(scaling and skewing), including the projective. The semantics of the matrix are
summarized in Fig. A1.10.

Since the results of applying a transformation to a row vector is another row
vector, transformations may be concatenated by repeated matrix multiplication.
Such composition of transformations follows the rules of matrix algebra (it is asso-
ciative but not commutative, for instance). The semantics of

x' = xABC

is that x’ is the vector resulting from applying transformation A4 to x, then B to the
transformed x, then C to the twice-transformed x. The single 4 x 4 matrix D =
ABC would do the same job. The inverses of geometric transformation matrices
are just the matrices expressing the inverse transformations, and are easy to
derive.

A1.8. CAMERA CALIBRATION AND INVERSE PERSPECTIVE

Sec. A1.8

The aim of this section is to explore the correspondence between world and image
points. A (half) line of sight in the world corresponds to each image point. Camera
calibration permits prediction of where in the image a world point will appear. In-
verse perspective transformation determines the line of sight corresponding to an
image point. Given an inverse perspective transform and the knowledge that a visi-
ble point lies on a particular world plane (say the floor, or in a planar beam of
light), then its precise three-dimensional coordinates may be found, since the line
of sight generally intersects the world plane in just one point.

Scale in Skew
X
Scale in Perspective
Y
Skew Scale in
4
Translate Zoom
Fig. A1.10 The 4 X 4 homogeneous
transformation matrix.
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A1.8.1 Camera Calibration

This section is concerned with the ‘“‘camera model’’; the model takes the form of a
4 x 3 matrix mapping three-dimensional world points to two-dimensional image
points. There are many ways to derive a camera model. The one given here is easy
to state mathematically; in practice, a more general optimization technique such as
hill climbing can be most effective in finding the camera parameters, since it can
take advantage of any that are already known and can reflect dependencies between
them.

Let the image plane coordinates be {/and V; in homogeneous coordinates an
image plane point is (u,v,t). Thus

U

4

|l ~|=

Call the desired camera model matrix C, with elements C; and column four-
vectors C;. Then for any world point (x, y, z) a Cis needed such that
O,y zDC=(u v 1)
So
u=(xy 2z 1)C
v==>0qy 2z 1)C;
=(x,y 2 1)C

~

Expanding the inner products and rewriting ¥y — Ut = 0and v— Vi =0,

XC11 + yCQ] + ZC31 + C41 T UXC13 el U_}’ng. = UZC33 T UC43 =0
xC12 +yC22 + ZC32 + C42 = VXC;3 = VyC23 = VZC33 == VC43 =0

The overall scaling of C is irrelevant, thanks to the homogeneous formulation, so
C4; may be arbitrarily set to 1. Then equations such as those above can be written
in matrix form:

# 21 0 0 0Dl =Ty -~ |
0 0 0 x' ' ' 1 =pix! -yl —pl Ci Ul
2 21 = . Cn 4

i b.m
0 0 O xn yn zn 1 - anrr — Vnyn —_ Vn'zn C34 |
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Eleven such equations allow a solution for C. Two equations result for every
association of an (x, y, z) point with a (U, ¥) point. Such an association must be
established using visible objects of known location (often placed for the purpose).
If more than 5% such observations are used, a least-squared-error solution to the
overdetermined system may be obtained by using a pseudo-inverse to solve the
resulting matrix equation (Section A1.9).

A1.8.2 Inverse Perspective

Finding the world line corresponding to an image point relies on the fact that the
perspective transformation matrix also affects the z component of a world point.
This information is lost when the zcomponent is projected away orthographically,
but it encodes the relation between the focal point and the z position of the point.
Varying this third component references points whose world positions vary in z but
which project onto the same position in the image. The line can be parameterized
by a variable p that formally occupies the position of that z coordinate in three-
space that has no physical meaning in imaging.
Write the inverse perspective transform P! as

&y, p DP =,y p 1+ £)

T
Rewriting this in the usual way gives these relations between the (x, y, z) points on
the line.
Sx' Sy Jp’

Ped 1) f+p’f+p’f+f1

Eliminating the parameter p between the expressions for z and x and those for z
and y leaves

x' —x'

5 y TG (z— 1)

Thus x, y, and z are linearly related; as expected, all points on the inverse perspec-
tive transform of an image point lie in a line, and unsurprisingly both the viewpoint
(0, 0, £) and the image point (x’, y’, 0) lie on it.

