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Learning

Learning can be defined as
any deliberate or directed
change in the knowledge
structureofa system that al­
lows it to perform better on
later repetitions of some
given type of task. Learning is an essential
componentof intelligent behavior-any
organism that lives in a complex and
changing environment cannot be designed
to explicitly anticipate allpossible situa­
tions, but must be capable of effective self­
modification. There are several basic ways
to learn, i.e., to add to one's ability to
perform or to know about things in the
world:

1. Genetically-endowed abilities.
Knowledge can be stored in the
genes of men or animals, or in the

circuits of machines.
2. Suppliedinformation.

Someonecan demonstrate
howto perform an action or
can describe or provide facts
about an object or situation.

3. Outsideevaluation. Someone can
tell you whenyouare proceeding
correctly, or when you have obtained
the correct information.

4. Experienceor observation. One can
learn byfeedback from his environ­
ment; the evaluation is usually done
by the learner measuring his ap­
proach to some explicitgoal.

5. Analogy. New facts or skills can be
acquired by transforming and aug­
mentingexisting knowledge that
bears a strong similarity in some
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respect to the desired newconcept or
skill.

In computers, the first two types of
learning correspondto providing the
machine with a predesigned set of proce­
dures, or adding information to a data­
base. If the supplied information is in the
form of advice, rather than a complete
procedure, then converting advice to an
operational formis a problem in the do­
main of reasoning rather than learning.
Types 3, 4, and 5 in the above list involve
"learning on your own," or autonomous
learning, and present some of the most
challenging problems in our understand­
ing of intelligentbehavior. These types of
learning are the subjectof this chapter.

Autonomous learninglargely depends
on recognizing when a newproblem situa­
tion is sufficiently similar to a previous
one, so that either a single generalized
solution approach can be formulated, or
a previous solution can be applied. How­
ever, the recognition of similarity is a very
complex issue, often involving the percep­
tion of analogy between objects or situa­
tions. Wewill firstdiscuss some aspects
of animaland human learning, and then
representations and techniques for discov­
ering and quantifying similarity (including
methods for recognizing known patterns).
Finally, techniques for automatic machine
learning will be described. We will address
the following questions:

• How do animals and peoplelearn?
• How can we quantify the conceptof

similarity?
• How can we identify a particularsitua­

tion as being similar to or an instance
of an already-learned concept?

• How much do youhave to knowin
order to be able to learn more?

• What are the different modes of learn­
ing, and how can such ability be embed­
ded in a computer?

HUMAN AND ANIMAL LEARNING

Complicated behavior patterns can
be found in all higheranimals. When
these behavior patterns are rigid and
stereotyped, they are known as instincts.
Instincts are sometimes alterable by
experience, but only within narrow lim­
its. In higher vertebrates, especially the
mammals, behavior becomes increasingly
modifiable by learning eventhough rigid
instinctive behavior is still present

It is now recognized that inheritance
and learning are both fundamental in
determining the behavior of higherani­
mals, and the contributions of these two
elements are inextricably intertwined in
mostbehavior patterns. Inheritance can
be regarded as determining the limits
within which a particularbehavior pat­
tern can be modified, while learningde­
termines, within these limits, the precise
character of the behavior pattern. In some
cases the limits imposed by inheritance
leave little room for modification, while in
other casesthe inherited limits may be so
wide that learning plays the majorrole in
determining behavior. r

Experiments conducted by W. H.
Thorpe of Cambridge University [Thorpe
65] show someinstances of the interac­
tion between inheritance and learning. He
raised chaffinches in isolation and found
that such birds wereunableto sing a
normalchaffinch song. Thorpe then dem­
onstrated that young chaffinches raised in
isolation and permitted to hear a record­
ing of a chaffinch song when'about six
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months old would quickly learn to sing
properly. However, young chaffinches
permitted to hear recordings of songs of
otherspecies that singsimilar songsdid
not ordinarily learn to singthese other
songs. Apparently chaffinches learn to
sing only by hearing other chaffinches;
they inheritan ability to recognize and
respond only to the songs of their own
species.

Whenchaffinch songs are played
backward to the young birds, they re­
spond to these, even though to our ears
such a recording does not sound like a
chaffinch song.

Thus a chaffinch songis neither
entirely inherited or wholly learned; it is
bothinheritedand learned. Chaffinches
inherit the neural and muscular mecha­
nisms responsible for chaffinch song, they
inherit the ability to recognize chaffinch
song when theyhear it, and they inherit
severe limits on the type ofsong they can
learn. The experience ofhearing another
chaffinch sing is necessary to activate, and
perhaps somewhat adjust, their inherited
singing abilities, and in thissense their
song is learned.

Types of Animal Learning

It ispossible to classify the many typesof
animal learningaccording to the condi­
tions which appear to induce the observed
behavior modifications:

Habituation and sensitization. Habitua­
tion is the waning of a response as a
result of repeated continuous stimula­
tion not associated with anykind of
reward or reinforcement An animal
drops those responses that experi­
ence indicates are ofno value to its

goals. Sensitization is an enhance­
ment ofan organism's responsiveness
to a (typically harmful) stimulus.
Instances of both habituation and
sensitization can be found in the
simplest organisms.

Associative learning. Associating a re­
sponsewith a stimulus with which it
was not previously associated. An
example of classical conditioning, or
associative learning, is Pavlov's exper­
imentin which a dog learned to asso­
ciate the sound of a bellwith food
after repeated trials in which the bell
always rang just beforethe foodwas
provided. Another form of condi­
tionedlearning, called operant condi­
tioning, or instrumental learning, is
illustrated by the Skinner box. A
hungry rat is given the opportunity to
discover that a pelletof food will be
given every time he presseson a bar
whena signal lightis lit, but no food
will be provided when the light is off.
The rat quickly learns to press on the
bar only when the light is lit The
distinction between classical and
operant conditioning is that in classi­
cal conditioning the conditioned
stimulus (e.g., bell) is always followed
by the unconditioned stimulus (e.g.,
food), regardless of the animal's re­
sponse; in operantconditioning,
reinforcement (e.g., food) is only
provided when the animal responds
to the conditioning stimulus (e.g.,
lightis lit) in somedesiredway (e.g.,
pressing on the bar).

Trial-and-error learning. An association
is established between an arbitrary
action and the corresponding out­
come. Various actions are tried, and



132

LEARNING

future activity profits from the result­
ing reward or punishment. This type
of learningcan oftenbe classified as
a form of operant conditioning as
described above.

Latent learning. Learning that takes
place in the absence of a reward. For
example, rats that run through a
maze unrewarded will learn the maze
faster and with fewer errors when
finally rewarded (compared to other
rats that neverencountered the maze
before, but received rewards from the
start of the learning sessions).

Imprinting. The animal learns to make a
strong association with another orga­
nism or sometimes an object. The
sensitive phase in which learning is
possible lasts for a short time at a
specific point in the animal's matura­
tion, say a day or two afterbirth, and
once this phase has passed, the ani­
malcannot be imprinted withany
other object. For example, it was
found that a duckling will learn to
follow a large colored boxwith a
ticking clock inside if the box is the
firstthing it observes afterhatching.
The duckling preferred the box to its
mother!

Imitation. Behavior that is learned by
observing the actions of others.

Insight. This typeof learningis the
ability to respond correctly to a situa­
tion significantly different from any
previously encountered. The new
stimuli may be qualitatively and quan­
titatively different from previous ones.
An example would be (1) a monkey
obtaininga bunch of bananas above
his reach bymoving a box under the

bananas and standingon the box,
(assuming that he had neverseen this
procedure used before), and (2) sub­
sequently usingthe box as a tool to
obtain objectsout of his normal
reach. The firstpart of the monkey's
activities involve problem solving, the
second involves learning. We note
here the difference between learning
and problem solving: problem solving
involves obtaining a solution to a
specificproblem, while learningpro­
vides an approach to solving a class
of problems.

The evolution of anatomical complex­
ity amonganimals has paralleled a steady
advance in learningcapability from simple
habituation to associative learning, which
appears first as classical conditioning and
then as trial-and-error learning. It is as if
evolutionary progress in the powers of
behavioral adjustment consists of elabo­
rating and coordinating new types of
responsesthat are built upon and act with
the simple ones of more primitive animals.

