identity matrix 1. [is all
zeros except that all elements in its main diagonal have value 1 (a,-j =1ifi=j else
a; = 0).Sometimes the n X nidentity matrix is written /,.

The transpose of an m X n matrix A is the n X m matrix 47 such that the

i,jth element of A is the j,ithelementof A7. If AT = A, Ais symmetric.
The inverse matrix of an n x nmatrix A is written 4. If it exists, then

A4 =474 =1
If its inverse does not exist, an n x rmatrix is called singular.
With k and p scalars, and 4, B, and C m x n matrices, the following are
some laws of matrix algebra (operations are matrix operations):
A+B=B+ A4
(A4+B)+C=4+B+C)
k(4 + B) = kA + kB
(k + p)A = kA + pA
AB # BA in general
(4B)C = 4 (BC)
A(B + C) = 4B + AC
(4 + B)C = AC + BC

App. 1T Some Mathematical Tools



A(kB) = k(AB) = (kA)B

I,A = Al, = A
(4+ B =47+ BT
(4B)T= BT4T
(4B) ' = B 147!

The determinant of an » X » matrix is an important quantity; among other
things, a matrix with zero determinant is singular. Let 4 be the (n —1) X (n—1)
matrix resulting from deleting the ith row and jth column from an # X n matrix 4.
The determinant of a 1 x 1 matrix is the value of its single element. Forn > 1,

n
det A = 3 a, (—1)' det 4,
i=1

for any j between 1 and ». Given the definition of determinant, the inverse of a
matrix may be defined as
L i+j i
(@), = (—1)""/ det 4,
det 4

In practice, matrix inversion may be a difficult computational problem, but
this important algorithm has received much attention, and robust and efficient
methods exist in the literature, many of which may also be used to compute the
determinant. Many of the matrices arising in computer vision have to do with
geometric transformations, and have well-behaved inverses corresponding to the
inverse transformations. Matrices of small dimensionality are usually quite compu-
tationally tractable.

Matrices are often used to denote linear transformations; if a row (column)
matrix X of dimension nis post (pre) multiplied by an n x n matrix 4, the result X
= X4 (X' = AX) is another row (column) matrix, each of whose elements is a
linear combination of the elements of X, the weights being supplied by the values
of A. By employing the common pun between row matrices and vectors, x' = x4
(x' = Ax) is often written for a linear transformation of a vector x.

An eigenvector of an n X nmatrix A4 is a vector v such that for some scalar A
(called an eigenvalue),

!

vA = Av

That is, the linear transformation 4 operates on v just as a scaling operation. A ma-
trix has » eigenvalues, but in general they may be complex and of repeated values.
The computation of eigenvalues and eigenvectors of matrices is another computa-
tional problem of major importance, with good algorithms for general matrices be-
ing complicated. The n eigenvalues are roots of the so-called characteristic polyno-
mial resulting from setting a formal determinant to zero:

det (4 — A1) = 0.
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Eigenvalues of matrices up to 4 X 4 may be found in closed form by solving the
characteristic equation exactly. Often, the matrices whose eigenvalues are of in-
terest are symmetric, and luckily in this case the eigenvalues are all real. Many al-
gorithms exist in the literature which compute eigenvalues and eigenvectors both
for symmetric and general matrices.

A1.5. LINES

474

An infinite line may be represented by several methods, each with its own advan-
tages and limitations. An example of a representation which is not often very use-
ful is two planes that intersect to form the line. The representations below have
proven generally useful.

A1.5.1 Two Points

A two-dimensional or three-dimensional line (throughout Appendix 1 this short-
hand is used for “‘line in two-space’’ and *‘line in three-space’’; similarly for *‘two
(three) dimensional point’’) is determined by two points on it, x1 and x2. This
representation can serve as well for a half-line or a line segment. The two points
can be kept as the rows of a (2 X n) matrix.

A1.5.2 Point and Direction

A two-dimensional or three-dimensional line (or half-line) is determined by a
point x on it (its endpoint) and a direction vector v along it. This representation is
essentially the same as that of Section A1.5.1, but the interpretation of the vectors
is different.

A1.5.3 Slope and Intercept

A two-dimensional line can often be represented by the Y value b where the line
intersects the Y axis, and the slope m of the line (the tangent of its inclination with
the x axis). This representation fails for vertical lines (those with infinite slope).
The representation is in the form of an equation making explicit the dependence of
yonx:

y=mx +b

A similar representation may of course be based on the Xintercept.
A1.5.4 Ratios

A two-dimensional or three-dimensional line may be represented as an equation of
ratios arising from two points x1 = (x;, y;, z;) and x2 = (x,, y,, z,)on the line.
X=Xy Y= i _ z71ZI

X2 — X Y2 — )i Z— I
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A1.5.5 Normal and Distance from Origin (Line Equation)

This representation for two-dimensional lines is elegant in that its parts have useful
geometric significance which extends to planes (not to three-dimensional lines).
The coefficients of the general two-dimensional linear equation represent a two-
dimensional line and incidentally give its normal (perpendicular) vector and its
(perpendicular) distance from the origin (Fig. A1.6).