A camera matrix C determines the three-dimensional line that is the inverse
perspective transform of any image point. Scale C so that C43 = 1, and let world
points be written x = (x, y, z, 1) and image points u = (u, v, t). The actual image
points are then

X =

U=—L:,V+—:, sou=1U v+ Vit
Since
u=xC,
u=Ut=xC
v= WVt =xC,
t=xC,
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Substituting the expression for ¢into that for #and v gives
UxC; = xC,
VxC; = xC,
which may be written
x(C,—UC;) =0
x(C,— ¥VC3) =0

These two equations are in the form of plane equations. For any U, Vin the image
and camera model C, there are determined two planes whose intersection gives the
desired line. Writing the plane equations as

axx+by+cz+d =0
ax + by +cz+dry=0
then
ar=Cy—CpU dy= 12 = CisV

and so on. The direction (A, u, ») of the intersection of two planes is given by the
cross product of their normal vectors, which may now be written as

(\, w, v) = (ay, by, ¢1) % (ay, by, c3)
= (bicy— bycy, cray—caay, a1by— azby)
Then if v # 0, for any particular z,

by (C2ZD + dz) - by (Clzo e dl)
ale~ bia;

X0 =

aj (Clzo + d1) - aj (C220 = dz)
albz_ b]ﬂ'z

Yo =

and the line may be written

X = Xp Y Yo Z7Zp

A 73 v

A1.9. LEAST-SQUARED-ERROR FITTING

484

The problem of fitting a simple functional model to a set of data points is a com-
mon one, and is the concern of this section. The subproblem of fitting a straight
line to a set of (x, y) points (‘‘linear regression’’) is the first topic. In computer vi-
sion, this line-fitting problem is encountered relatively often. Model-fitting
methods try to find the “‘best” fit; that is, they minimize some error. Methods
which yield closed-form, analytical solutions for such best fits are at issue here.
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The relevant “‘error’’ to minimize is determined partly by assumptions of depen-
dence between variables. If x is independent, the line may be represented as y =
mx + b and the error defined as the vertical displacement of a point from the line.
Symmetrically, if x is dependent, horizontal error should be minimized. If neither
variable is dependent, a reasonable error to minimize is the perpendicular distance
from points to the line. In this case the line equation ax + by + 1 = 0 can be used
with the method shown here, or the eigenvector approach of Section A1.9.2 may
be used.

A1.9.1 Pseudo-Inverse Method

In fitting an n x 1 observations matrix y by some linear model of p parameters, the
prediction is that the linear model will approximate the actual data. Then

Y=XB+E

where X'is an n X p formal independent variable matrix, Bis a p x 1 parameter
matrix whose values are to be determined, and FE represents the difference
between the prediction and the actuality: itisan n x 1 error matrix.

For example, to fit a straight line y = mx + b to some data (x;, y,) points,
form Yas acolumn matrix of the y;.

X1

X2

¥ 1 .x3
L b
B = m

Now the task is to find the parameter B (above, the »and m that determine
the straight line) that minimizes the error. The error is the sum of squared
difference from the prediction, or the sum of the elements of E squared, or ETE (if
we do not mind conflating the one-element matrix with a scalar). The mathemati-
cally attractive properties of the squared-error definition are almost universally
taken to compensate for whatever disadvantages it has over what is really meant by
error (the absolute value is much harder to calculate with, for example).