Some remarkable examples of animal
learningare presented in Box5-1.

Piaget's Theory of Human
Intellectual Development

A study of the intellectual development of
a child can provide insight into learning
mechanisms. Basedon an extensive series
of experiments and informal observations,
Piaget [Flavell 63] has formulated a the­
ory of human intellectual development.
Piaget views the child as someone who is
tryingto make sense of the world bydis­
covering the nature of physical objects
and their interaction, and the behavior of
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III BOX 5-1 Examples of Animal Learning

Visual Learning

Pigeons have been trained to re­
spond to the presence or absence
of human images in photographs.
The pictures are so varied that sim­
plestimulus characterization seems
impossible. The results suggest re­
markable powers of conceptualiza­
tion by pigeons as to whatis human.

Monkeys have been trained
to selectthe pictures of three differ­
ent insects from amongpictures of
leaves, fruit, and branchesof similar
size and color.

Counting

Araven learned to open a box that
had the same numberof spots on its
lidas were on a key card. Eventu­
ally, the birdwas trained to liftonly
the lid that had the same number of
spots on it as the numberof objects
in front ofthe box.

Pigeons have been trainedto
eat only a specific numberof grains

out of a larger number offered. They
have also learned to eat only a spe­
cific numberN of peas dropped into
a cup (oneat a time at randomin­
tervals rangingfrom 1 to 30 sec­
onds); the pigeon neversees more
than one pea in the cup at a time,
but only eats the firstN.

Ajackdaw learned to open
blacklidson boxes until it had
secured twobaits, green lidsuntil it
had three, red lids until it had four,
and white lids until it had secured
five.

A parrot after beingshown
four, six, or seven light flashes is
able to take four, six, or seven
pieces of irregularly distributed food
out of trays. Numerous random
changes in the time sequence of
visual stimuli did not affect the
percentageof correct solutions.
After the bird learned this task, the
signal of several light flashes was
replaced by notes on a flute. The
parrot was able to transfer immedi­
atelyto these newstimuli without
further training.

Learning Visual Landmarks

The female diggerwasp can effi­
ciently and consistently locate her
nest when she returns from hunting.
It has been shownthat she locates
the nest by noting both distant and
adjacent landmarks.

When a beehive is moved to a
new location, the worker bees com­
ingout on foraging flights will pause
and circle in increasing arcs around
the new site for a few moments
before flying off. The insect learns
the relative positionsof newland­
marks in this manner, so as to be
ableto find its way back.

The goby can jump from pool
to poolat low tide withoutbeing
strandedon dry land, eventhough
theycannot see the neighboring
pools before leaping. The gobles
apparently swim over rock depres­
sionsat high tide and thereby learn
the generalfeatures and topography
of the limitedarea around the home
pool.They then use this information
in making their jumps at low tide.

people and their motivations. Thus,
Piaget views the child as developing in­
creasingly well-articulated and interrelated
representations that are used to interpret
the world. Interaction with the world is
crucial becausewhen there is sufficient
mismatch between the representations
and reality, the representations are modi­
fied or transformed. Piaget thinks of the
child's intellectual development as having

four discrete stages:'

1. Sensorimotorstage (years 0-2).
By discovery through trial-and-error

'There has been somecontroversy as to whetherthe
development occursin discontinuous jumpsor as a
single continuous process that can be partitioned
into discrete stages. Cunningham (Cunningham 721,
in an attemptto formalize intelligence, describes
these stages in terms ofdata structuresand opera­
tionson thesestructures.
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manipulation experiments, children
develop a simple cause-and-effect
understanding of how they can physi­
cally interact with their immediate
environment. In particular, theyde­
velop an ability to predict the effects
on the environment of specific motor
actionson their part; for example,
they learn to correctly judgespatial
relations, identify and pick up ob­
jects, learn that objects have perma­
nence (even when theyare no longer
visible), and learn to move about.
They also develop an ability to use
signs and facial expressions to com­
municate.

2. Symbolic-operational or preopera­
tional stage (years 2-7). Children
start to develop a symbolic under­
standing of their environment. They
develop an ability to communicate via
natural language, to read and write,
and form internal representations of
the external world; theycan now
perform mental experiments to pre­
dict whatwill happen in new situa­
tions. However, their thinking is still
dominated byvisual impressions and
direct experience; their generaliza­
tion ability is poor. For example, if
5-year-old children are shown a row
of black checkers directly oppositea
rowcontaining an equalnumber of
red checkers, they will say that there
are an equal number of each. If the
red checkersare now spaced closer
together, but none are removed, the
children say there are more black
than red checkers. Their visual com­
parison of the lengthsof the two rows
dominates the more abstract notion
of numerical equality. The ability of
preoperationalchildren to form or to

recognize classdistinctions is also
poor-they tend to categorize objects
bysingle salient features, and assume
that if two objects are alike in one
importantattribute, they must be
alike in other (or all) attributes.

3. Concrete-operational stage (years
7-11). Children acquire some of
the concepts and general principles
which govern cause-and-effect rela­
tionships in their direct interaction
with the environment. In particular,
they develop an understanding of
such conceptsas invariance, revers­
ibility, and conservation; e.g., they
can correctly judgethat a volume of
water remains constant regardless of
the shape of the container into which
it is poured. Five-year-old children
can follow a known route (e.g., get­
ting home from school), but cannot
give adequate directions to someone
else, or drawa map. Theydo not get
lost because they know that they
must tum at certain recognized loca­
tions. The 8-year-old is able to form
a conceptual pictureof the overall
route and can readily produce a
corresponding map. Until children
reach the age of 11 or 12 years, their
methodof discovery is generally
based on trial-and-error experimen­
tation. They do not formulate and
systematically evaluate alternative
hypotheses.

4. Formal-operational stage (years
11+). The young adult develops a
full ability for symbolic reasoning,
and the ability to conceive of possibil­
itiesbeyond what is present in reality.

Recently, many of the Piaget experi-
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ments have been interpreted in terms of
information-processing metaphors, seek­
ing explanations as to why children per­
form better on intellectual tasks as they
get older. Basically, the questions are (1)
do children think better (because they can
hold more information in working mem­
ory, can retrieve information faster, and
can reason faster), or (2) do they know
more (have more knowledge, enabling
them to performtasks more efficiently)?
Anderson [Anderson 85] discusses experi­
ments that indicate that both effects are
present.

One basicaspect of Piaget's theory is
that children develop an understanding of
their physical environmentby manipula­
tion of objectswithin it; he believed that
language played a much less important
role. A challenge to his work is based on
the idea that the child's performance in
some of his experiments was less a matter
of competence, than of learningthe cor­
rect meaningof certain verbal expressions

"u th "such as "same amount, or more an.
While Piaget's theory attempts to

describe the changes in, and characteris­
tics of, human learningability, it provides
very little insightinto the specific mech­
anisms that underlie such learning abil­
ity. Thus it provides very littleguidance
with respect to the question of how to
build machines capable of learning. As
Margeret Boden has written [Boden 81]:

One of the weaknessesof Piagetian
theory ... is its lack of specification of
detailedprocedural mechanisms compe­
tent to generate the behavior it describes
. . . Even Piaget's careful description of
behaviors . .. is relatedto uncomfortably
vague remarks about the progression of
stages, without it beingmade clear just

how one stage (or set of conceptual
structures) comesto followanother. . . .

SIMILARITY

Assigning names or labels to objects,
events, and situations is one of the most
importantand recurring themes in the
study of intelligent behavior. This pattern­
matching problem typically involves mea­
suring the degree of similarity between
data describing the given state of the
world, and previously stored models.
Basically, a common representationfor
the objects under consideration must be
found, and then a metric must be defined
relative to this representation quantifying
the degree ofsimilarity between any of the
objects and models.

