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The Representation of
Knowledge

Intelligent behavior de­
pends on being able to use
stored knowledge about
objects, processes, goals,
causality, time, and action.
Some of the questions that
arise when trying to understand the na­
ture and the representation of knowl­
edge are:
• What is knowledge?
• Aside from the actual content, is the

specific form in which knowledge is
encodedan importantfactor in achiev­
ing intelligent behavior?

• How can knowledge be represented in
the memory of a computer?

• Are there types of knowledge that can­
not be described or discussed?

One of the remarkable attributes of

humanintelligence is the ability
to converta problem into a
familiar form or representation
that can be operated on using
previously known techniques. In
a simplified sense, this book puts

forth the thesis that intelligence is largely
the ability to create and manipulatede­
scriptions. Weare thus concerned with
the nature of descriptions, what they are,
their characteristics, and what their rela­
tion is to the things they describe.

This chapter will examine the con­
cept ofrepresentation, and will discuss a
variety of representations for different
problem domains. We are particularly
interested in representations that can be
formally defined, and are thus suitable for
computermechanization.
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REPRESENTATION: CONCEPTS

Tho people view a basketball game. One
person sees ten players moving around in
a random manner, and notices that a ball
and two hoops seem to be the focuses of
action. The otherperson knows the rules
of the game, has followed the teams, and
thereforeseesthe strategy beingusedby
each team. Thopeople listen to the crash
of thunder. One person interprets it as
the gods expressing angerat the people's
sins, and the otherinterprets the thunder
in terms ofelectrical discharge from the
clouds. Tho people are discussing the
economic recession. Onefeels that it is
a worldwide situation caused bythe oil
crisis, while the otherpersonviews it as
a natural result ofpoor tax policies.

In all of these cases, we have an
observed phenomenon that is interpreted
in accordance with a stored framework
(model, metaphor, representation) that is
used by the person to deal with the out­
side world. Different areas of human in­
tellectual and emotional activities access
different representations of the world with
different attributes-they constructdiffer­
ent "realities." For example, science uses
representations that will only accommo­
date things that canbe measured or ob­
served." ThusNewton's laws of motion
deal with force, mass, and acceleration of
objects, allof which canbe measured by
instruments. Religion, on the other hand,
uses representations that dealswith things
that are not observable, such as heaven,
hell, angels, aswell as attributes that are

.not measurable, suchas goodness, evil,
and holiness. These different fields thus

''To be accurate, we note that many physical quan­
tities cannot be measured directly, but mustbe
inferredfrom other measurements.

. impose distinct requirements on their
representations. Forexample, physics will
require that a representation or model be
able to predict the behavior of objects.
Religion may expect the models or repre­
sentations to affect the behavior and the
mentalstate of its adherents.

A discussion of the role of represen­
tation in human thinking is given below.
Later we will be mainly concerned with
representations suitable for machine rea­
soning, i.e., representations that are for­
malor "rule-like." A general concern is
how a machine might be given models or
representations that would enableit to
operate in the realworld.

Form vs. Content of Knowledge

Knowledge can be defined as the stored
information or the models usedbya
person or machine to interpret, predict,
and appropriately respond to the outside
world. It is important to distinguish be­
tween the form and the content of knowl­
edge. For example, addition of numbers
can be performed bystoring a look-up
tablecontaining the sums ofallaccept­
able input pairs of integers. Alternatively,
an electronic counter can be usedwhich
can successively be incremented bythe
two integers to obtain their sum. From a
functional or contentstandpoint, the two
approaches will produce identical answers,
but from a representational standpoint,
there are significant differences that influ­
ence how efficiently we can perform the
given task. The look-up table would be
very fast, but would require a very large
memory store ifwehad to deal with large
integers. The electronic counter would be
much more efficient in its hardware re­
quirements, but would be much slower in
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A 5,9,4,6 win!!

A 5,9,4; B 3,1,2

A 5; B 3
A 5,9 ; B 3,1

producing the required answers. Thus, the
specific structures bywhich knowledge is
characterized, andits encoded form, can
have a significant effect on itsuse in solv­
ingproblems. Further, since no single
representation or model can capture all
aspects of a real object, an intelligent
entity must employ a wide spectrum of
representations to deal with the world.

Representing Knowledge

A representation of a situation (orobject,
or problem) is a translation ofthe situa­
tion into a system consisting ofa vocab­
ulary that names things and relations,
operations that can be performed on
these things, and facts and constraints
about these things. The primary distin­
guishing characteristics ofa representa­
tion are (a) whatinformation is made
explicit, and (b) how the information is
physically encoded. The purpose ofa
representation is to simplify the problem
ofanswering a restricted class ofques­
tions about the given situation, and thus
the selectionofthe representation must
be goal-directed. At leasttwo distinct
representations are required to match the
competence ofsomegiven computing
mechanism to the requirements ofsolving
a real world problem: the first representa­
tion provides efficient symbolic apparatus
for answering questions aboutthe given
situation, and the second translates the
solution techniques ofthe first into the
operations and storage structures inherent
in the machine.

