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arise when trying to understand the na-

ture and the representation of knowl-

edge are:

« What is knowledge?

« Aside from the actual content, is the
specific form in which knowledge is
encoded an important factor in achiev-
ing intelligent behavior?

» How can knowledge be represented in
the memory of a computer?

« Are there types of knowledge that can-
not be described or discussed?

One of the remarkable attributes of

forth the thesis that intelligence is largely
the ability to create and manipulate de-
scriptions. We are thus concerned with
the nature of descriptions, what they are,
their characteristics, and what their rela-
tion is to the things they describe.

This chapter will examine the con-
cept of representation, and will discuss a
variety of representations for different
problem domains. We are particularly
interested in representations that can be
formally defined, and are thus suitable for
computer mechanization.
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REPRESENTATION: CONCEPTS

Two people view a basketball game. One
person sees ten players moving around in
a random manner, and notices that a ball
and two hoops seem to be the focuses of
action. The other person knows the rules
of the game, has followed the teams, and
therefore sees the strategy being used by
each team. Two people listen to the crash
of thunder. One person interprets it as
the gods expressing anger at the people’s
sins, and the other interprets the thunder
in terms of electrical discharge from the
clouds. Two people are discussing the
economic recession. One feels that it is

a worldwide situation caused by the oil
crisis, while the other person views it as
a natural result of poor tax policies.

In all of these cases, we have an
observed phenomenon that is interpreted
in accordance with a stored framework
(model, metaphor, representation) that is
used by the person to deal with the out-
side world. Different areas of human in-
tellectual and emotional activities access
different representations of the world with
different attributes—they construct differ-
ent “realities.” For example, science uses
representations that will only accommo-
date things that can be measured or ob-
served.’® Thus Newton’s laws of motion
deal with force, mass, and acceleration of
objects, all of which can be measured by
instruments. Religion, on the other hand,
uses representations that deals with things
that are not observable, such as heaven,
hell, angels, as well as attributes that are
not measurable, such as goodness, evil,
and holiness. These different fields thus

'¥To be accurate, we note that many physical quan-
tities cannot be measured directly, but must be
inferred from other measurements.

- impose distinct requirements on their

representations. For example, physics will
require that a representation or model be
able to predict the behavior of objects.
Religion may expect the models or repre-
sentations to affect the behavior and the
mental state of its adherents.

A discussion of the role of represen-
tation in human thinking is given below.
Later we will be mainly concerned with
representations suitable for machine rea-
soning, i.e., representations that are for-
mal or “rule-like.” A general concern is
how a machine might be given models or
representations that would enable it to
operate in the real world.

Form vs. Content of Knowledge

Knowledge can be defined as the stored
information or the models used by a
person or machine to interpret, predict,
and appropriately respond to the outside
world. It is important to distinguish be-
tween the form and the content of knowl-
edge. For example, addition of numbers
can be performed by storing a look-up
table containing the sums of all accept-
able input pairs of integers. Alternatively,
an electronic counter can be used which
can successively be incremented by the
two integers to obtain their sum. From a
functional or content standpoint, the two
approaches will produce identical answers,
but from a representational standpoint,
there are significant differences that influ-
ence how efficiently we can perform the
given task. The look-up table would be
very fast, but would require a very large
memory store if we had to deal with large
integers. The electronic counter would be
much more efficient in its hardware re-
quirements, but would be much slower in
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producing the required answers. Thus, the
specific structures by which knowledge is
characterized, and its encoded form, can
have a significant effect on its use in solv-
ing problems. Further, since no single
representation or model can capture all
aspects of a real object, an intelligent
entity must employ a wide spectrum of
representations to deal with the world.

Representing Knowledge

A representation of a situation (or object,
or problem) is a translation of the situa-
tion into a system consisting of a vocab-
ulary that names things and relations,
operations that can be performed on
these things, and facts and constraints
about these things. The primary distin-
guishing characteristics of a representa-
tion are (a) what information is made
explicit, and (b) how the information is
physically encoded. The purpose of a
representation is to simplify the problem
of answering a restricted class of ques-
tions about the given situation, and thus
the selection of the representation must
be goal-directed. At least two distinct
representations are required to match the
competence of some given computing
mechanism to the requirements of solving
a real world problem: the first representa-
tion provides efficient symbolic apparatus
for answering questions about the given
situation, and the second translates the
solution techniques of the first into the
operations and storage structures inherent
in the machine.