The pattern-matching problem arises
in many situations: For example, the
< IF (condition) THEN (action)> tem­
plate is a basic method of encoding
knowledge within the computerparadigm,
and is used in a variety of applications
ranging from computer programming to
the way rules are structured in expert
systems (see Chapter 7). Determining
whenan existing situation matches the
IF condition of a template is a pattern­
matching problem. Another example of
the pattern matching problem is tryingto
findsimilarsymbolic patterns in two logi­
cal or algebraic expressions so that they
can be combinedor simplified. (The uniti­
cation problem in the predicate calculus,
discussed in Chapter 4, is an exampleof a
sophisticated matching problem.) Finally,
a significant portion of vision and per­
ception is concernedwith recognizing a
knownsensory pattern (i.e., the pattern
recognitionproblem).
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Some similarity problems can require
that we find an exactmatch, while others
are satisfied with finding an approximate
match. This critical distinction separates
the methods based on the symbolic ap­
proaches typically employed in the cog­
nitiveareas of AI, from those based on
measurement(feature) spaces and statis­
tical decision theory that are often em­
ployed in the perceptual areas ofAI. In
both cases, the objects beingcompared
are usually first transformed into some
canonical (standard) form to allow the
computational procedures to deal with a
practical number of primitive elements
and relationships.

Note that there is the questionof
level of generality to be used in similarity
evaluation, even after conversion to a
canonicalform. For example, ifwe are
comparingtwo concepts, one ofwhich
contains the trigonometric term sine and
the other cosine, then we haveto move
to the more general term trigonometric
function in order to obtain a match.
Knowing the level of generality to use
in a matchingoperation is oftencru-
cial in performing similarity analysis.

Similarity Based on Exact Match

The exact match problem usually arises in
a precise world, such as the game world;
e.g., whenwe try to match a chessboard
configuration againsta stored set of con­
figurations. Sometimes partial exact
matches are sufficient, while at other
times a match of the entire description is
required.

A representation oftenused for exact
matching is the graph with labeledarcs

FIGURE 5-1
Graph Representation and the PartialMatch
Problem.

The problem is to find instances of the subgraph in the
graph (e.g., 9,4,8 corresponds to a.b,c),

and nodes, as shown in Fig. 5-1. Mathe­
matically, in the complete matchproblem
one tries to find a mapping (isomorphism)
between two graphs so that when a pair of
connected nodes in one graph maps to a
pair in the other graph, the edge connect­
ing the firstpair will map to the edge
connecting the second pair. The partial
match problemof finding isomorphisms
between a graph and a subgraph is com­
putationally more difficult becausethere
are many more combinations to be tested.

Another common matching problem
involves strings of symbols, as shown
below:

Find the string "SED" in the string:

"A REPRESENTATION OFTEN USED
FOR MATCHING"

As in the graph case, the complete
match of two strings is less difficult than
trying to match a substringagainsta
string.
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Similarity Basedon Approximate
Match

Approximate match problems arise in
attempting to dealwith the physical world.
For example, in visual perception the
sensed objectcan differ from the refer­
enceobjectdue to noisymeasurements,
i.e., measurements degraded due to the
effects of perspective, illumination, etc.
Because many of these differences are at
too Iowa level of resolution to be mean­
ingful, or are irrelevant to our ultimate
purpose, we must define a metric for
goodness-of-match, rather than expecting
to find an exact match. Using this ap­
proach, two objects are given the same
label if their match score is high enough.
In Appendix 9-1 wedescribe matching of
two shapes usinga "rubber sheet" repre­
sentation. We imagine one of the figures
to be drawn on a transparentrubber sheet
andsuperimposed on the other; we match
the figures bystretching the rubber sheet
as required. The measure of goodness of
match is based both on the quality of
match between individual components
of the objects beingcompared, and the
required stretchingof the rubber sheet
to attain a match between components
of the figures.

LEARNING

Unsupervised (unmonitored and undi­
rected) learning is really a paradox: How
can the learner determine progress if he
doesnot know whathe is supposed to
learnfrom his environment? This situa­
tion presentssevere problems in attempt­
ingto devise programs that can learn. If
the designerintroduces very specific cri-

teria for success, then the learning pro­
gram is given too much focus; in fact, an
explicit statement of how to evaluate suc­
cess can provide the machine with just
those concepts that were supposed to be
learned. Unfortunately, ifcriteriafor suc­
cess are not provided, then learning is
minimal.

We take the view that a system learns
to dealwith its environment by instantiat­
ing given models or bydevising newones.
It will be convenient to divide autonomous
learningtechniques into the following
model-based approaches:

• Parameter learning. The learner has
been supplied with one or more models
of the world, eachwith parametersof
shape, size, etc., and it is the purposeof
the learner to select an appropriate
modelfrom the given set, and to derive
the correct parameters for the chosen
model. A model can be as simpleas the
description of a straightline, and in this
case the parameters can be the slope of
the line and its distance from some
given point in space. Another model
couldbe a decision making device with
weighted inputs, and the parameters to
be found are the weights.

• Description learning. Here the learner
has been given a vocabulary of names
and relationships, and from these he
must create a description which forms
the desired model.

• Concept learning. This is the most
difficult form of learningbecause the
available primitives are no longerade­
quate. New vocabulary terms must be
invented that allow efficient representa­
tion ofthe relevant concepts.
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Two basic problems in autonomous
learning are (I) the credit assignment
problem: how to reward or punish each
system component that contributes to
an end result, and (2) local evaluation
of progress: how to tell when a change
is actually progress toward the desired
end goal.

Model Instantiation:
Parameter Learning

Almost all AI systems with learning ability
are limited to learning within a given
model or representation. That is, current
AI systems do not significantly modify
their basic vocabulary (representations).
Typicallv, learning consists of adjusting
the parameters of the given model based
on statistical techniques, or inserting and
deleting connections in a given graphical
representation.

Parameter Learning Using an Implicit
Model. In the implicit form of parameter
learning, the model is not given directly,
and may, in fact, never be known. Tho
examples of this type of learning are de­
scribed below.

The Threshold Network. Early computer
scientists thought of the brain as a loosely
organized, randomly interconnected net­
work of relatively simple devices. They felt
that many simple elements, suitably con­
nected, could yield interesting complex
behavior, and could form a self-organizing
system. The system could learn because
the random connections were designed to
become selectively strengthened or weak­
ened as the system interacted with its
environment. A form of implicit model

would thus be formed. In the 1960s, the
threshold device wasstudied intensively as
the basic element in such a self-organizing
system. The name "perceptron" was often
used to designate the basic device in
which weighted inputs are summed and
compared to a threshold. In a typical
implementation for visual pattern recogni­
tion, a two-dimensional retina is set up so
that local regions of the retina can be
analyzed by feature detectors, as shown in
Fig. 5-2.

Sets or vectors of k retinal values,
x= [X I ,X21• • .xJ, are passed to N feature
detectors, each of which determines a
score !;(x) representing the degree of
presence or absence of some specific
feature or object in the image. These
feature scores"are then combined in a
weighted vote:

SUM =

WI • f; + w2• f; +W3 • ~ + . .. w/ (N'

SUM is compared to a threshold, T,
and if SUM is greater than T, we say that
the system responds positively. Wewant
the system to respond positively for one
class of objects and negatively for objects
not in this class, e.g., positively when it is
presented with the character "B," and
negatively when presented with "A."

,An algorithm for adjustment of the
weights (i.e., the training) of such a system
is described in Appendix 5-1. Although
such training capability is attractive, this
type of device has serious innate limita­
tions; if it must make a global decision
about a pattern by examining local fea­
tures, then there are certain attributes

'The N feature detectors are typicallythreshold
devices that produce an f,(x) equal to +1 if the
feature is present , or a -I if it is absent.
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w1*f1
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N fN
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FIGURE 5..2 A Threshold Device Used as a Pattern Classifier

Patterns are assigned to one oftwo categories, labeled +1 or -1.

of the pattern that it cannotdeduce.
For example, connectivity ofpatterns as
shown in the examples of Fig. 5-3cannot
be determined by local measurements (see
Minsky [Minsky 67]). Intuitively, one can
see the difficulty: different pieces ofeach
patternare critical for keeping the pattern
connected, and there is no single weight­
ingarrangement that can capturethe
connectivity concept.