The "15 game" is a good example of
converting a problem to an alternative
representation, using the new formulation
to aid in solving the problem, and finally
translating the resultbackinto the origi-

nal problem domain. In thisgame, two
people take turnsselecting numbers from
1 to 9. Once a number hasbeenselected
byone person, it is unavailable to the
other. The person who first hasexactly
three numbers in hiscollection that add
up to 15wins the game. Asample game
for two people, A and B, might be:

(A selects 5; B selects 3)
(A selects 9; B chooses 1
to prevent A from achiev­
ing 15 on his next move)
(A selects 4; B chooses 2
to block A)
(A selects 6 and wins with
4+ 5+ 6 = 15)

Now suppose we analyze thisgame
using the representation,

~
~
Choosing a number in the 15 game

corresponds to putting a marker in the
tick-tack-toe boardshown above. Thus, A
choosing 5 is equivalent to putting !\s
marker in the centerofthe tick-tack-toe
board; the game sequence can be shown
in the new representation as:

-A B A A B A A

- A B - A B A B A B
B B A B

(win for A)

2 3 4

Note that in the thirdstep Aforced
the win, since a move was chosen that
provided Awith two possibilities for three
in a row, and B could only block one of
these two possibilities. The tick-tack-toe
representation and strategy were used to
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playthe 15 gamein an expert manner; we
make our moves in the tick-tack-toe do­
main, and report backwith the number
corresponding to the tick-tack-toe loca­
tion chosen.

The Relation Between a
Representation and Things
Represented

Asnoted above, in its mostgeneral form a
representation consists of a language for
describing things in the world and a data
structure or formalism for physically en­
codingthe descriptions. A "model" is a
specific description.

A natural language such as English
or French is a representation in which the
vocabulary (lexicon) has semantic content
(meaning)-the words denote things
in the world. In addition to the lexicon,
the language includes constraints on what
constitutes an acceptable structuringof
words in a sentence, and rules for trans­
forming words and sentencesto account
for singular, plural, tense, and sentence
forms dealing with questions, commands,
or statements. The written and spoken
forms of a language are the data struc­
tures of the representation. Thus, a natu­
ral language is a representation with a
"built-in" semantic content. The meaning
of a description is fixed by the conven­
tions of the language.

Logical and mathematical systems are
also representations, but in such "formal
languages" the vocabulary has no seman­
tic content. To the extent that meaning
can be ascribed to a logical expression,
such meaning is not inherent in the ex­
pression but is an interpretation imposed
on the expression bysome outsideagent.

The samelogical expression can be as­
signedcompletely different meanings by
different agents.

Mostof the representations we de­
scribe in this chapter have very simple
vocabularies with no semantic content­
they are largely data structuresthat can
be used bya computer to store and trans­
form information In a mannerspecified by
a set of rulesor algorithmic procedures.
This lack of inherent meaning in the rep­
resentations employed by a computer
leads to the obvious question ofwhether
it is possible for a computer to "under­
stand" anything in a way a person might.

In his 1985presidential addressto
the American Philosophical Association,
Dretske asserts [Dretske 85]:

.. . . all cognitive operations (whether by
artifacts or naturalbiological systems) will
necessarily be realized in someelectrical,
chemical, or mechanical operation over
physical structures.... This factalone
doesn't ten us anything about the cogni­
tivenatureof the operation beingper­
formed-whether, for instance, it is an
inference, a thought, or takinga square
root For whatmakes these operations
into thoughts, inferences, or arithmetical
calculations is, amongother things, the
meaning of, or the semantics of, those
structuresoverwhich theyare per­
formed.... Unless the symbols have
whatwemightcallan intrinsic meaning,
a meaning they possess which is indepen­
dent of our communicative intentions and
purposes, then this meaning mustbe
irrelevant to assessing whatthe machine
is doingwhen it manipulates them. The
machine is processing meaningful (to us)
symbols, but the way it processes them is
Quite independent ofwhatthey mean­
hence, nothingthe machine does is
explicable in terms ofthe meaning of the
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symbols it manipulates or indeed, of their
even having a meaning. . .. In order,
therefore to approximate something of
genuine cognitive significance, to give a
machine something that bears a mark, if
not all the marks, of the mental, the
symbols a machine manipulates must be
given a meaning oftheir own, a meaning
that is independent of the user's purposes
and intentions. Only by doingthis will it
become possible to makethe meaning of
these symbols relevant to whatthe ma­
chinedoeswith them, possible in other
words, to make the machine do some­
thingbecause ofwhatthe symbols mean,
possible, therefore, to make these sym­
bolsmeansomething to the machine
itself.