The “15 game” is a good example of
converting a problem to an alternative
representation, using the new formulation
to aid in solving the problem, and finally
translating the result back into the origi-

nal problem domain. In this game, two
people take turns selecting numbers from
1 to 9. Once a number has been selected
by one person, it is unavailable to the
other. The person who first has exactly
three numbers in his collection that add
up to 15 wins the game. A sample game
for two people, A and B, might be:

A5:;B3 (A selects 5; B selects 3)

A5,9; B 3,1 (A selects 9; B chooses 1
to prevent A from achiev-
ing 15 on his next move)

A5,94;B3,1,2 (Aselects 4; B chooses 2
to block A)

A 5,9,4,6 win!! (A selects 6 and wins with
44+5+6 = 15)

Now suppose we analyze this game
using the representation,

2 9 4
7 5 3
6 1 8

Choosing a number in the 15 game
corresponds to putting a marker in the
tick-tack-toe board shown above. Thus, A
choosing 5 is equivalent to putting A's
marker in the center of the tick-tack-toe
board; the game sequence can be shown
in the new representation as:

——— —A—- BAA BAA
—AB —AB —AB —AB
———— —-—B - —B—- AB-—
(win for A)

1 2 3 4

Note that in the third step A forced
the win, since a move was chosen that
provided A with two possibilities for three
in a row, and B could only block one of
these two possibilities. The tick-tack-toe
representation and strategy were used to
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play the 15 game in an expert manner; we
make our moves in the tick-tack-toe do-
main, and report back with the number
corresponding to the tick-tack-toe loca-
tion chosen.

The Relation Between a
Representation and Things
Represented

As noted above, in its most general form a
representation consists of a language for
describing things in the world and a data
structure or formalism for physically en-
coding the descriptions. A “model” is a
specific description.

A natural language such as English
or French is a representation in which the
vocabulary (lexicon) has semantic content
(meaning)—the words denote things
in the world. In addition to the lexicon,
the language includes constraints on what
constitutes an acceptable structuring of
words in a sentence, and rules for trans-
forming words and sentences to account
for singular, plural, tense, and sentence
forms dealing with questions, commands,
or statements. The written and spoken
forms of a language are the data struc-
tures of the representation. Thus, a natu-
ral language is a representation with a
“built-in” semantic content. The meaning
of a description is fixed by the conven-
tions of the language.

Logical and mathematical systems are
also representations, but in such “formal
languages” the vocabulary has no seman-
tic content. To the extent that meaning
can be ascribed to a logical expression,
such meaning is not inherent in the ex-
pression but is an interpretation imposed
on the expression by some outside agent.

The same logical expression can be as-
signed completely different meanings by
different agents.

Most of the representations we de-
scribe in this chapter have very simple
vocabularies with no semantic content—
they are largely data structures that can
be used by a computer to store and trans-
form information in a manner specified by
a set of rules or algorithmic procedures.
This lack of inherent meaning in the rep-
resentations employed by a computer
leads to the obvious question of whether
it is possible for a computer to “under-
stand” anything in a way a person might.

In his 1985 presidential address to
the American Philosophical Association,
Dretske asserts [Dretske 85]:

... . all cognitive operations (whether by
artifacts or natural biological systems) will
necessarily be realized in some electrical,
chemical, or mechanical operation over
physical structures. . . . This fact alone
doesn't tell us anything about the cogni-
tive nature of the operation being per-
formed—whether, for instance, it is an
inference, a thought, or taking a square
root. For what makes these operations
into thoughts, inferences, or arithmetical
calculations is, among other things, the
meaning of, or the semantics of, those
structures over which they are per-
formed. . . . Unless the symbols have
what we might call an intrinsic meaning,
a meaning they possess which is indepen-
dent of our communicative intentions and
purposes, then this meaning must be
irrelevant to assessing what the machine
is doing when it manipulates them. The
machine is processing meaningful (to us)
symbols, but the way it processes them is
quite independent of what they mean—
hence, nothing the machine does is
explicable in terms of the meaning of the
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symbols it manipulates or indeed, of their

even having a meaning. . . . In order,

therefore to approximate something of

genuine cognitive significance, to give a

machine something that bears a mark, if

not all the marks, of the mental, the
symbols a machine manipulates must be
given a meaning of their own, a meaning
that is independent of the user's purposes
and intentions. Only by doing this will it
become possible to make the meaning of
these symbols relevant to what the ma-
chine does with them, possible in other
words, to make the machine do some-
thing because of what the symbols mean,
possible, therefore, to make these sym-
bols mean something to the machine
itself.

It should be noted that the arbitrary
(even though fixed) conventions of a natu-
ral language are not enough to provide
intrinsic meaning to a description of some
aspect of the real world. This issue is
further discussed later in this chapter and
in Chapter 6.

ROLE OF REPRESENTATION

In the case of the 15 game, an appropri-
ately chosen representation served the
purpose of converting a given problem
into another problem that has a known
solution. Some other roles of representa-
tion are:

o Interpretation. Sensory information can
be interpreted by using internal repre-
sentations (models) of real-world ob-
jects. For example, visual information
can be interpreted by comparing the
sensed visual data with stored descrip-
tions of objects.

« Organizing function. A representation
may allow us to organize information so

that similarities and differences between
objects and events are more readily
identified. Plotting two sets of data on
the same graph will visually show simi-
larities and differences.

« Questioning function. Internal models
lead us to ask questions about events.
Why is a certain event occurring when
our model predicts otherwise? We are
thus guided to revisions in our models,
the generation of a set of alternative
models, or further attempts at data
gathering from our surroundings.

« Predictive function. An internal model
allows us to predict events that will
result from actions. For example, a
mathematical model of a rocket enables
us to predict the motion of the rocket.

o Deductive function. Certain representa-
tions can be used to make new knowl-
edge explicit by allowing deductions to
be performed on the original knowl-
edge. For example, given All pit dogs
are dangerous. This dog is a pit dog, we
can deduce This dog is dangerous.

REPRESENTATIONS EMPLOYED
IN HUMAN THINKING

The concept of representation as a way of
selectively, and even creatively modeling
the world, has proved to be one of the key
ideas underlying our understanding of
both human and machine intelligence. In
this subsection we briefly describe the
representations used by people to solve
real-world problems. Our exposition here
will be general and descriptive, in contrast
to the more detailed and technical discus-
sion of the rest of this chapter which deals
with the formal representations suitable
for use in computers.
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The Use of Models and
Representations

Most people are unaware of their use of
models in problem solving and in the way
they view the world. As Robert North has
stated [North 76]:

Each of us carries around in his or her
head a model of the world, of society, of
the local community, of the family—even
of oneself, and none of us can deal with
any of these entities, even superficially,
without reference to the appropriate
mental construct or model. It is the only
way we have of relating to other people
and to our larger surroundings. We draw
upon these models whenever we discuss
affairs, whenever we vote, and whenever
we plan for the future in any way.

George Kelly [Kelly 55] focuses on the
psychology of personal constructs, the
creative capacity of living things to repre-
sent the environment, not merely to re-
spond to it. The point of view that
dominates this work is “constructive al-
ternativism,” the creation of alternative
constructions to explain things in the
universe. Some key ideas are:

* Reality is subjective. “Each person
personally contemplates the stream of
events upon which he or she is so swiftly
borne,” and builds a personal model of
reality.

« People as scientists. Every person, in
his or her own particular way, is a “sci-
entist” whose ultimate aim is to predict
and control. There are differences be-
tween the personal viewpoints of dif-

ferent people just as there can be differ-

ences between the theoretical points of
view of different scientists.