There has recently been renewed
interest in threshold networks because of
the development of new techniques for
obtainingthe network parameters (learn­
ing algorithms). The techniques are based
on "simulated annealing," a statistical
mechanics methodfor solving complex
optimization problems. (Thename comes
from the fact that the procedure is analo­
gous to the use of successively reduced

•••• •••• •••• • •• •• •• • • • • •• ••••• •••• •••• • • • •• • • • • ••••• •••• •••• •••• • •
Connected Not Not Connected Not

connected connected connected

FIGURE 5-3
The Connectedness Problem Cannotbe Solved by a Single Threshold Device.
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temperature stages in the annealing of
metals.) These techniques can be used to
find the weights in a multilevel threshold
networkby considering the weight deter­
mination problem to be a minimization
problem in manyvariables. This approach
avoids being trapped in local minima by
the use of two mechanisms: (1) the adjust­
ments are made randomly, and (2) an
adjustable "temperature"parameter, T,
controls the probability of acceptance of
any change in a variable.

To minimize a function E(xi) of the
many variables, (Xi), the minimum E is
found by starting with a randomset of Xi

and introducingsmall random perturba­
tions into these Xi. If a perturbation de­
creases E, it is accepted. If a perturbation
increasesE it is accepted with a probabil­
ity that is a function of the change in E
and the parameter T: the probability de­
creases with the size of the change in E
and increaseswith increasing T. By begin­
ning witha high T there is a high proba­
bility of acceptance of a change in Xi. T is
decreasedas the processproceeds, thus
decreasing the probability of the accept­
ance of a bad perturbation.The random
acceptance of "bad" perturbationsas a
function of the changein E and T is the
mechanism that drives the system out of
local minima.

Using this approachSejnowski
[Sejnowski 85] was able to train a multi­
layer network to transform natural lan­
guage text in English to the phonetic
code for the sounds.The trainingset was
a large sampleof natural language text
and the corresponding phoneticcodes
prepared,by linguists. "Using the training
set,.the networkweights were adjusted
using simulated annealing so that the
phonetic codes developed by the network

agreed with the codes in the trainingset
prepared by the linguists. The spoken
form of the text was obtainedby feeding
the phonetic code developed by the
threshold network into a sound synthe­
sizer. It is rather dramaticto hear the
effects of the training process: the output
of the network is first a babbleof sounds,
and then becomes more and more
human-sounding as the trainingprocess
proceeds.Aftertraining, the network is
able to synthesize the soundsof text not
in the trainingset.

It should be recognized, however,
that adjustment of weights to correctly
recognize the members of a trainingset is
not the critical issue in building a learning
system. Whatwe require is that the cor­
respondingrecognition rule generalizes
distinctions represented by the training
set so as to be applicable to new members
of the class. Since the weight-adjustment
learning algorithms do not addressthis
question, even successful generalization
on a few selectedproblems provides very
little assurancethat this type of approach
can be successful on a wide range of real
problems.

The "Bucket Brigade"Production
System. Holland [Holland 83] intro­
duced a learning mechanism (the bucket
brigade algorithm or BBA)which offers
an interestingapproach to the problem
of howto credit portions of the system
that are contributingto a solution, the
credit assignmentproblem. He uses
the production rule representation, to
be further discussed in Chapter 7, of
the form, IF < condition> THEN
<action>.

In a production system, all the pro­
ductionsinteract with a global list (GL), or
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FIGURE 5-4
The BucketBrigade Approach to Parameter
Learning.
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Parameter LearningUsingan Explicit
Model. In parameterlearning for an
explicit model, a pattern or situation is
expressed as a list of attribute measure­
ments corresponding to the arguments of
the model. The model itselfalso contains
free parameters which may be adjustedto
improve performance. Learningconsists
of changingthe freeparameters (which

Ifa production receives more from its
consumers than it pays out to its suppli­
ers, then it has made a profitand its capi­
tal (utility parameter) increases. Certain
actionsproducepayoffs fromthe external
environment, and allproductions active at
such a time share this payoff. The profit­
ability of a production thus depends on its
being part of a chainof transactions that
ultimately obtainsa payoff from the envi­
ronment, and such that this payoff ex­
ceeds the incurredexpenses. In this way,
a productioncan receive due credit even
though it is far removed from the success­
ful action to which it contributed.

working storage,which stores information
representing the current state of the
world; whenthe < condition> part of a
production is satisfied, the < action>
portionof the rule is executed. Typically,
the internal action taken is to alter or add
to the information stored in GL; there
might also be someexternalaction (such
as sending a message) which does not
concern us here. Pure production systems
are completely data driven, and thus do
not require an explicit control or sequenc­
ing mechanism. The only control function
required of the system is to determine
which productions are satisfied by the
information stored in GL, and to carry out
the actions of these satisfied productions.
A collection of rules of this type can be
considered to be an implicit modelof the
domain to which these rules apply.

In the BBA approach, whenthe
< condition> portion of a productionis
satisfied it does not automatically activate
the < action> portion. Rather, the pro­
duction is allowed to make a bid based on
an associated utility parameter(which
measures its past effectiveness and its
current relevance); only the highestbid­
dingproductions are allowed to fire. As
shown in Fig. 5-4, the BBA treats each
production rule as a middleman in an
economic system, and its utility parameter
is a measure of its ability to makea profit.
Whenever a production fires, it makesa
payment by giving part of the value of its
utility parameter to its suppliers. (The
suppliers of a production P are those
other productions that posted data on GL
that allowed P's condition portion to be
satisfied.) In a similar way, a production
receives a payment from its consumers
when it helps them satisfy the condition
part of their rules.
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can be measurement weights as in the
case of an implicit model) basedon ob­
served performance. An example of learn­
ing usingan explicit model is an adaptive
control system. Here, the system, e.g., an
aircraft, is modeled using equations that
describe its dynamic response. Algorithms
are provided that adjustthe parameters of
the dynamic model, basedon the mea­
sured in-flight performance of the aircraft.

One of the earliest and mosteffective
parameter learningprograms for an ex­
plicitmodel is Samuel's checker-playing
program [Samuel 67], described in
Box 5-2.

Mostgame-playing programs (includ­
ing Samuel's) use a gametree representa-

tion in which branches at alternate levels
of the tree representsuccessive moves by
the player and his opponent, and the
nodes represent the resulting game(or
board) configuration. Typically, the com­
plete tree is too large to be explicitly
represented or evaluated. Instead, a value
is assigned to nodes a few levels beyond
the current position using an evaluation
function that guides the program in the
selection of desirable moves to be made.
This evaluation function is not guaranteed
to provide a correct rankingof potential
moves; it usually takes into accountthe
number, nature, and location of the
pieces, and other attributes that the de­
signerfeels characterize the position.

• BOX 5-2 Checkers: Parameter Learning Using a Problem-Specific Model

Samuel's checker-playing program is
a successful example ofparameter
learningusing a problem-specific
model; this programis able to beat
all but a few of the best checker
players in the world. Agametree
representation is used in which each
node correspondsto the board con­
figuration after a possible move, and
the move to be made is determined
afterassigning values to the nodes
and choosinga legal move leading
to the node with the highestscore.
Sincea full exploration of all possi­
ble moves requires the evaluation of
about 1040 moves, the approach is to
evaluate only a few moves by apply­
inga heuristicevaluation function
that assigns scores to the nodes
beingconsidered.To improve the
performance of the checker player,

one can allow it to search farther
into the gametree, or one can
improve the heuristic evaluation
function to obtain a more accu­
rate estimate of the valueof each
position.

Samuel improved the look­
ahead capability of his system by
saving every board position encoun­
tered during play, along with its
mostextensive evaluation. Totake
up little computer storage space,
and to retrieve the results rapidly,
requiredthe use of clever indexing
techniques and taking advantage of
boardsymmetries. When a previ­
ously considered board position is
encountered in a later game its
evaluation score is retrieved from
memory rather than recomputed.
Improved look-ahead capability

comes about as follows: Ifwelook
ahead only three levels to a board
position P, but P has a previously
stored evaluation value that repre­
sents a look-ahead ofthree levels,
then wehave performed the equiva­
lent of a look-ahead ofsixlevels.