It should be notedthat the arbitrary
(even though fixed) conventions of a natu­
ral language are not enough to provide
intrinsic meaning to a description of some
aspect of the realworld. This issue is
further discussed later in this chapterand
in Chapter 6.

ROLE OF REPRESENTATION

In the case of the 15 game, an appropri­
ately chosen representation served the
purpose of converting a given problem
intoanother problem that has a known
solution. Someother rolesof representa­
tion are:

• Interpretation. Sensory information can
be interpreted byusing internal repre­
sentations (models) ofreal-world ob­
jects. For example, visual information
canbe interpreted bycomparing the
sensed visual data with stored descrip­
tions of objects.

• Organizing function. Arepresentation
may allow us to organize information so

that similarities and differences between
objects and events are more readily
identified. Plotting two sets ofdata on
the samegraph will visually show simi­
larities and differences.

• Questioning function. Internal models
lead us to ask questions about events.
Why is a certain event occurring when
our model predicts otherwise? We are
thus guided to revisions in our models,
the generation ofa set of alternative
models, or furtherattempts at data
gathering from our surroundings.

• Predictive function. An internal model
allows us to predictevents that will
resultfrom actions. For example, a
mathematical model of a rocketenables
us to predictthe motion of the rocket

• Deductive function. Certain representa­
tions can be usedto make new knowl­
edge explicit by allowing deductions to
be performed on the original knowl­
edge. For example, given All pit dogs
aredangerous. This dog is a pit dog, we
can deduce This dog is danaerous.

REPRESENTATIONS EMPLOYED
IN HUMAN THINKING

The conceptof representation as a way of
selectively, and even creatively modeling
the world, has proved to be one of the key
ideasunderlying our understanding of
both humanand machine intelligence. In
this subsection we briefly describe the
representations usedbypeople to solve
real-world problems. Our exposition here
win be general and descriptive, in contrast
to the moredetailed and technical discus­
sion of the rest of this chapter which deals
withthe formal representations suitable
for use in computers.
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The Use of Models and
Representations

Mostpeople are unaware of their use of
models in problemsolving and in the way
they view the world. As Robert North has
stated [North 76]:

Eachof us carries around in his or her
head a model of the world, of society, of
the local community, ofthe family-even
of oneself, and noneofus can dealwith
anyof these entities, even superficially,
without reference to the appropriate
mental construct or model. It is the only
way we haveof relating to other people
and to our larger surroundings. We draw
upon these models whenever we discuss
affairs, whenever we vote, and whenever
we plan for the future in anyway.

George Kelly [Kelly 55] focuses on the
psychology of personal constructs, the
creative capacity of living things to repre­
sent the environment, not merely to re­
spond to it. The point of view that
dominates this work is "constructive al­
ternativism," the creationof alternative
constructions to explain things in the
universe. Some keyideasare:

• Reality is subjective. "Each person
personally contemplates the stream of
eventsupon which he or she is so swiftly
borne," and builds a personal modelof
reality.

• People as scientists. Every person, in
his or her ownparticular way, is a "sci­
entist" whose ultimate aimis to predict
and control. There are differences be­
tweenthe personalviewpoints of dif­
ferent people just as there can be differ­
ences between the theoretical points of
view of different scientists.

• Representing the universe. Life in one
part of the universe, the living creature,
is able to represent another part, the
environment. Because man can repre­
sent the environment, he can place
alternative constructions on it. Man
views the world using patterns or tem-

. plates that he creates, and then at­
tempts to "fit" these templates to the
realities of which the world is com­
posed. The fit is not always very good.
Man creates his own way ofseeing the
world in which he lives, the world does
not provide this for him. The same
eventscan oftenbe viewed in the light
of two or moresystems, yet the events
do not belongto anysystem. A con­
struct (specific pattern or model for
interpretingsome aspect of reality) is
used to forecast events and is tested in
terms of its predictive efficiency. In
general, people improve their internal
constructs byincreasing the repertoire
of constructs, by altering the existing
ones to obtain an improved "match"
with the world, or by combining con­
structs. Interpretations of the universe
will never be perfect, and thus are al­
ways subjectto revision or replacement.

• Psychological relevance. "Man, to the
extent that he is able to construe his
circumstances, can find freedom from
their domination. The person who or­
ders his lifein terms of many special
convictions makes himself a victim of
circumstances. Every little prior convic­
tion not open to review is a hostagehe
gives to fortune; it determines whether
the eventsof tomorrow will bring happi­
ness or misery. The person whose prior
convictions encompass a broad perspec­
tive, and has cast these in terms of
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principlesrather than rules, has a much
better chance of discovering regularities
in 'world events' than someone with a
limited and inflexible set of models."