To minimize the error, simply differentiate it with respect to the elements of
B and set the derivative to 0. The second derivative is positive: this is indeed a
minimum. These elementwise derivatives are written tersely in matrix form. First
rewrite the error terms:

(Y — XB)T(Y — XB)
Y'Y — B'™XTY — Y"XB + B"X"XB
= YTy — 2B"XTY + BTXTXB

ETE

[
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(here, the combined terms were 1 X 1 matrices.) Now differentiate: setting the
derivative to 0 yields

0=X"XB - X7y
and thus
B= X)X =Xty

where X7 is called the pseudo-inverse of X,

The pseudo-inverse method generalizes to fitting any parametrized model to
data (Section A1.9.3). The model should be chosen with some care. For example,
Fig. Al.11 shows a disturbing case in which the model above (minimize vertical
errors) is used to fit a relatively vertical swarm of points. The “‘best fit”’ line in this
case is not the intuitive one.

A1.9.2 Principal Axis Method

The principal axes and moments of a swarm of points determine the direction and
amount of its dispersion in space. These concepts are familiar in physics as the
principal axes and moments of inertia. If a swarm of (possibly weighted) points is
translated so that its center of mass (average location) is at the origin, a symmetric
matrix M may be easily calculated whose eigenvectors determine the best-fit line
or plane in a least-squared-perpendicular-error sense, and whose eigenvalues tell
how good the resulting fit is.

Given a set {x'} row of vectors with weights w', define their “‘scatter matrix”’
to be the symmetric matrix M, where x’ = (x{, x4, x%):

M=Ex"rx’
Mkp=2x£:x,§ ISK,PS.:S
i

Define the dispersion of the x' in a direction v (i.e., ‘‘dispersion around the
plane whose normal is v’) to be the sum of weighted squared lengths of the x'in
the direction v. This squared error EZis

EE=Y wi(x'-v)2=v (X wixTx)vT=vMvT

. Fig. AL.L11 A set of points and the
P X “‘best fit’’ line minimizing error in Y.
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To find the direction of minimum dispersion (the normal to the best-fit line or
plane), note that the minimum of vMv7 over all unit vectors v is the minimum
eigenvalue A of M. If v, is the corresponding eigenvector, the minimum disper-
sion is attained at v = v;. The best fit line or plane of the points goes through the
center of mass, which is at the origin; inverting the translation that brought the
centroid to the origin yields the best fit line or plane for the original point swarm.

The eigenvectors correspond to dispersions in orthogonal directions, and the
eigenvalues tell how much dispersion there is. Thus with a three-dimensional
point swarm, two large eigenvalues and one small one indicate a planar swarm
whose normal is the smallest eigenvector. Two small eigenvalues and one large
one indicate a line in the direction of the normal to the “‘worst fit plane’’, or eigen-
vector of largest eigenvalue. (It can be proved that in fact this is the best-fit line in a
least squared perpendicular error sense). Three equal eigenvalues indicate a
‘“‘spherical’” swarm.

A1.9.3 Fitting Curves by the Pseudo-Inverse Method

Given a function f(x) whose value is known on n points x;, ..., X,, it may be use-
ful is to fit it with a function g (x) of m parameters (&4, ..., b,,). If the squared er-
ror at a point x; is defined as

(e,—)z = [f(x,-) o g(x;)]z

a sequence of steps similar to that of Section A1.9.1 leads to setting a derivative to
zero and obtaining

0=G'Gb - Gt
where b is the vector of parameters, f the vector of » values of £ (x), and

| d0g(x;) dg(xy)
0b; 0b,

og

=%

dg(x,)
b,

As before, this yields
b= (G'G)' G™f

Explicit least-squares solutions for curves can have nonintuitive behavior. In
particular, say that a general circle is represented

Al y) =x*+y*+2Dx + 2Ey + F

this yields values of D, E, and F which minimize

2= N (f, ’)2
e Elgx ¥
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for n input points. The error term being minimized does not turn out to accord
with our intuitive one. It gives the intuitive distance of a point to the curve, but
weighted by a factor roughly proportional to the radius of the curve (probably not
desirable). The best fit criterion thus favors curves with high average curvature,
resulting in smaller circles than expected. In fitting ellipses, this error criterion
favors more eccentric ones.