Representing the universe. Life in one
part of the universe, the living creature,
is able to represent another part, the
environment. Because man can repre-
sent the environment, he can place
alternative constructions on it. Man
views the world using patterns or tem-

- plates that he creates, and then at-

tempts to “fit” these templates to the
realities of which the world is com-
posed. The fit is not always very good.
Man creates his own way of seeing the
world in which he lives, the world does
not provide this for him. The same
events can often be viewed in the light
of two or more systems, yet the events
do not belong to any system. A con-
struct (specific pattern or model for
interpreting some aspect of reality) is
used to forecast events and is tested in
terms of its predictive efficiency. In
general, people improve their internal
constructs by increasing the repertoire
of constructs, by altering the existing
ones to obtain an improved “match”
with the world, or by combining con-
structs. Interpretations of the universe
will never be perfect, and thus are al-
ways subject to revision or replacement.
Psychological relevance. “Man, to the
extent that he is able to construe his
circumstances, can find freedom from
their domination. The person who or-
ders his life in terms of many special
convictions makes himself a victim of
circumstances. Every little prior convic-
tion not open to review is a hostage he
gives to fortune; it determines whether
the events of tomorrow will bring happi-
ness or misery. The person whose prior
convictions encompass a broad perspec-
tive, and has cast these in terms of
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principles rather than rules, has a much
better chance of discovering regularities
in ‘world events’ than someone with a
limited and inflexible set of models.”

The Use of “Visual” Representations

There are many interesting examples of
visual representations used by people to
solve problems. For example, Koestler
[Koestler 69] quotes Friedrich Kekule, the
chemist who discovered the structure of
the benzene ring in a dream:

I turned my chair to the fire and dozed.
Again the atoms were gamboling before
my eyes. This time the smaller groups
kept modestly in the background. My
mental eye, rendered more acute by
repeated visions of this kind, could now
distinguish larger structures, of manifold
conformation; long rows; all twining and
twisting in snakelike motion. But look!
What was that? One of the snakes had
seized hold of its own tail, and the form
whirled mockingly before my eyes. As if
by a flash of lightning, I awoke.

The result of the dream was Kekule’s
insight that organic compounds such as
benzene were closed rings rather than
open structures.

The Nobel Prize-winning physicist
Richard Feynman used a visual approach
to the solution of particle physics prob-
lems which has become known as
“Feynman diagrams.” As described by
Dyson [Dyson 79] this form of visual
thinking was difficult to communicate to
others:

The reason Dick’s physics was so hard for
ordinary people to grasp is that he did
not use equations. The usual way theoret-
ical physics was done since the time of

Newton was to begin by writing down
some equations and then to work hard
calculating solutions to the equations.
... Dick just wrote down the solutions
out of his head without ever writing down
the equations. He had a physical picture
of the way things happen, and the picture
gave him the solutions, directly and with
a minimum of calculations. It was no
wonder that people who had spent their
lives solving equations were baffled by
him. Their minds were analytical; his was
pictorial. My own training since the far-off
days when I struggled with Piaggio’s
differential equations had been analytical.
But as I listened to Dick and stared at the
strange diagrams that he drew on the
blackboard, I gradually absorbed some

of his pictorial imagination and began

to feel at home in his version of the
universe.

The scientific literature has many
additional examples of visual representa-
tions used to solve problems. The choice
and application of such representations is
very much a mystery. In our attempts to
build intelligent machines we are currently
limited to the formal representations
described in the following sections.

EFFECTIVENESS OF A
REPRESENTATION

A good representation should allow all
situations of interest to be easily de-
scribed, and it should be stable, i.e., if the
original situation changes slightly, its new
representation should not be significantly
different from the original representation.
There should be little effect on the final
form and content of the represented infor-
mation even if there is a major change
irrelevant to the class of questions that
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are of interest. The representation should
also identify redundant information to
allow compact storage in a physical (com-
puter, brain) memory system.

The operations and data structures
provided by the representation should
result in simple computational proce-
dures for answering questions relevant to
the given situation. For example, in the
matchstick puzzle of Chapter 1, the rep-
resentation organized the information so
as to reduce the size of the combinato-
rial search space. In the example of the
15 game, the representation converted
a difficult game into a familiar one.