The Use of "Visual" Representations

There are many interesting examples of
visual representations used by people to
solve problems. For example, Koestler
[Koestler 69] quotes Friedrich Kekule, the
chemistwho discovered the structure of
the benzene ring in a dream:

I turned my chair to thefire and dozed.
Again the atoms were gamboling before
my eyes. This time the smaller groups
keptmodestly in the background. My
mental eye, rendered more acute by
repeated visions ofthis kind, could now
distinguish larger structures, ofmanifold
conformation; long rows; alltwining and
twisting insnakelike motion. Butlook!
What was that? One ofthe snakes had
seized hold ofits own tail, andthe form
whirled mockingly before my eyes. As if
by a flash oflightning, I awoke.

The result of the dream was Kekule's
insightthat organic compoundssuch as
benzene were closed rings rather than
open structures.

The Nobel Prize-winning physicist
Richard Feynman used a visual approach
to the solution of particle physics prob­
lems which has become known as
"Feynman diagrams." As described by
Dyson [Dyson 79) this form of visual
thinking was difficult to communicateto
others:

Thereason Dick's physics was so hardfor
ordinary people to grasp is that he did
not useequations. Theusual way theoret­
ical physics was done since the time of

Newton was to begin bywriting down
someequations andthen to work hard
calculating solutions to the equations.
. . . Dick just wrote down the solutions
out of his headwithout everwriting down
the equations. Hehada physical picture
ofthe way things happen, and the picture
gave him the solutions, directly and with
a minimum ofcalculations. It was no
wonder that people who had spenttheir
lives solving equations were baffled by
him. Their minds were analytical; his was
pictorial. My own training since the far-off
days when I struggled with Piaggio's
differential equations had beenanalytical.
Butas I listened to Dick and stared at the
strange diagrams that he drew on the
blackboard, I gradually absorbed some
of hispictorial imagination andbegan
to feel at home in hisversion ofthe
universe.

The scientificliterature has many
additional examples of visual representa­
tions used to solve problems. The choice
and application of such representations is
very much a mystery. In our attempts to
build intelligent machines we are currently
limited to the formal representations
described in the following sections.

EFFECTIVENESS OF A
REPRESENTATION

A good representation should allow all
situations of interest to be easilyde­
scribed, and it should be stable, i.e., if the
original situation changes slightly, its new
representation should not be significantly
different from the original representation.
There should be little effect on the final
form and content of the represented infor­
mation even if there is a major change
irrelevant to the class of questions that
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are of interest. The representation should
also identify redundant information to
allow compact storage in a physical (com­
puter,brain) memory system.

The operations and data structures
providedby the representation should
result in simple computational proce­
dures{or answeringquestions relevant to
the given situation. For example, in the
matchstick puzzle of Chapter 1, the rep­
resentation organized the information so
as to reduce the sizeof the combinato­
rialsearchspace. In the example of the
15 game, the representation converted
a difficult game into a familiar one.

A representation should highlight the
important information and thus simplify
the relevance problem, as in the following
"31 dominoes" problem. A domino isa
rectangle with dimensionsexactly equal to
two adjacent grid squares (seeFig. 3-1).

Given an 8 x 8 grid (Fig. 3-1a), it is
obvious that it ispossible to find many
arrangements in which 31 dominoes can
be placed on the gridso as to cover62
ofthe gridsquares; Fig. 3-1(b) shows
one such arrangement.

Are there always arrangements of
the 31 dominoes that will leave any two
selectedsquares uncovered? In particular,
is there at leastonesuch an arrange­
ment that will leave two diagonally op­
posite squares uncovered, as shown in
Fig.3-1(c)? Try to solvethis problem
beforelooking at the answerwepresent
below.

It is difficult for mostpeople to prove
the solution, namely, that the required
configuration ofdominoes cannotbe
found. However, if we color the gridwith
alternating black and white squares, as
would be found on a checkerboard, we
observe that the two diagonally opposite
squareshave the samecolor. Now we
further observe that each domino covers
exactly one black and one white square
whenplaced on the board in a legalposi­
tion. Thus, any possible legal covering
with the 31 dominoes mustleave one
blackand one white squareuncovered.
This condition is violated for the diago­
nally opposite squares. Thissimple solu­
tion to the posed problem was possible
onlyafterwe changed the representation

[I

~ I--

--
I--

- '--

II-- EI1--'--

I
(a) (b) (c)

FIGURE 3-1 The 31 Dominoes Problem.

(a) An 8 x 8 grid. (b) One arrangement of 31 dominoes on 8 x 8 grid. (clDesired coverage of8 x 8
grid. Shaded areas on (b) and (c) are uncovered squares.
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(by coloring the gridsquares) to one that
made explicit the critical constrainton
anypossible solution.

In additionto all the previous con­
siderations, the utility of a represen­
tation often dependson its generality:
there should be a numberof reasonably
distinct problem domains to which it
can be applied.