The evaluation function de­
pendson (1) measures ofvarious
aspects of the gamesituation, such
as "mobility," (2) the function to be
usedto combine these measures,
and finally (3) the specific weight­
ingsthat shouldbe usedfor each
measure in the evaluation function.
The designer supplies the measure­
mentalgorithms and the form of
the function to be used, while the
weightings are obtained bya "learn­
ing"procedure. The system learns
to play better by adjusting weights
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The problems in designing a good
evaluation function are (1) the choice of
the components of the evaluation func­
tion, (2) the method of combining these
components into a composite evaluation
function, and (3) how to modify the com­
ponents and the composite functions as
experience is gained in playingthe game.
(The credit assignment problem arises
here: how to assign credit or blame due
to something that happened early in the
game, since the good or bad results do
not show up until much later.)

The third factor is the one that typi­
callyconstitutes the machine learning to
play the game. Note, however, that this
learning is cruciallydependent on the

BOX 5-2 (continued)

cleverness of the human designer in solv­
ing the first two problems.

Model Construction:
Description Models

Programs capable of forming their own
description models take an initial set of
data as their input, and form a theory or
a set of rival theories with respect to the
given data. The theories are descriptions
or transformations that satisfythe initial
data . The program then attempts to gen­
eralize these theories to cover additional
data. This typically results in a number of
admissible theories. Finally, the program
chooses the strongest theory from these,

which determine how much each
parametercontributes to the evalua­
tion function. Samuel investigated
two forms of the evaluation function:

1. A function ofthe form
MOVE_VALUE = SUM(w/f;),
where f, is the numerical value
of the zu, board feature, and WI

is the corresponding weight
assigned to that feature. Since
each feature independently
contributes to the overall score,
the weight can be considered as
a measure of the importance of
that feature. Thus, features
with low weights can be dis­
carded.

2. An evaluation function in which
features were grouped together
to obtaina scorebyusing a

look-up table that says If board
feature A has a value ofX, and
board feature B has a value of
y, . . . , then that group of
features has a score ofZ. The
values assigned to the grouped
features in the look-uptables
correspond to the weights in
the first evaluation function;
theseare modified by a learn­
ingprocedure.
The detailed record ofgames

played byexperts, book games, were
used fortraining the system. the
checker program takingthe part of
oneofthe experts. If the program
makes the move that the expert
made fora particulargame situation,
the evaluation function was assumed
to be correct. since it caused the
correct path in the gametree to be

taken. If the wrong move was made,
thenthe evaluation function was
modified. Various ad hoc weight
modification schemes were incor­
porated into the program. Samuel
found that the secondevaluation
function was far more effective than
the first.

The approach of relating spe­
cific boardpositions and corres­
ponding expert responses has an
important advantage. Reward and
punishment training (learning)
procedures can be based on the
local situation, rather than on win­
ning or losingthe game(because
the experthas a global view in mind
when making his move). This local
indication of ultimate success or
failure is not usually available in
non-game playing situations.

/
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i.e., one that best explains the data en­
countered to date.

Learning analogical relationships.
An early investigation of this class of
problemsbyT.G. Evans [Evans 68] still
stands as a remarkably insightful work on

analogy and the learning process (see Box
5-3). Evans dealt with the machine solu­
tion ofso-called geometric-analogy intelli­
gence test questions. Each member of this
classof problems consists of a set of line
drawings labeled Figures A, B, C, c, C2,

BOX 5-3 Solving Geometric Analogy Problems

In 1963, Tom Evans [Evans 68)
devised a computer program,
ANALOGY, which couldsuccess­
fully answer questionsof a type
found on IQ tests: Figure A is to
figure B, as figure C is to which
of the following figures? The op­
eration of this geometricanalogy
program can best be illustrated by
a toy example. Suppose we have the
patterns shown in Fig. 5-5. In de­
scribing figure A, the programwould
first assign names to each pattern.
Thus,

FIGURE 5-5
Geometric Analogy Example.

(AI = +), (A2 = - ),
and (A3 = 0).

Similarly, in figureB,

(Bl = -), (B2 = + ),

and {B3 = 0).

+

o

A

+

o

B

In figure A, analysis would reveal
that A2 is to the right of AI, A3 is
below AI, and A3 is below A2.
Analysis of figure B would show that
B2 is to the right of BI, 83 is below
BI, and B3 is below B2.

Comparing the descriptions of
the two figures, the programwould
find that Al = B2, that A2 = BI,
and A3 = B3. From this it would
deduce that the transformation rule
is: interchange Al and A2 to obtain
figure B from figure A.

Supposewe havethe patterns
shown in Fig. 5-6.

We wantthe programto answer
the question: figure A is to figure B
as figure C is to which figure (CI,
C2, or C3)? Again, the programhas
to find the correspondences between
subfigures in figure C and the subfi­
gures in figures CI, C2, and C3.

After determining these corre­
spondences, the programcan apply
the transformation found between
figures A and B, and will findthat
both figures C2 and C3 are possible
answers. It finally determines that
figure C3 is not acceptable because
the Z pattern has also been trans­
formed (from bottom to top). Thus,
it is sometimes necessaryto specify

VVlrxvlfYXlrzl
~L:J~~

c

FIGURE 5-6
Analogy Test Patterns.

which things remain constant, as
well as which thingschange, in
specifying the transformation rule.
For example, in the transformation
rule relating figures A and B, it is
necessary to assert that the bottom
pattern does not changeits location
with respect to the two other pat­
terns. Given this extended transfor­
mation rule, figure C2 is selectedas
the desired solution.

ANALOGY usesa fixed model
provided bythe designer(the set of
transformation operators), and finds,
by exhaustive search, the proper
transformation parameters for the
various pairs of figures . The ap­
proach dependson having a small
numberof patterns in each figure,
otherwise the combinatorial growth
of the pattern relationship lists
would become excessive.
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· . . The task to be performed can be
described by the question, Figure A is
related to Figure B, as Figure Cis related
to which of the following figures? To solve
the problem the program mustfind trans­
formations that convertFigure A into
FigureB and also convertFigure C into
one of the answerfigures. The sequence
of steps in the solution is as follows:

• Overlapping subfigures mustbe identi­
fied in line drawings, e.g., two overlap­
pingcircles must be recognized as such.

• The relationships between the sub­
figures in a mainfigure mustbe deter­
mined, e.g., the dot is inside the square.

• The transformations between subfigures
in going from FigureA to Figure B
mustbe found, e.g., the triangle in
FigureA corresponds to the small
square in Figure B, or the dot inside the
square in FigureA is outside the square
in Figure B.

• The subfigures in Figure C that are
analogous to the subfigures in Figure A
must be recognized.

• The program must analyze whatfigure
results when the transformations are
applied to FigureC.

• The transformed FigureC must then be
compared to the candidate figures.

A description of Evans' ANALOGY
program is given in Box5-3.

Learning descriptions. Astudy by
Winston [Winston 75] deals with develop­
ing descriptions of classes of blocks-world
objects (seeBox 5-4). Given a set of ob­
jects identified as to class, known as a
trainingset, the program is to produce
(learn) a description of the class. The
program is given a set ofdescription prim­
itives and develops a description of the

object class as trainingobjects are pre­
sented one at a time. The programnotes
the commonalities between positive in­
stances, and differences between negative
instancesand the current description.
Each example leads to a modified descrip­
tion that ultimately characterizes that
class of objects. Whena trainingexample
is presented that is incompatible with the
present description, the program back­
tracks to a previous description and at­
tempts to modify it so as to be compatible
with the newinstance.

The final description producedby
Winston's system is dependenton the
vocabulary provided and on the sequence
of examples shown. In addition, the pro­
gram must assume that the class labeling
of the examples is correct, since the modi­
fication of the description depends on the
classassignments given. Furthermore,
some of the examples that are not of the
classmust differ onlyto a small extent
fromthose that are in the class; other­
wise, the programwill not be able to
discover the fine distinctions between
membership and nonmembership in the
class. (For example, in learning whatan
"arch" is, the program is given the exam­
ple of a non-arch whose support posts
touch, but is otherwise a valid arch. This
allows the program to detect this impor­
tant difference between a non-arch and an
arch.)