A representation should highlight the
important information and thus simplify
the relevance problem, as in the following
“31 dominoes” problem. A domino is a
rectangle with dimensions exactly equal to
two adjacent grid squares (see Fig. 3-1).

Given an 8 x 8 grid (Fig. 3-1a), it is
obvious that it is possible to find many
arrangements in which 31 dominoes can
be placed on the grid so as to cover 62
of the grid squares; Fig. 3-1(b) shows
one such arrangement.

Are there always arrangements of
the 31 dominoes that will leave any two
selected squares uncovered? In particular,
is there at least one such an arrange-
ment that will leave two diagonally op-
posite squares uncovered, as shown in
Fig. 3-1(c)? Try to solve this problem
before looking at the answer we present
below.

It is difficult for most people to prove
the solution, namely, that the required
configuration of dominoes cannot be
found. However, if we color the grid with
alternating black and white squares, as
would be found on a checkerboard, we
observe that the two diagonally opposite
squares have the same color. Now we
further observe that each domino covers
exactly one black and one white square
when placed on the board in a legal posi-
tion. Thus, any possible legal covering
with the 31 dominoes must leave one
black and one white square uncovered.
This condition is violated for the diago-
nally opposite squares. This simple solu-
tion to the posed problem was possible
only after we changed the representation

@

®) ©

FIGURE 3-1

The 31 Dominoes Problem.

(a) An 8 x 8 grid. (b) One arrangement of 31 dominoes on 8 x 8 grid. (c) Desired coverage of 8 x 8
grid. Shaded areas on (b) and (c) are uncovered squares.
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(by coloring the grid squares) to one that
made explicit the critical constraint on
any possible solution.

In addition to all the previous con-
siderations, the utility of a represen-
tation often depends on its generality:
there should be a number of reasonably
distinct problem domains to which it
can be applied.

REPRESENTATIONS EMPLOYED
IN ARTIFICIAL INTELLIGENCE

A significant portion of Al research is
concerned with creating and studying the
properties of symbolic representations,
since such representations lie at the heart
of planning, reasoning, and problem solv-
ing. It is surprising that there are only
about ten distinct representational sys-
tems of broad generality currently em-
ployed in Al research. We will explore
some of these in more detail in subse-
quent chapters. The major representa-
tions are indicated below, and several of
particular interest to this book are dis-
cussed in following subsections.

Feature space (or decision space). A
feature space is formed by assigning a
problem-related measurement to each axis
of a multidimensional space. Figure 3-2
shows a two-dimensional feature space
with one axis representing weight and the
other height. One of the points shown
represents an individual 6 feet tall and
200 pounds in weight. Points that are
close together in this representation rep-
resent persons or objects that have similar
height-weight measurements.

Relational graph/semantic net. A tree
or graph structure is typically used to de-

250 A
e
. 200 frm———————— —ae
Weight 150 -
(Ib)
100
|
50
T T T i3 T 1
12 3 456 7
Height
(1)
FIGURE 3-2

A Two-Dimensional Feature Space.

Point represents an individual who is 6 ft tall
and weighs 200 1b. Cluster of points repre-
sents persons or objects with similar mea-
surements.

scribe relationships between objects (e.g.,
objects in a story), often for the purpose
of general question answering. The net
shown in Fig. 3-3 represents the facts:
John is a man, John likes Mary, John sees
object,, and object, is a book. Using this
net, it is possible to answer questions such
as “Who does John like?,” and “Does
John see a book?” Note that to answer
the second question it is necessary to
trace through both the path “John sees
object,” and “object, is a book.”

Decision (or game) tree. In a typical tree
structure, each node, representing a state,
is connected to one or more successor
states. The goal is to traverse the tree
from an initial state to a desired final
state. In the example shown in Fig. 3-4
we begin with two sets, one with the two
elements + + and the other with the
single element $. Two players take turns,
and at each turn a player can choose any
number of elements from one of the two
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FIGURE 3-3 A Relational Net.

sets. The person taking the last element
loses. The tree shows that the first player
has three choices +, + +, or $, and
shows the configuration that results after
each choice. Subsequent lines show the
choices remaining to the second player,
and then the first player, until no further
alternatives are available for either. The
exhaustive tree for this game shows that
the first player should take both + +
elements on the first move.