REPRESENTATIONS EMPLOYED
INARTIFICIAL INTELLIGENCE
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A significant portion of AI research is
concerned with creating and studying the
properties of symbolic representations,
since such representations lie at the heart
of planning, reasoning, and problem solv­
ing. It is surprising that there are only
about ten distinctrepresentational sys­
temsof broad generality currently em­
ployed in AIresearch. We will explore
some of these in more detail in subse­
quent chapters.The major representa­
tionsare indicated below, and several of
particular interest to this book are dis­
cussed in following subsections.

Feature space(or decision space). A
feature space is formed byassigning a
problem-related measurement to each axis
of a multidimensional space. Figure3-2
shows a two-dimensional feature space
with one axis representing weight and the
other height. One of the points shown
represents an individual 6 feet tall and
200 pounds in weight. Points that are
close together in this representation rep­
resent persons or objects that havesimilar
height-weight measurements.

Relational graph/semantic net. A tree
or graph structure is typically used to de-

FIGURE 3-2
A Two-Dimensional Feature Space.

Point representsan individualwho is 6 ft tall
and weighs200 lb. Cluster of pointsrepre­
sents personsor objectswithsimilar mea­
surements.

scribe relationships between objects(e.g.,
objects in a story), oftenfor the purpose
of general question answering. The net
shown in Fig. 3-3 represents the facts:
John is a man, John likesMary, John sees
obiect., and object}is a book. Using this
net, it is possible to answer questionssuch
as "Who does John like?," and "Does
John see a book?" Note that to answer
the second question it is necessary to
trace through both the path "John sees
object}" and "object, is a book."

Decision (or game) tree. In a typical tree
structure, each node, representing a state,
is connected to one or more successor
states. The goal is to traverse the tree
from an initial state to a desired final
state. In the example shown in Fig. 3-4
we begin with two sets, one with the two
elements + + and the other with the
single element $. Two players take turns,
and at each turn a playercan choose any
number of elements from one of the two
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sees
likes

is a

sets. The person taking the last element
loses. The tree shows that the first player
has three choices +, + +, or $, and
shows the configuration that results after
each choice. Subsequent lines show the
choices remaining to the second player,
and then the first player, until no further
alternatives are available for either. The
exhaustive tree forthis game shows that
the first player should take both + +
elements on the first move.

----Set1 Set2

FIGURE 3-3 A Relational Net.

State transition graph (or sequential
machine). This representation uses
nodes and labeled links. The traversal of
any particular linkrequires that the input
conditions specified byits label are satis­
fied. This compact representation canbe
used to represent any algorithmic proce­
dure, as discussed extensively in Chapter
2. The state diagram shown in Fig. 3-5
shows a "parity machine" that receives as
input a stringof I's or 0's, and determines
whetherthe number of l's in the stringis
odd or even.

The machine goesinto the ODD state
whenan odd number of I's has been in­
put, and into the EVENstate for an even
number of l's. The machine mustbe ini­
tialized to start in the EVEN state. The
arrows indicate the transition to the same
or the other state, and the 0 or 1 indi­
cates the inputsymbol that causes the
transition.

+$

First player

First player +

+ + $

~
+ $ $ + +

Second p,ayerM+ II $ +(\:
+ $ Lose Lose +

Double lines markthe only pathbywhich the firstplayer
can force a win.

lose Lose

FIGURE 3-4 A1Ypical Game Tree.

Lose
Frames. A frame is a way ofrepresent­
ing knowledge aboutthe objects and
eventscommon to a particular situation.
The elements ofa given situation are
stored as entries in the "slots" of the
frame (see Chapter 6). In Fig. 3-6 we show
an open frame for DOG, and a filled-in

I

i
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Designates that ifmachine is
in EVEN state and receives a 0
it remains in the EVEN state"

1

FIGURE 3-5
StateTransition Graph for a Parity
Machine.

frame fora specific dog, DOG-I. Note that
thereare slots that have default values,
i.e., values that will apply unless otherwise
specified. If weare told that DOG-l is a
three-legged, white and black-spotted
Dalmatian named Penny , we canrecord
thisinformation in the DOG-l frame on
the right

Logic. The propositional and predicate
calculus are formalizations of the process
ofinferring new information from existing
facts (see Chapter 4). The notation given
below indicates that for allobjects, if the

objectis a dog, then that objectis an
animal.

(ALL X)[DOG(X) --+ (ANIMAL(X»]

Mathematics. Mathematical representa­
tionsare pervasive in allareas ofAI; e.g.,
representations such as power series,
Fourier transforms, the matrix form, and
spatial coordinate systems play an impor­
tant role in many areas of machine per­
ception. The mathematical expression
below specifies the relationship between
R, x, y, andA .

R = xcosA + ysinA

Procedural representations. Knowledge
about the world canbe formulated in
termsof procedures that allow specific
tasks to be performed, as in

PROCEDURE: BOIL WATER
1-0btain pot. and put water in it
2-Put pot over range burner, and turn on

burner
3-Turn off burner when steamrises

This is an example of knowing by
"knowing how." Thus, given the proce­
dure we might know how to boilwater;

(?
A DOG

WITH [BREED -?l
[fEET - 4]default
[EARS -2]default
[NAME -?]
[SIZE -n
[COLOR - ?])