Learning generalizations of descrip­
tionsand procedures. It is possibleto
consider the problem ofgeneralizing a
description (or a procedure) as a search
problem in which the space of all possible
descriptions is examined to find (leam)
the most general description that satisfies
a set of training examples. This approach
is used in LEX [Mitchell 83], a program
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I] BOX 5-4 Learning Descriptions Based on (Given) Descriptive Primitives

In 1970, Patrick Winston [Winston
75) devised a learning program
which was able to produce descrip­
tions of classes of simple block
constructions presented to the
program in the form of line draw­
ings. (A specializedsubprogram
converted these line drawings into
a semantic network description.)

The semantic net in Fig. 5-7
indicates that an arch, such as is
shown in the figure, consists of
three pieces, a, b, and c. Training

o

o
FIGURE 5-8
Block Structures That Do Not Form an "Arch."

o
a

b c
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FIGURE 5-7
Semantic Net for the Concept
"Arch."

instances cause the various links to
be inserted, e.g., that piece a has
the properly of being supported
by pieces band c; pieces band c
must not abut; and piece a mustbe
lyingdown while pieces b and care
standing.

The must not abut description
is deduced by the systemonlyafter
showingit a non-arch example
consisting of a set of blocks in which
the supports do abut, as shown in
Fig. 5-8. An implicit requirementis
that examples of a non-arch should
not have characteristics that differ
from the existingarches and are not
important in definingthe arch class.
If the top block in an exampleis
curved, and the supports touch,
then the program will not know
whichof the two deviationsis caus­
ing the blocks to be an instanceof a
non-arch. Thus, each non-arch used

for training must be a near-miss to
an actualarch.

If examples are shown to the
system in which the top piece is
always a rectangularsolid, then the
program will assumethat this is a
requirementfor an arch. Only after
the system is shownan arch consist­
ing of a triangular top piecewill the
description be broadenedto include
both rectangular and triangular top
pieces.

An approach such as Winston's
that tries to finda description that
is consistentwith all of the training
instanceswill be strongly affected by
erroneous data, i.e., data in which
a false-positive or false-negative
instancehas been given. A false­
positive causes the description to be
moregeneral than it shouldbe, and
a false-negative causesthe descrip­
tion to be overspecialized.
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that learns "rules of thumb," known more
formally as heuristics, forsolving prob­
lems in integral calculus. Basically, a rule
indicates that ifa certain form of mathe­
matical expression is found, then a spe­
cific transformation should be applied to
the expression. Sometimes these proce­
dures involve looking up the integration
form in a table, while at other times they
may involve carrying out operations on
the expression to convert it to a more
manageable form. The program begins
with about 50 operators (procedures) for
solving problems in the integral calculus,
and it learns a set of successively more
general heuristics which constitute a strat­
egy for usingthese operators (Box 5-5).

The generalization language made
available to LEX is crucial since it deter­
mines the range of concepts that LEX can
describe, and thus learn. For example, the
designer has provided a generalization
hierarchy that asserts that sin and cos are
specific instances of a trigonometric func­
tion, and that a trigonometric function is a
specific instance of a transcendental func­
tion. LEX usesfour modules:

1. The problem solver utilizes what­
everoperatorsand heuristics are
currently available to solve a given
practiceproblem.

2. The critic analyzes the solution tree
generatedbythe problem solver to
produce a set ofpositive and negative
training instances from which heuris­
tics will be inferred. Positive in­
stancescorrespond to steps along the
best solution path, and negative in­
stances correspond to steps leading
away from this solution path.

3. The generalizer proposes and refines
heuristics to produce more effective

problem solving behavior on subse­
quent problems. It formulates heuris­
tics bygeneralizing from the training
instances provided by the critic.

4. The problem generator generates
practice problems that will be inform­
ative (i.e., they will lead to training
data useful forproposing and refining
heuristics), yeteasy enough to be
solved using existing heuristics.

These modules work together to propose
and incrementally refine heuristics from
traininginstances collected overseveral
propose-solve-criticize-generalize learning
cycles.

Unlike mostsystems that retain only
a singledescription at any given time,
LEX describes each partially learned
heuristic using a representation (called
version space) that provides a way of
characterizing all currently plausible de­
scriptions (versions) ofthe heuristic. The
basic ordering relationship used in the
version space representation of rules is
that of more-specific-than. For example,
the precondition (large red circle) is more
specific than (large? circle), which is more
specific than (? ? circle), where? indicates
that this condition need not be satisfied.
More formally stated, a rule G1 is more­
specific-than a rule G2, if and only if the
preconditions of G1 match a proper subset
of the instances that Gz matches, and
provided that the two heuristics make the
same recommendation.

LEX stores in version space only the
maximally specific and maximally general
descriptions that satisfy the trainingdata.
Thus the more-specific-than relation (pro­
vided as part of LEX's originally given,
hierarchically ordered vocabulary) parti­
ally orders the spaceof possible heuris-
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-
tics, provides the basis for their efficient
representation, and a prescription for
their generalization.

Concept Learning

In concept learning, the learning system
mustdevelop appropriate concepts (de­
scriptive primitives) for dealing with its
environment. Because of itsdifficulty,
little progress of a general nature has

been made in this problem area. One of
the few significant efforts that both ad­
dresses the issue of conceptlearning, and
has achieved somecomputational success,
is AM. The AM program [Lenat 77] runs
experiments in numbertheory and ana­
lyzes the results to develop new concepts
or theorems in the subject.

The program begins with 115 incom­
pletedatastructures, each corresponding
to an elementary set-theoretic concept

Il BOX 5-5 Version Space: A Representation for Descriptions
B

The LEX program [Mitchell 83b)
dealswiththe problem of learning
rules of thumb to solvecalculus
integrationproblems. Each heuris­
tic rulesuggests an integration pro­
cedure (operator) to apply when
the given expression satisfies a cor­
responding functional form. LEX
uses a representationcalledversion
space to keep track of the rules that
it is learning. Stored information is
kept to a reasonable size by includ­
ing only the mostspecific and the
most general descriptions of the
rules that satisfy the trainingexam­
ples.

The programis given a set of
operators for solving calculus prob­
lems.A typical operator,

OP1: INTEGRAL (u dv) -->
uv- INTEGRAL (v du),

indicates howthe INTEGRAL of an
expression can be solved, and often
the solution is recursive, i.e., it
requiressolution of an additional
INTEGRAL.

An example ofa version space
rule isshown in Fig. 5-9(1). The
mostspecific heuristic is marked S
and indicates that if a specific ex­
pression, {3xcos(x) dx}, is encoun­
tered, then operator 1 shouldbe
used, with the variables u and dvin
this operatorreplaced bythe specific
values shown.

The mostgeneral rule, denoted
by G, indicates the substitutions that
should be madein operator 1 for the
moregeneralexpressions fl(x) and
f2(x). Thus while many additional
heuristics are implied, Sand G
completely delimit the rangeof
alternatives in a predefined general­
to-specific ordering.

Assume that a new training
instance involving {INTEGRAL 3x
sin(x)} is encountered, and the
program discovers the solution

INTEGRAL 3xsin(x) dx -->
Apply OP1 with u= 3xand
dv=sin(x)dx.

Given the generalization hierar-

chysupplied bythe designer,

sin(x),cos(x) --> trig(x) --> transc(x)-->f(x)

kx--> monorntrj-« poly(x) -->f(x),

LEX determines that the most
specific version of the heuristic of
Fig.5-9(1) could be generalized to
include both cos(x) and sin(x), by
usingtrig(x) in placeofcos(x). This
generalization is shown in the re­
vised version space representation of
the heuristic rule, Fig. 5-9(2).

However, an example in the
form {INTEGRAL sin(x) 3x}pro­
vides evidence that the mostgeneral
form of the heuristicrule,as speci­
fiedin Fig. 5-9(1), can fail unless it is
further restricted. Specifically, the
original generalization proposed is:
Apply OP1 with u-fl(x) and
dv=f2(x) dx, but the sin(x)3xtrain­
ing example shows that this assign­
ment of u and v can result in a more
complicated expression that OP1
cannot integrate, and that an inter­
changeof fl(x) and f2(x) may be
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(such as union or equality). Each data
structure has 25 different facets or slots
such as examples, definitions, generaliza­
tions, analogies, interestingness, etc., to
be filled out. Very interesting slots can be
granted full concept module status. This is
the space that AM begins to explore
guided bya large body of heuristic rules.