From the ratio representation above, it is easy to derive (in two dimensions)
that

(x —x)sind — (y—y)cos®# =0
so for
d = —(x;sin @ —y, cos ),
xsinf —ycosf+d=20

This equation has the form of a dot product with a formal homogeneous vector
(x, y, 1):

(x, y, 1) - (sinf, —cos®, d) =0

Here the two-dimensional vector (sin @, —cos ) is perpendicular to the line (it is a
unit normal vector, in fact), and dis the signed distance in the direction of the nor-
mal vector from the line to the origin. Multiplying both sides of the equation by a
constant leaves the line invariant, but destroys the interpretation of 4 as the dis-
tance to the origin.

This form of line representation has several advantages besides the interpre-
tations of its parameters. The parameters never go to infinity (this is useful in the
Hough algorithm described in Chapter 4). The representation extends naturally to
representing n-dimensional planes. Least squared error line fitting (Section A1.9)
with this form of line equation (as opposed to slope-intercept) minimizes errors
perpendicular to the line (as opposed to those perpendicular to one of the coordi-
nate axes).

-

/ Fig. Al.6 Two-dimensional line with
/ normal vector and distance to origin.
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A1.5.6 Parametric

It is sometimes useful to be able mathematically to ““walk along’” a line by varying
some parameter t. The basic parametric representation here follows from the two-
point representation. If x1 and x2 are two particular points on the line, a general
point on the line may be written as

x = x1 + #(x2 —x1)

In matrix terms this is
x=1[ 1IL

where L is the 2 X n matrix whose first row is (x2 — x1) and whose second is x1.
Parametric representations based on points on the lines may be transformed by the
geometric point transformations (Section A1.7).

A1.6. PLANES

476

The most common representation of planes is to use the coordinates of the plane
equation. This representation is an extension of the line-equation representation
of Section A1.5.5. The plane equation may be written

ax +by +cz+d=0

which is in the form of a dot product x - p= 0. Four numbers given by
p = (a, b, ¢, d) characterize a plane, and any homogeneous point x = (x, y, z, w)
satisfying the foregoing equation lies in the plane. In p, the first three numbers
(a, b, ¢) form a normal vector to the plane. If this normal vector is made to be a
unit vector by scaling p, then d is the signed distance to the origin from the plane.
Thus the dot product of the plane coefficient vector and any point (in homogene-
ous coordinates) gives the distance of the point to the plane (Fig. A1.7).

z

</ Fig. A1.7 Distance from a point to a plane.
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Three noncollinear points x1, x2, x3 determine a plane p. To find it, write

x1

x2

x3 p=
0 0 0 1

If the matrix containing the point vectors can be inverted, the desired vector p is
thus proportional to the fourth column of the inverse.
Three planes p1, p2, p3 may intersect in a point x. To find it, write

— O OO

pl p2 p3 0

0
1

If the matrix containing the plane vectors can be inverted, the desired point p is
given by the fourth row of the inverse. If the planes do not intersect in a point, the
inverse does not exist.

A1.7 GEOMETRIC TRANSFORMATIONS

This section contains some results that are well known through their central place
in the computer graphics literature, and illustrated in greater detail there. The idea
is to use homogeneous coordinates to allow the writing of important transforma-
tions (including affine and projective) as linear transformations. The transforma-
tions of interest here map points or point sets onto other points or point sets. They
include rotation, scaling, skewing, translation, and perspective distortion (point
projection) (Fig. A1.8).

A point x in three-space is written as the homogeneous row four-vector
(x, y, z, w}, and postmultiplication by the following transformation matrices ac-
complishes point transformation. A set of m points may be represented as an
m x 4 matrix of row point vectors, and the matrix multiplication transforms all
points at once.

A1.7.1 Rotation

Rotation is measured clockwise about the named axis while looking along the axis
toward the origin.
Rotation by 8 about the X axis:

1 0 0

0 cos® —sinéd
|0 sin® cos#®

0 0 0

— O OO
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(a) (b) (c)

(d) (e) (f)

Fig. A1.8 Transformations: (a) original, (b) rotation, (c) scaling, (d) skewing,
(e) translation, and (f) perspective.