(DOG-1
A DOG

WITH [BREED - DALMATIAN]
[fEET -3]
[EARS - 2] (default value)
[NAME -PENNy]
[SIZE - ?]
[COLOR -WHITE WITH BLACK SPOTS])

FIGURE 3-6 A Frame for the Concept"A Dog."

(a) Concept of a dogusing frame representation. (h) Instantiation of the frame fora specific dog.
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however, wemight not understand the
concept"boiling water."

Production systems. Production systems
use rules of the form, IF condition A is
satisfied THEN consequence B follows.
The production ruleapproach is dis­
cussed in Chapter 7.

Isomorphidiconidanalogical representa­
tions. These are representations for
which there is a directstructural relation
to someofthe properties of the domain
beingrepresented (see below and Chapter
9). In Fig. 3-7, we show that a houseplan
is an isomorphic representation of the
actual physical house.

Feature Space (or Decision Space)

As indicated in the previous subsection, a
feature spaceis formed byassigning a
problem-related measurement to eachaxis
of a multidimensional space. This repre­
sentation canbe used for many purposes,
but is especially relevant for decision mak­
ing and classification tasks. For example,
consider the problem ofclassifying a per­
son into the category manor woman
given the person's height and weight mea­
surements. In Fig. 3-8we again show a
two-dimensional feature spacethat uses
height as one dimension and weight as
the other.A (height, weight) measurement
set, suchas (5'10" , l7Slb) is.then repre-

Top
view

Front view

~
HOUSE PLAN

Side
view

o
AGUAL HOUSE

FIGURE 3-7 Isomorphism Between a Drawing and the Physical Object.
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FIGURE 3-8
Example ofPartitioning a Tho-Dimensional
Feature Space as the Basis for Making
Classification Decisions.

sented as a point in the feature space. It
is possible to partition the spaceso that
points that are typical examples of their
class lie in a particular partition. In Fig.
3-8the spacehas beenpartitioned into
the classes men and women, based on
a set of typical members ofeachclass.
Note that a new point, (6', 2251b) falls in
the male class. If the measurements are
good indicators of the classes being
represented, then the data for each
class "cluster" into a compact region,
andregions for distinct classes are well
separated.

Awell-chosen feature space can be
partitioned into regions such tHat the
points in each region belong to a single
class ofobjects or events. Oneproblem
is to partition the feature space, based
on a given set of labeled samples, called
the training set. The partitioning bound­
aries can be generated using techniques
from statistical decision theory, and linear

Women

FIGURE 3-9
One-Dimensional Classification:
Distinguishing Men from Women on
the Basis of Height.
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Worn,"~t\M'"
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Height (feet)

a

Probability .4
of .3

height :1

The decision line on the left: (interrupted) is selected if
classifyinga man incorrectly is more "expensive" than
misclassifying a womari. The solid line on the right
shouldbe used if both types of misclassification errors
are equally costly.

and nonlinear programming. Basically,
a costof making a classification error is
defined and is usedto determine bound­
ariesproducing expected-least-cost clas­
sifications. For example, in the one­
dimensional caseshown in Fig.3-9,we
plot a heightdistribution for the classes
men and women. We canselect a decision
linefor separating the two classes, and if
it is more "expensive" to makethe mis­
take of classifying a man incorrectly as a
woman, we will position the linetoward
the lower heightvalues.

Decision Tree/Game Tree

We noted that a decision tree isoften
used to describe exhaustively all the con­
sequences that can arise from someinitial
situation (state), assuming each state can
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only give rise to a specified numberof
successor states as a result of the appli­
cation of a given set of operations or
actions. For example, a tree couldprovide
an explicit representation of all possible
moves in a gameof checkers. Many tech­
niquesare available to make an efficient
traversal of the tree, and to limit the num­
ber of paths that mustbe examined.

One problem that oftenarises in
the decision tree/graph representation

is finding the shortest or longest path
between two nodes in the graph, or, alter­
natively, determining which paths have a
high "payoff" with respect to achieving
some given goal. This typeof problem is
often handled usingrelaxation, and an
example is shown in Fig. 3-10.Suppose
wewantto go from an origin node to a
destination node takingthe shortest path.
In Fig.3-10(a), weshow the basic compu­
tation employed. In this example there are

Shortest distance from origin to N is: new value

I
thru a to N: 20 + 12 = 32 +- assumed byN
thru b to N: 35 + 8 = 43

the smallest of thru c to N: 40 + 4 = 44
previous best
path to N:1000

(a)

C@V
(b)

A

(c)

FIGURE 3-10 Finding the Minimum Path in a Graph using Relaxation.