State transition graph (or sequential
machine). This representation uses
nodes and labeled links. The traversal of
any particular link requires that the input
conditions specified by its label are satis-

fied. This compact representation can be
used to represent any algorithmic proce-
dure, as discussed extensively in Chapter
2. The state diagram shown in Fig. 3-5
shows a “parity machine” that receives as
input a string of 1's or 0’s, and determines

Set1 Set 2
+ o+ $
First player + $
++
+ 9 $ + +
Second player
play A + $ +-/\~
+ $ Lose  Lose +
First player |+ $ +
Lose Lose Lose

whether the number of 1’s in the string is
odd or even.

The machine goes into the ODD state
when an odd number of 1’s has been in-
put, and into the EVEN state for an even
number of 1’s. The machine must be ini-
tialized to start in the EVEN state. The
arrows indicate the transition to the same
or the other state, and the 0 or 1 indi-
cates the input symbol that causes the
transition.

Frames. A frame is a way of represent-
ing knowledge about the objects and
events common to a particular situation.

FIGURE 3-4 A Typical Game Tree.

Double lines mark the only path by which the first player
can force a win.

The elements of a given situation are
stored as entries in the “slots” of the
frame (see Chapter 6). In Fig. 3-6 we show

an open frame for DOG, and a filled-ini

i
i
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Designates that if machine is
in EVEN state and receives a 0

it remains in the EVEN state
‘ |
CNE
FIGURE 3-5

State Transition Graph for a Parity
Machine.

0

frame for a specific dog, DOG-1. Note that
there are slots that have default values,
i.e., values that will apply unless otherwise
specified. If we are told that DOG-1 is a
three-legged, white and black-spotted
Dalmatian named Penny , we can record
this information in the DOG-1 frame on

the right.

Logic. The propositional and predicate
calculus are formalizations of the process
of inferring new information from existing
facts (see Chapter 4). The notation given
below indicates that for all objects, if the

object is a dog, then that object is an
animal.

(ALL X)[DOG(X) — (ANIMAL(X)) ]

Mathematics. Mathematical representa-
tions are pervasive in all areas of AL e.g.,
representations such as power series,
Fourier transforms, the matrix form, and
spatial coordinate systems play an impor-
tant role in many areas of machine per-
ception. The mathematical expression
below specifies the relationship between
R, x, y, and A.

R = xcosA + ysinA

Procedural representations. Knowledge
about the world can be formulated in
terms of procedures that allow specific
tasks to be performed, as in

PROCEDURE: BOIL WATER

1-Obtain pot, and put water in it

2-Put pot over range burner, and turn on
burner

3-Turn off burner when steam rises

This is an example of knowing by
“knowing how.” Thus, given the proce-
dure we might know how to boil water;

@ (DOG-1
A DOG A DOG
WITH [BREED =?] WITH [BREED =DALMATIAN]

[FEET =4]default [FEET =3]
[EARS =2]default [EARS = 2] (default value)
[NAME =7] [NAME =PENNY]
[SIZE =7] [SIZE =7
[COLOR =?)) [COLOR =WHITE WITH BLACK SPOTS))

FIGURE 3-6 A Frame for the Concept “A Dog.”
(a) Concept of a dog using frame representation. (b) Instantiation of the frame for a specific dog.
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however, we might not understand the
concept “boiling water.”

Production systems. Production systems
use rules of the form, IF condition A is
satisfied THEN consequence B follows.
The production rule approach is dis-
cussed in Chapter 7.