Rotation by # about the Y axis:

cosf 0 sinfd O
0 1 0 0
—sin® 0 cos® O
0 0 0 1

Rotation by @ about the Z axis:

cos —sinf 0 O
sinf cos® 0 O
0 0 1 0
0 0 0 1

A1.7.2 Scaling

Scaling is stretching points out along the coordinate directions. Scaling can
transform a cube to an arbitrary rectangular parallelepiped.
Scale by S,, S,, and S, in the X, Y, and Z directions:

S 0 0 0
0 S 0 0
0 0 S 0
0 0 o 1

App. 1 Some Mathematical Tools



A1.7.3 Skewing

Skewing is a linear change in the coordinates of a point based on certain of its other
coordinates. Skewing can transform a square into a parallelogram in a simple case:

oo —
cCoO—o
o~oo
O OO

In general, skewing is quite powerful:

Oom oy, -
o3 —x
O =
—_o OO

Rotation is a composition of scaling and skewing (Section A1.7.7).
A1.7.4 Translation

Translate a point by (¢, &, v):

1 0 00
01 0 0
0 010
tu v 1

With a three-dimensional Cartesian point representation, this transformation is ac-
complished through vector addition, not matrix multiplication.

A1.7.5 Perspective

The properties of point projection, which model perspective distortion, were
derived in Chapter 2. In this formulation the viewpoint is on the positive Z axis at
(0,0, £, 1) looking toward the origin: facts like a ‘‘focal length”’. The visible world
is projected through the viewpoint onto the Z = 0 image plane (Fig. A1.9).

Y
i
VU
! ey
— |
z 4 e |
\ I v
e ——— l‘
\
\ \
\
X Fig. A1.9 Geometry of image formation.
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Similar triangles arguments show that the image plane point for any world
point (x, y, z) is given by

1 i
2 f—z

Using homogeneous coordinates, a ‘‘perspective distortion’ transformation can
be written which distorts three-dimensional space so that after orthographic projec-
tion onto the image plane, the result looks like that required above for perspective
distortion. Roughly, the transformation shrinks the size of things as they get more
distant in Z. Although the transformation is of course linear in homogeneous coor-
dinates, the final step of changing to Cartesian coordinates by dividing through by
the fourth vector element accomplishes the nonlinear shrinking necessary.
Perspective distortion (situation of Fig. A1.9):

(U V)=

1 0 00
0100
-1
00 1 —
7
0 0 01

Perspective from a general viewpoint has nonzero elements in the entire fourth
column, but this is just equivalent to a rotated coordinate system and the perspec-
tive distortion above (Section A1.7).

A1.7.6 Transforming Lines and Planes

Line and plane equations may be operated on by linear transformations, just as
points can. Point-based parametric representations of lines and planes transform as
do points, but the line and plane equation representations act differently. They
have an elegant relation to the point transformation. If Tis a transformation matrix
(3 x 3 for two dimensions, 4 x 4 for three dimensions) as defined in Sections
Al.7.1to Al1.7.5, then a point represented as a row vector is transformed as

x'=xT

and the linear equation (line or plane) when represented as a column vector v is
transformed by

v=T"Tly

A1.7.7 Summary

The 4 X 4 matrix formulation is a way to unify the representation and calculation of
useful geometric transformations, rigid (rotation and translation), and nonrigid
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(scaling and skewing), including the projective. The semantics of the matrix are
summarized in Fig. A1.10.

Since the results of applying a transformation to a row vector is another row
vector, transformations may be concatenated by repeated matrix multiplication.
Such composition of transformations follows the rules of matrix algebra (it is asso-
ciative but not commutative, for instance). The semantics of

x' = xABC

is that x’ is the vector resulting from applying transformation A4 to x, then B to the
transformed x, then C to the twice-transformed x. The single 4 x 4 matrix D =
ABC would do the same job. The inverses of geometric transformation matrices
are just the matrices expressing the inverse transformations, and are easy to
derive.

A1.8. CAMERA CALIBRATION AND INVERSE PERSPECTIVE

Sec. A1.8

The aim of this section is to explore the correspondence between world and image
points. A (half) line of sight in the world corresponds to each image point. Camera
calibration permits prediction of where in the image a world point will appear. In-
verse perspective transformation determines the line of sight corresponding to an
image point. Given an inverse perspective transform and the knowledge that a visi-
ble point lies on a particular world plane (say the floor, or in a planar beam of
light), then its precise three-dimensional coordinates may be found, since the line
of sight generally intersects the world plane in just one point.

Scale in Skew
X
Scale in Perspective
Y
Skew Scale in
4
Translate Zoom
Fig. A1.10 The 4 X 4 homogeneous
transformation matrix.
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