(a)Basic approach. (b) Roadnetwork example. (c)Shortest path shown by thickline; e.g., shortest
way from Z backto origin is: via X = 14 + 12 = 26, sincevia Y = 20 + 9 = 29.
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pathsto node N coming from nodes a.b,
and c. Attached to each node is a circled
number specifyingthe shortest distance
from the origin node (not shown) to a.b,
and c respectively. The shortest distance
from the origin to N is then obtainedas
follows: For each node a, b, and c, form
the sumof its circled number and the
distance from that node to N.Select the
smallest sum or the currentvalue as the
shortestdistance from the origin to N.
In Fig. 3-10(b) weshow a graph, and in
Fig. 3-10(c) the final results of the com­
putation. A is the origin node and B is
the destination node. The circled values
in Fig. 3-10(b) are used to initialize the
computation; the value 1000could have
beenreplaced by anynumberlarger than
anyreasonable final answer. The compu­
tation described in Figure 3-10(a) can
be performed at any node in any order.
When the computation can no longer
produce a change, (i.e., a reduction of an
existing circled value, anywhere in the
network), the circled value at the destina­
tion is the desired shortestpath length.
Note that, in general, wemay have to
perform the "update" computation of
Fig. 3-1O(a) many times at each node be­
fore no further change is possible. When
wehave completed the computation, we
trace back through the circled nodes that
led to this lowest number. This is shown
bythe checkmarks in Fig. 3-10(c).

Anotherapproach to this problem
uses various pruning techniques that
ignore unpromising paths. One of the best
known pruningtechniques, the alpha-beta
heuristic shown in Box3-1, reduces the
number of branches that must be ana­
lyzed by ignoring obvious loser branches.

Sincethe decision tree and other
graph structure representations require an

explicit description of the complete prob­
lem domain, they do not seem capableof
dealingwith the potentially infinite prob­
lemsthat are the core problems of AI. For
example, the decision tree appears to
require an exhaustive listing of all alterna­
tives. However, there are three methods
for removing this difficulty. (It should be
noted that these methods do not guaran­
tee that the "best solution" will always be
found.) First, wecan provide a single
number estimate, an heuristic evaluation
function, that indicates the value of ex­
ploringthe (potentially infinite) remainder
of the tree extending beyondsomegiven
node. Second, wecan throwaway infor­
mation that does not appear to be impor­
tant in finding a bestsolution,based on
the assumption that only a few aspectsof
the problem need be considered to obtain
an acceptable answer most of the time.
Finally, if a mechanism existsfor generat­
ing portions of the tree as needed, then
onlythose parts of a tree that we wish to
examine need to be generated; typically,
onlya finite portion of a potentially infi­
nite tree need be searched to find a de­
sired solution.

Isomorphic/Iconic/Analogical
Representations

We usually do not appreciatethe remark­
able "isomorphic" representationknown
as a road map (Fig. 3-11). The road map
can be used to answer an unbounded set
of very complex questions. For a current
locationon the map, wemightask, What
is the nearest majortown, and how far
away is it? What is the closesthighway
intersection where at least three roads
come together? Notethe complexity of
trying to answer such questions by using
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tabular data, or other similar symbolic
representations. For the first question,
one would have to store the locations of
all towns and be able to determine the
road distance to each town from every
road point. The second question would
require that we either prestore or com­
pute the intersection of all roads, and be
able to determine the road distance of
these intersections for all locations in the
map. One can see some of the problems
of storing the map information in a sym­
bolic format that is still capable of provid­
ing the answer to any question that could

have been answered by looking at the
map itself.

The term "isomorphic", "iconic", or
"analogical" representation is used to
denote representations for which there is
a direct structural and metric relation to
some of the properties of the domain
being represented. Technically, this type
of a relationship is called an isomorphism,
and we can say that an isomorphic repre­
sentation is able to represent implicitly
those properties of the domain preserved
by the isomorphism. An interesting exam­
ple of an isomorphic representation is the

• BOX 3-1 Game Trees and the Alpha-beta Heuristic

Agame can be represented asa tree, where alternating
levels indicate the moves available to each opponent In
the tree below, we show the value ofthe gamesituation
to the firstplayer as the lowest level of the tree:

J02 movesavailable

0(\" to 1st player

/\ /\ moves available
to2nd player

0 0 0 0

4 2 1 3 value of each
final move

maximize

maximize

minimize

Complete evaluation ofa game tree is usually im­
practical, and is indeed unnecessary. In the above tree, if
the analysis is carried out from leftto right, the maximiz­
ingplayer would eliminate the choice marked with • as
soon as the value of1 is projected up from the lowest
level, sincethis is lessthan the other node(whose value,
2, is assumed to have already been determined). Thus, it
is not necessary to evaluate the lowest level node whose
value is 3.