Isomorphic/iconic/analogical representa-
tions. These are representations for
which there is a direct structural relation
to some of the properties of the domain
being represented (see below and Chapter
9). In Fig. 3-7, we show that a house plan
is an isomorphic representation of the

Feature Space (or Decision Space)

As indicated in the previous subsection, a
feature space is formed by assigning a
problem-related measurement to each axis
of a multidimensional space. This repre-
sentation can be used for many purposes,
but is especially relevant for decision mak-
ing and classification tasks. For example,
consider the problem of classifying a per-
son into the category man or woman
given the person’s height and weight mea-
surements. In Fig. 3-8 we again show a
two-dimensional feature space that uses
height as one dimension and weight as
the other. A (height, weight) measurement

actual physical house. _Set, such as (5'10", 175 Ib) is.then repre-
Top
view
Side
Front view view

DHD

HOUSE PLAN

ACTUAL HOUSE

FIGURE 3-7 Isomorphism Between a Drawing and the Physical Object.
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FIGURE 3-8

Example of Partitioning a Two-Dimensional
Feature Space as the Basis for Making
Classification Decisions.

sented as a point in the feature space. It
is possible to partition the space so that
points that are typical examples of their
class lie in a particular partition. In Fig.
3-8 the space has been partitioned into
the classes men and women, based on

a set of typical members of each class.
Note that a new point, (6', 225 Ib) falls in
the male class. If the measurements are
good indicators of the classes being
represented, then the data for each
class “cluster” into a compact region,
and regions for distinct classes are well
separated.

A well-chosen feature space can be
partitioned into regions such that the
points in each region belong to a single
class of objects or events. One problem
is to partition the feature space, based
on a given set of labeled samples, called
the training set. The partitioning bound-
aries can be generated using techniques
from statistical decision theory, and linear

and nonlinear programming. Basically,

a cost of making a classification error is
defined and is used to determine bound-
aries producing expected-least-cost clas-
sifications. For example, in the one-
dimensional case shown in Fig. 3-9, we
plot a height distribution for the classes
men and women. We can select a decision
line for separating the two classes, and if
it is more “expensive” to make the mis-
take of classifying a man incorrectly as a
woman, we will position the line toward
the lower height values.

Decision Tree/Game Tree

We noted that a decision tree is often
used to describe exhaustively all the con-
sequences that can arise from some initial
situation (state), assuming each state can

Probability -
of d
height

Height (feet)

FIGURE 3-9

One-Dimensional Classification:
Distinguishing Men from Women on
the Basis of Height.

The decision line on the left (interrupted) is selected if
classifying a man incorrectly is more “expensive” than
misclassifying a woman. The solid line on the right
should be used if both types of misclassification errors
are equally costly.
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only give rise to a specified number of
successor states as a result of the appli-
cation of a given set of operations or
actions. For example, a tree could provide
an explicit representation of all possible
moves in a game of checkers. Many tech-
niques are available to make an efficient
traversal of the tree, and to limit the num-
ber of paths that must be examined.

One problem that often arises in
the decision tree/graph representation

is finding the shortest or longest path
between two nodes in the graph, or, alter-
natively, determining which paths have a
high “payoff” with respect to achieving
some given goal. This type of problem is
often handled using relaxation, and an
example is shown in Fig. 3-10. Suppose
we want to go from an origin node to a
destination node taking the shortest path.
In Fig. 3-10(a), we show the basic compu-
tation employed. In this example there are

Shortest distance from origin to N is:

the smallest of

new value
thru ato N: 20 + 12 = 32 «~assumed by N
thrubtoN: 35 + 8 = 43

thructoN: 40 + 4 = 44

previous best

path to N: 1000

FIGURE 3-10 Finding the Minimum Path in a Graph using Relaxation.