The most successful conic fitters abandon the luxury of a closed-form solu-
tion and go to iterative minimization techniques, in which the error measure is ad-
justed to compensate for the unwanted weighting, as follows.

2 @ l f(xini)

% IV f (i, v |

i=1

A1.10 CONICS
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The conic sections are useful because they provide closed two-dimensional curves,
they occur in many images, and they are well-behaved and familiar polynomials of
low degree. This section gives their equations in standard form, illustrates how the
general conic equation may be put into standard form, and presents some sample
specific results for characterizing ellipses.

All the standard form conics may be subjected to rotation, translation, and
scaling to move them around on the plane. These operations on points affect the
conic equation in a predictable way.

Circle: r = radius x4 yt=p?

X2y
Ellipse: a, & = major, minor axes e e )
a b
Parabola: (p, 0) = focus, p = directrix ~ y* = 4px

2 2
X
- ..7__2’._=1
a

b2

Hyperbola: vertices (g, 0), asymptotes y = =+

The general conic equation is
Ax*+2Bxy + O+ 2Dx +2Ey + F=0

This equation may be written formally as

A B D| [x
x y 1) B C E| |yl=xMx"=0
D E F 1

Putting the general conic equation into one of the standard forms is a common ana-
lytic geometry exercise. The symmetric 3 X 3 matrix M may be diagonalized, thus
eliminating the coefficients B, D, and E from the equation and reducing it to be
close to standard form. The diagonalization amounts to a rigid motion that puts the
conic in a symmetric position at the origin. The transformation is in fact the 3 x 3
matrix £ whose rows are eigenvectors of M. Recall that if v is an eigenvector of M,

vM = Av
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Then if Dis a diagonal matrix of the three eigenvalues, A, A3, A3,

EM = DE
but then

EME ‘= DEE'=D

and M has been transformed by a similarity transformation into a diagonal matrix
such that

xDxT=0
This general idea is of course related to the principal axis calculation given in Sec-
tion A1.9.2, and extends to three-dimensional quadric surfaces such as the ellip-
soid, cone, hyperbolic paraboloid, and so forth. The general result given above has

particular consequences illustrated by the following facts about the ellipse. Given a
general conic equation representing an ellipse, its center (x,, y.) is given by

o BE-2CD
£ B'—44C
yo = 2EA—BD
‘ B'-44C
The orientation is
= B
8 = ftan™! | ——
2]
The major and minor axes are
—-2G

6 * €} & [B* 4 (—-CHP

where
G=F—Ux}+B,, +C2)

A1.11 INTERPOLATION

Interpolation fits data by giving values between known data points. Usually, the in-
terpolating function passes through each given data point. Many interpolation
methods are known; one of the simplest is Lagrangean interpolation.

A1.11.1 One-Dimensional

Given n + 1 points (x;, y;), xo < x; < --+ < x,, the idea is to produce an nth-
degree polynomial involving »n + 1 so-called Lagrangean coefficients. It is

76 =3 LGy,
=0

Sec. A1.11 Interpolation 489



[ '(Xofyﬂ .(XUV‘I)

h T O (xg + gk, y, + ph)

J— ® (x4, Yo ® (xy, ¥,)

}— gk —»
Fig. A1.12 Four point lagrangean
|___“ k interpolation on rectangular grid.
where L;(x) is the jth coefficient;
b be=g)ils = 3i)e omsilé =gl (e = o) 1+ (= x,)
4 Og =ixp) (=), =+« Lg=og1) Gy—a0q) o+ Gy—=2,)

Other interpolative schemes include divided differences, Hermite interpola-
tion for use when function derivatives are also known, and splines. The use of a po-
lynomial interpolation rule can always produce surprising results if the function be-
ing interpolated does not behave locally like a polynomial.