The alpha-beta heuristic is a tree-pruning algorithm
that formalizes the following concept: Whenever we
project a value to a parentnode from a lower nodethat
is better than the existing value of the parent node,
checkhow that parent nodenow compares with other
nodeson its level. It may be that no further exploration
is neededbelow that parent node.

movesavailable to 2nd player

moves available to 1st player/0"",
o 0

/\ /\
o 0 0 0

4 2 1 3 value of each gamesituation
to the first player

The firstplayer tries to selecta move that will result
in the best gamesituation, i.e., the highest value after
the second player has madehis selection, while the
second tries to minimize this value. Using a mini-max
analysis, wecan project values up to all nodesof the
tree. In the example below, ifwe lookat the bottom row,
we know that the minimizing player will choose the
branch corresponding to a value of2, rather than the
branch corresponding to 4. Similarly, given the choice of
a 1 or a 3 on the bottom row, the minimizing player will
choose the 1. The maximizing player, given the choice of
2 or 1 on the secondrow will choose the 2. Thus,the
bestthat the firstplayer can achieve is the value 2,
obtained byselecting the left-hand branch.
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For this location,
what isthe nearest
town?What is the
nearest highway intersection
where three roads
come together?

\
Ontario

FIGURE 3-11 Example of an Iconic/Isomorphic Representation.

stringmodel for determining the shortest
path in a graph (see Box2-8). Consider
the problem of finding the shortest route
from city A to city B oversomegiven
network of roads. Construct a "map"
made out of piecesof stringto represent
the roads connecting the cities. Let the
length of each pieceofstringbe propor­
tional to the length of the road segmentit
represents, and knot together the strings
at places wherethe roads intersect. Now
with both hands, grasp the points in the
stringmap corresponding to citiesA and
B and pull these points in oppositedirec­
tions. The shortest path will correspond
to the road segments represented by the

strings supporting the rest of the dangling
road network.

Solving a problemusing an isomor­
phic representationis often similarto
performing a physical experimenton a
"real-world" situation, as opposed to
obtaining the solutionby an algorithmic
technique applied to a symbolic descrip­
tion. A physical experiment, unlike a
symbolic solution, can proceed without
completespecification or understanding
of the problemdomain. Thus, at least in
part, the powerof an isomorphic repre­
sentation resides in the fact that there is
no need to make explicit the problem
domain constraintsand relationships,
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sincetheyare captured by the structure
of the representation. Even ifunderstood,
attempting to make suchknowledge ex­
plicitis often impractical because of the
enormous amountof detail neededto
capturethe many aspects of the natural
world. Isomorphic (iconic) representations
are discussed in Chapter 9.

DISCUSSION

It is generally acknowledged that most
elements comprisingan AI system cannot
function without knowledge of the appli­
cationenvironment. For a computer sys­
tem, this knowledge must be represented
in someformal notation that can be ma­
nipulated for the purposes ofstorage,
retrieval, and inference making. A basic
philosophical question concerns the ex­
tent to which the complexities of the
world can be reducedto a manageable
set of symbolic relations susceptible to
logical analysis (see [Nilsson 83]). There
are those who feel that many subtle con­
ceptscannotbe captured using a formal
representation [pentland 83]. Some
examples of things that are not readily
represented by a symbolic description are
a person's face, a taste, the sound of a
musical instrument, and a smell.

The assumption that wecan capture
people's knowledge, actions, and experi­
ences in a computer program byusing
formal representations has also been
challenged by the phenomenologists."

"Phenomenology is a philosophical examination of
the foundations ofexperience andaction.

Martin Heidegger, a leading phenomenol­
ogist, believes that our implicit beliefs and
assumptions cannotbe made explicit. As
Winograd [Winograd 86] says, "Heidegger
rejects both the simple objective stance
(the objective physical world is the pri­
mary reality) and the simple subjective
stance (my thoughts and feelings are the
primary reality), arguing instead that it is
impossible for one to exist without the
other. The interpreted and the interpreter
do not existindependently: existence is
interpretation and interpretation is exis­
tence"[p.31]. If the phenomenologists are
correct, wecan nevercapture the subtle­
ties of interpretation required to function
in the world untilwe find someway of
capturing in the machine the interactive
nature of interpretation.

We sidestepped a basicproblem in
representation: Suppose an intelligent
entity has a wide spectrum of representa­
tions available. How can it determine
which representation or model of the
world is applicable for a given situation?
Peopleseem to selectappropriate repre­
sentationsfor real-world problems without
difficulty. This problem of knowing which
representation to use at anygiven time
arises in many contexts, e.g., in the frame
selection problem discussed in Chapter 6.

Finally, a question that still plagues
our attempts to achieve machine intelli­
gence: If a suitable model is not currently
available, how can one systematically
obtain a new and efficient model for the
given situation? People are very adeptat
developing new representations when
their existing onesare inadequate, but we
haveno idea how this is accomplished.