AM operates underthe guidance of
250 heuristic rules which indirectly con­
trol the system throughan agenda mecha-

BOX 5-5 (continued)

nism, a global list of tasks for the system
to perform, togetherwith reasons why
each task is desirable. A task directive
might cause AM to define a new concept,
or to explore somefacet of an existing
concept, or to examine some empirical
data for regularities, etc.,The program
selects from the agenda that task that has
the best supporting reasons, and then
executes it. The heuristic rules suggest
which facet ofwhich concept to enlarge

(1) VERSION SPACE REPRESENTATION OF A HEURISTIC

S: INTEGRAL 3x cos(x) dx-Apply OP1 with u=3x and dv= cos(x) dx
G: INTEGRAL f1(x) f2(x) dx-Apply OP1 with u=f1(x) and dv=f2(x) dx

(2) REVISED VERSION SPACE REPRESENTATION OF THE HEURISTIC

S: INTEGRAL 3x trig(x)-Apply OP1 with u=3x and dv=trig(x) dx
G: g1: INTEGRAL poly(x) f2(x) dx-Apply OP1 with u=poly(x), and dv=f2(x) dx

g2: INTEGRAL transc(x) f1(x) dx-r-Applv OP1 with u=f1(x), and dv=transc(x) dx

GENERALIZATION HIERARCHY SUPPLIED BY DESIGNER

sin(x).cos(x) --+ trig(x)- transc(x) - f(x)
kx-monom(x)--+poly(x) -f(x) ,

f iGURE 5-9
Version Space Representations ofVarious Forms of a Heuristic Rule forSymbolic Integration.

necessary depending on the specific
functional form of nand f2. The
description ofthe heuristic in ver­
sionspace is revised to take this new
information into accountby break­
ingthe most general form of the
heuristic intotwo statements. In
addition,thegeneralization hierarchy

is used to replace n(x) in one gener­
alizationby its more specific name
polynomial, and in the other expres­
sionto replace f2(x) by its more
specific name transc(x). The revised
form of the heuristic of Fig. 5-9(1),
afterthe two trainingexamples just
discussed, is shown in Fig. 5-9(2).

We note that the learning
process described here always in­
volves the narrowing of a descrip­
tion represented in version space.
Thisnarrowing occurs in discrete
steps, based on the predefined
hierarchically ordered vocabulary for
the givenproblemdomain.
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next, and how and when to create new
concepts. Lenat provided the system with
a specific algorithm for rank-ordering
concepts in terms of how interesting they
are. The primary goal of AM is to maxi­
mize the interestingness level of the con­
cept space it is enlarging.

Many heuristics used in AM embody
the beliefthat mathematics is an empirical
inquiry-the approachto discovery is to
perform experiments, observe the results,
gather statistically significant amounts of
data, induce from that data some new
conjecturesor new concepts worth isolat­
ing, and then repeat this whole process
again. An exampleof a heuristic dealing
with this type of experimentation is After
trying in vain to findsome non-examples
ofX, if many examplesofX exist, con­
sider the conjecture that X is universal,
always-true. Consider specializing X.

Another large set of heuristics deals
with focus ofattention: whenshould AM
keep on the same track, and when not. A
final set of rules deal with assigning inter­
estingness scores based on symmetry,
coincidence, appropriateness, usefulness,
etc., For example, Concept C is interest­
ing if C is closelyrelated to the very inter­
esting concept X.

Experimental evidence indicates that
AM's heuristics are powerful enough to
take it a few levels away from the kind of
knowledge it began with, but onlya few
levels. As evaluated byLenat, of the 200
new concepts AM defined, about 130 were
acceptableand about 25 weresignificant;
60 to 70 of the concepts werevery poor.

Although AM is described as "explor­
ing the space of mathematical concepts,"
in essence AM was an automatic program­
ming system, whose primitive actions

producedmodifications to pieces of LISP
code, which represent the characteristic
functions ofvarious mathematical con­
cepts. For example, given a LISPprogram
that detectswhen two lists are equal, it is
possible to make a "mutation" in the code
that now causes it to compare the length
of two lists, and another mutation might
cause it to test whether the first items on
two listsare the same. Thus, becausesuch
mutations often result in meaningful
mathematical concepts, AM was able to
exploitthe natural tie between LISP and
mathematics, and was benefiting from the
density ofworthwhile mathematical con-

. cepts embedded in LISP. The main limita­
tion of AM was its inability to synthesize
effective new heuristics based on the new
concepts it discovered. It first appeared
that the samemachinery used to discover
new mathematical conceptscould also be
used to discover new heuristics, but this
was not the case. The reason is that the
deep relationship between LISP and
mathematics does not existbetween LISP
and heuristics. When AM applied its mu­
tation operators to viable and useful heu­
ristics, the almost inevitable resultwas
useless new heuristic rules.

In evaluating the accomplishments of
AM, there is also the question of the
extent to which the designer implicitly
suppliedthe limited set of mathematical
concepts that were (or couldbe)gener­
ated by the system, bysupplying the par..
ticular initial set of heuristics, frame slots,
and the definitions and procedures that
determine how these slotsget instanti­
ated. An extensive criticism of AM, and a
later relatedprogram called EURISKO,
was offered by Richie and Hanna [Richie
84]. In their response [Lenat 84], Lenat
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and Brown comparethe AM/EURISI{O
approach to that of the perceptron, a
device described earlier in this chapter:

The paradigm underlying AM and
EURISKO may be thoughtof as the new
generation of perceptrons, perceptrons
based on collections or societies ofevolv­
ing, self-organizing, symbolic knowledge
structures. In classical perceptrons, all
knowledge had to be encoded as topolog­
ical networks of linked neurons, with
weights on the links. The representation
scheme used in EURISKO provides much
more powerful linkages, taking the form
ofheuristics about concepts, including
heuristics for how to use and evolve
heuristics. Bothtypes ofperceptrons rely
on the law of large numbers, on a kindof
local-global property ofachieving ade­
quate performance through the interac­
tions of many relatively simple parts.

DISCUSSION

There are several key issues that have
arisen in our exposition of the learning
process:

Representation. As is the casein
other areas of AI, having an appropriate
representation is crucial for learning-it is
often necessary to be able to modify an
existing representation, or create a new
one, in dealingwith a given problem
domain. However, the learning programs
reviewed had relatively fixed representa­
tions, provided bythe designer, which
boundedthe learningprocess. For exam­
ple, the problem of telling when a situa­
tion, object, or eventis similar to another
lies at the heart of the learning process; a
related problemis determining when
something is a moregeneral or specific
instance of something else, i.e., determin­
ingthe generalization hierarchy. Most of

the systems examined use a generalization
hierarchy provided by the designer, and
methods for measuring similarity almost
invariably depend on comparing prede­
fined attribute vectors, or graph matching
based on a predefined vocabulary. Thus,.
existing learningsystems are inherently
limited to instantiating a predefined
model; their ability to really discover
something new, or to exhibitcontinuing
growth is virtually nonexistent.

Problem generation. A system
should be able to generate its own prob­
lemsso that it can refine its learned strat­
egies. This type of problem generation is
seen in a child learning to use building
blocks. Various structuresare tried so that
the physics ofblock building can be
learned. LEX, and to some extent AM,
were the only machinelearning programs
discussed that had the ability to effectively
select problems. In all the others it is up
to the human operator (or trial and error)
to chooseappropriate problems to pro­
mote learning.

Focusofattention. A learning
system should be able to alter its focus
of attention, so that problem solutions
can be effectively found. Many of the
programsthat we examined used a fixed
approach to problem solving, and did
not havethe ability to focus on a prob­
lem bottleneck. Capability in this area
is related to self..monitoring, i.e., if one
knows howwell he is doing, then critical
problemareas can be identified, and pri..
orities can be altered accordingly.