A1.11.2 Two-Dimensional

The four-point Lagrangean method is for the situation shown in Fig. A1.12. Let f;;
= f(x;, y;). Then

o+ gk, yo+ph) = 0—p) A—q) foo+ q(l—p) fio+ p(1—q) for + pafi

A1.12 THE FAST FOURIER TRANSFORM
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The following routine computes the discrete Fourier transform of a one-
dimensional complex array XIn of length N = 28N and produces the one-
dimensional complex array XOut. It uses an array W of the N complex Nth roots of
unity, computed as shown, and an array Bits containing a bit-reversal table of
length N. N, LogN, W, and Bits are all global to the subroutine as written. If the
logical variable Forward is TRUE, the FFT is performed; if Forward is FALSE, the
inverse FFT is performed.

SUBROUTINE FFT (XIn, KOut, Forward)
GLOBAL W, Bits, N, LogN

LOGICAL Forward

COMPLEX XlIn, Xout, W, A, B
INTEGER Bits '

ARRAY (0:N) W, Bits, XIn, XOut
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DO (I =0,N-—1) XOut() = XIn(Bits(I))
JOff = N/2
JPnt = N/2
JBk =2
IOFF = 1
DO (I=1,LogN)
DO (IStart = 0, N— 1, JBk)
JWPnt =0
DO (K = IStart, IStart + IOff — 1)
WHEN (Forward)
A = XOut(K + I0ff) * W(IWPnt) + XOut(K)
B = XOut(K + I0ff) * W(JWPnt + JOff) + XOut(K)
FIN
ELSE
A = XOut (K + 10ff) * CONJG (W (JWPnt)) + XOut(K)
B = XOut(K + IOff) * CONJG (W (JWPnt + JOff)) + XOu
... FIN
XOut(K) = A
XOut(K + IOff) =B
JWPnt = JWPnt + JPnt
... FIN
... FIN
JPnt = JPnt/2
IOff = IBk
JBk = JBk =2
... FIN
UNLESS (Forward)
DO (I=0,N—1) XOut(I) = XOut(I)/N
... FIN
END

TO INIT-W
Pi = 3.14159265
DO (K =0,N—1)
Theta = 2 * Pi/N
W (K) = CMPLX (COS(Theta *K), SIN(Theta = K))
ot ~BIN
FIN

TO BIT-REV
Bits(0) = 0
M=1
DO (I=0,LogN—1)
DO J=0,M—1)
Bits(J) = Bits(J) =2
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Bits(J + M) = Bits(J) + 1
... FIN
M=M=2
... FIN
FIN

A1.13 THE ICOSAHEDRON

Geodesic dome constructions provide a useful way to partition the sphere (hence
the three-dimensional directions) into relatively uniform patches. The resulting
polyhedra look like those of Fig. A1.13.

The icosahedron has 12 vertices, 20 faces, and 30 edges. Let its center be at
the origin of Cartesian coordinates and let each vertex be a unit distance from the
center. Define

t, the golden ratio = 1 +2‘/§
St
a—SJA
1
b=_______
(/r 5%)

1
=qg+2bh=—
c=a 5

t%
d=a+b=?

A = angle subtended by edge at origin = arccos(l/s_i)

B e
&;‘5;‘;%{:74{‘ : IS
o o SN
R LTI IR
I AN AN IR
N TR R
(TR
AN =5 X = ! A
I SEINNSIEE
T TSN SO
DN PR NS MR XXl
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Fig. A1.13 Multifaceted polyhedra from the icosahedron.
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Then

angle between radius and an edge = b = arccos (b)
edge length = 25
distance from origin to center of edge = a

distance from origin to center of face = %

The 12 vertices may be placed at
(0, £a, *+b)
(x5, 0, +qa)
(£a, =b, 0)

Then midpoints of the 20 faces are given by
h(=d, =d, +d)
B( 0, +a, =+c)
h(+c, 0, +a)
h(+a, =+c, 0)

To subdivide icosahedral faces further, several methods suggest themselves,
the simplest being to divide each edge into » equal lengths and then construct »?
congruent equilateral triangles on each face, pushing them out to the radius of the
sphere for their final position. (There are better methods than this if more uniform
face sizes are desired.)