Limitson learning ability. How is
new learningrelated to the knowledge
structures already possessed by a system?
Totake an extremeexample, no matter
howmany ants wetest, or how hard they
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try, it is inconceivable that an ant could
devise the equivalent of Einstein's theory
of relativity. On what grounds is this in­
tuition based? It certainly appears to be
the case that any system with a capacity
for selfmodification, or learning, has
limits on whatit can reasonably hope to
achieve. Atpresent, we do not evenhave
a glimmering of a theory that quantifies
such limits. The amount of knowledge
current machine learning systems start off
with is invariably basedon practicality and
other ad hoc criteria.

Human learning. There appears
to be almost nothing in the physiological

or psychological literature concerning
humanlearning that can aid us in the
design ofa machine that learns. The
mechanisms used by the human to learn
autonomously when immersed in a com­
plexenvironment remains a mystery. In
particular, the ability of the human to
form new concepts when required is not
understood.

Perhaps the mostinteresting open
question is whetherit is possible for a
mechanical process to create new con­
cepts and representations using an ap­
proach morepowerful than trial and
error. At present, no such procedure is
known.

Appendix
5-1

Parameter Learning for an Implicit Model

Aswasshown in Fig. 5-2, a thresh­
old device accepts a set of binary
inputs, e.g., TRUE or FALSE, 0 or
1, -lor +1, and outputs a binary
result. Each input is multiplied by a
weight, ui; and if the sum of the
weighted inputs exceedsa thresh­
old value, T, then the output is one
value, otherwise it is the other. The
threshold device can be used for
general computingpurposes, since
appropriate weightsettings will
cause it to behave like the AND,
OR, and NOTfunctions mentioned
in Chapter 4. However, this device
(function) has specialsignificance for
classification-type (pattern recogni­
tion)computations.

Much of the work on threshold
devices has dealt withthe question
of howdifferent classesof objects
couldbe recognized by automatic
adjustment of the weights, to; Sup­
pose wehavetwo classes A and B
and for objects in classB we want
the sum of the weighted inputs,
SUM = WIt; +w2!;+... , to be
greater than a threshold, T. We
know intuitively that if in the train­
ing modewe obtain a SUM less than
T for a test pattern in class B, then
the weights correspondingto posi­
tiveinput terms should be increased
and those correspondingto negative
input terms and the valueof the
threshold should be decreased. (The

converse action shouldbe taken if
SUM is incorrectly greater than T
for test patterns in classA.)

It is possible to provea surpris­
ingly powerful theorem which says
that if a single thresholddevice is
capable of recognizing a class of
objects, then it can learn to recog­
nize the class by usingthe following
weight adjustment procedure:

1. Start with anyset ofweights.
2. Present the device witha pat­

tern (described by a vector of
-1, + 1 valued features) of
classC, or not of class C.

3. If the pattern is classified cor­
rectly (8UM > T for a pattern
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Class ( 1 (2

1 -1 -1

2 - 1 + 1

3 + 1 -1

4 + 1 + 1

--=--..
Pattern ~I ~+ 1

Measurements~ - 1
-----'

in C;SUM - < T for a pattern
not in C) then go to step 2.

4. If SUM - < T for a pattern, X,
in C, replace each W , by
(w,+f,{x» and T by (T-1); If
SUM > T for a pattern, X, not
in C, replace each W , by (wi ­

f,{x» andT by (T+1).
5. Goto step2.

(a) Threshold network. (b)Encoding ofclassdesignation with respectto the two output
devices of the threshold network.

FIGURE 5-10
Classifying a Pattern as Belonging to One of Four Classes.

(a)
After a finite number of itera­

tions, in which correctly labeled
members ofthe input population are
used in the weightadjustment proce­
dure, the device will correctly recog­
nizethesepatterns. The order in
which the inputpatterns are pre­
sentedis not important; it is only
required that the numberof appear­
ances ofeach pattern is proportional
to the length of the training se­
quence (i.e., to the total number of
patternsactually presented). Note

that the theorem onlyassures us
that members in the trainingse­
quences will be correctlyidentified.
Correctclassification of newpatterns
will occur only if the training exam-

(b)

pies are truly representative of class
C and its complement, and the
features are well chosen. For exam­
ple, if a featuresuch as color does
not distinguish one class from an-

TABLE 5-1 • Outputs ofThree Feature Detectors for a Set of Patterns

Feature Detectors

Input fD 1 Enclosures fD2 Verticals ffi3 Horizontals
Patterns If < 2 Enclosures-+ -1 If < 2 Verticals-+-1 If < 3 Horizon tals-+- 1

If ~2 Enclosures-++ 1 If ~2 Verticals-+ + 1 If ~ 3 Horizontals -++ 1

1 A -1 1 -1

2 8 1 - 1 1

3 8 1 1 -1

4 A -1 -1 -1

5 B 1 -1 -1

6 R -1 1 1

7 B -1 -1 1

8 B 1 1 1



other, then measurements of this
feature cannot contribute to the
classification process.

Although wehavediscussed
classification usingtwo classes, the
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approach can be extendedto many
classes (see Fig. 5-10). The figure
shows how the binaryoutput of two
classifiers can be used to classify a
pattern into one of four classes.

An example of threshold device
parameter learning is presented in
Tables 5-1 and 5-2. The problem is
to tellwhether a set of measure­
ments derivedfrom a pattern on a

TABLE 5-2 • Learning to Recognize a Set of Patterns by Adjustment of Weights in a Threshold Network
(The training sequen ce is the set of input patterns 1-7 of Table 5-1)

Input Weighted New New New New
Pattern Class FOI FD2 FD3 Sum T WI W2 W3

0 - - - - - .?f0 0 0 0

1 -1 -1 1 -1 o IL 0 0 0 0

2 1 1 -1 1 0 -1 1 -1 1 +-change

3 1 1 1 - 1 - 1 -2 2 0 0 +-change

4 -1 -1 -1 - 1 -2 -2 2 0 0

5 1 1 -1 -1 2 -2 2 0 0

6 -1 - 1 1 1 -2 -2 2 0 0

7 1 -1 -1 1 -2 -3 1 - 1 1 +-change

1 -1 -1 1 -1 -3 -3 1 -1 1

2 1 1 -1 1 3 -3 1 -1 1

3 1 1 1 -1 -1 -3 1 -1 1

4 -1 - 1 -1 -1 -1 -2 2 0 2 +-change

5 1 1 - 1 -1 0 -2 2 0 2

6 -1 - 1 1 1 0 -1 3 -1 1 +-change

7 1 -1 -1 1 -1 -2 2 -2 2 +-change

1 -1 - 1 1 -1 -6 -2 2 -2 2

2 1 1 -1 1 6 - 2 2 - 2 2

3 1 1 1 -1 -2 -3 3 - 1 1 +-change

4 -1 - 1 -1 - 1 -3 -3 3 - 1 1

5 1 1 - 1 -1 3 -3 3 -1 1

6 -1 -1 1 1 -3 - 3 3 -1 1

7 1 -1 -1 1 -1 -3 3 -1 1

8 1 1 1 1 3 - 3 3 -1 1 +-Thispattern, not in the
trainingset, is correctly
identified bythe
"learned" set ofweights



retina depicts the presence of the
character A or the characterB. The
threshold device outputs - 1 to
indicate the characterA and +1 to
indicate the characterB. Three
feature detectors makemeasure­
ments on the pattern values in the
retina to determine three different
characteristics or features of the
pattern.

Table 5-1 shows the responses
ofthethreefeature detectors fora
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set ofeightpatterns. Notethat the
outputofa feature detector is +1
or -l.

Table 5-2 shows the sequence
oftrial weights obtained using the
weight adjustment procedure de­
scribed previously. The three weights
are initially zero, andare modified
whenever the inputpattern is mis­
classified. For example, inputpat­
tern 2 hasa weighted sumthat does
not exceed the threshold. This is

incorrect, sincepattern 2 is in the
+1 class. Therefore the weight
modification procedureis used.

Theprocedure continuesuntil
allof the patternsare correctly
classified. Once the correct set of
weights hasbeen obtained, the
device canclassify a pattern that it
was not trained on, as shown in the
response to pattern 8.