A1.14 ROOT FINDING

Since polynomials of fifth and higher degree are not soluble in closed form, numer-
ical (approximate) solutions are useful for them as well as for nonpolynomial func-
tions. The Newton-Raphson method produces successive approximations to a real
root of a differentiable function of one variable.

o S

i
Here x'is the ith approximation to the root, and f (x") and f’(x') are the function
and its derivative evaluated at x'. The new approximation to the root is x'*'. The
successive generation of approximations can stop when they converge to a single
value. The convergence to a root is governed by the choice of initial approximation
to the root and by the behavior of the function in the vicinity of the root. For in-
stance, several roots close together can cause problems.

The one-dimensional form of this method extends in a natural way to solving
systems of simultaneous nonlinear equations. Given » functions F;, each of »
parameters, the problem is to find the set of parameters that drives all the func-
tions to zero. Write the parameter vector x.

T
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X1
X2

Xn

Form the function column vector F such that

F] (X)
Fz(x)
F(x)=|
F,(x)
The Jacobean matrix Jis defined as
6F1 6F1 o aFl
ax1 axz axn
J=
oF, i oF,
6x1 axﬂ ]

Then the extension of the Newton—Raphson formula is

le = xi— J—l(xf)F(xf)

which requires one matrix inversion per iteration.

Al

Al.2

Al.3

Al.4
Al.5

EXERCISES

x and y are two two-dimensional vectors placed tail to tail. Prove that the area of the
triangle they define is|x % y|/2.

Show that points q in a plane defined by the three points x, y, and z are given by
q- l(y—x) b (z—x)l =x-(yxz
Verify that the vector triple product may be written as claimed in its definition.

Given an arctangent routine, write an arcsine routine.
Show that the closed form for the inverse of a 2 X 2 A matrix is

1
det 4

az —daj
—apgn aj

Prove by trigonometry that the matrix transformations for rotation are correct.
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Al.7

Al8
Al.9
Al.10

Al.11
Al1.12

Al.13

Al.14

Al.15

Al.16
Al1.17

Al1.18

Al1.19

A1.20

Al.21
Al.22

What geometric transformation is accomplished when a4 of a geometric transfor-
mation matrix A varies from unity?

Establish conversions between the given line representations.
Write a geometric transform to mirror points about a given plane.

What is the line-equation representation of a line L1 through a point x and per-
pendicular to a line L 2 (similarly represented) ? Parallel to L2?

Derive the ellipse results given in Section A1.10.
Explicitly derive the values of D, E, and Fminimizing the error term
n
Z U(xhyi)]z
j=1
in the general equation for a circle
x2+ 2+ 2Dx +2Ey + F=0

Show that if points and lines are transformed as shown in Section A1.7.6, the
transformed points indeed lie on the transformed lines.

Explicitly derive the least-squared-error solution for lines represented as ax + by
+1=0.

If three planes intersect in a point, is the inverse of
pl p2 p3 0
0
0
1

guaranteed to exist?
What is the angle between two three-space lines?

In two dimensions, show that two lines u and v intersect at a point x given by x =
uxy.

How can you tell if two line segments (defined by their end points) intersect in the
plane?

Find a 4 x 4 matrix that transforms an arbitrary direction (or point) to lie on the Z
axis.

Derive a parametric representation for planes based on three points lying in the
plane.

Devise a scheme for interpolation on a triangular grid.
What does the homogeneous point (x, y, z, 0) represent?
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