(a) Basic approach. (b) Road network example. (c) Shortest path shown by thick line; e.g., shortest
way from Z back to origin is: via X = 14 + 12 = 26, sincevia Y = 20 + 9 = 29.
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paths to node N coming from nodes a,b,
and c. Attached to each node is a circled
number specifying the shortest distance
from the origin node (not shown) to a,b,
and c respectively. The shortest distance
from the origin to N is then obtained as
follows: For each node a, b, and ¢, form
the sum of its circled number and the
distance from that node to N. Select the
smallest sum or the current value as the
shortest distance from the origin to N.
In Fig. 3-10(b) we show a graph, and in
Fig. 3-10(c) the final results of the com-
putation. A is the origin node and B is
the destination node. The circled values
in Fig. 3-10(b) are used to initialize the
computation; the value 1000 could have
been replaced by any number larger than
any reasonable final answer. The compu-
tation described in Figure 3-10(a) can
be performed at any node in any order.
When the computation can no longer
produce a change, (i.e., a reduction of an
existing circled value, anywhere in the
network), the circled value at the destina-
tion is the desired shortest path length.
Note that, in general, we may have to
perform the “update” computation of
Fig. 3-10(a) many times at each node be-
fore no further change is possible. When
we have completed the computation, we
trace back through the circled nodes that
led to this lowest number. This is shown
by the check marks in Fig. 3-10(c).
Another approach to this problem
uses various pruning techniques that
ignore unpromising paths. One of the best
known pruning techniques, the alpha-beta
heuristic shown in Box 3-1, reduces the
number of branches that must be ana-
lyzed by ignoring obvious loser branches.
Since the decision tree and other
graph structure representations require an

explicit description of the complete prob-
lem domain, they do not seem capable of
dealing with the potentially infinite prob-
lems that are the core problems of AL For
example, the decision tree appears to
require an exhaustive listing of all alterna-
tives. However, there are three methods
for removing this difficulty. (It should be
noted that these methods do not guaran-
tee that the “best solution” will always be
found.) First, we can provide a single
number estimate, an heuristic evaluation
function, that indicates the value of ex-
ploring the (potentially infinite) remainder
of the tree extending beyond some given
node. Second, we can throw away infor-
mation that does not appear to be impor-
tant in finding a best solution, based on
the assumption that only a few aspects of
the problem need be considered to obtain
an acceptable answer most of the time.
Finally, if a mechanism exists for generat-
ing portions of the tree as needed, theri
only those parts of a tree that we wish to
examine need to be generated; typically,
only a finite portion of a potentially infi-
nite tree need be searched to find a de-
sired solution. '

Isomorphic/Iconic/Analogical
Representations

We usually do not appreciate the remark-
able “isomorphic” representation known
as a road map (Fig. 3-11). The road map
can be used to answer an unbounded set
of very complex questions. For a current
location on the map, we might ask, What
is the nearest major town, and how far
away is it? What is the closest highway
intersection where at least three roads
come together? Note the complexity of
trying to answer such questions by using
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tabular data, or other similar symbolic
representations. For the first question,
one would have to store the locations of
all towns and be able to determine the
road distance to each town from every
road point. The second question would
require that we either prestore or com-
pute the intersection of all roads, and be
able to determine the road distance of
these intersections for all locations in the
map. One can see some of the problems
of storing the map information in a sym-
bolic format that is still capable of provid-
ing the answer to any question that could

have been answered by looking at the
map itself.

The term “isomorphic”, “iconic”, or
“analogical” representation is used to
denote representations for which there is
a direct structural and metric relation to
some of the properties of the domain
being represented. Technically, this type
of a relationship is called an isomorphism,
and we can say that an isomorphic repre-
sentation is able to represent implicitly
those properties of the domain preserved
by the isomorphism. An interesting exam-
ple of an isomorphic representation is the

BOX 3-1 Game Trees and the Alpha-beta Heuristic

A game can be represented as a tree, where alternating
levels indicate the moves available to each opponent. In
the tree below, we show the value of the game situation
to the first player as the lowest level of the tree:

/0\
0 0
/ \ / \ moves available to 2nd player
0 o () 0
4 2 1

3 value of each game situation
to the first player

moves available to 1st player

The first player tries to select a move that will result
in the best game situation, i.e., the highest value after
the second player has made his selection, while the
second tries to minimize this value. Using a mini-max
analysis, we can project values up to all nodes of the
tree. In the example below, if we look at the bottom row,
we know that the minimizing player will choose the
branch corresponding to a value of 2, rather than the
branch corresponding to 4. Similarly, given the choice of
a1l or a 3 on the bottom row, the minimizing player will
choose the 1. The maximizing player, given the choice of
2 or 1 on the second row will choose the 2. Thus, the
best that the first player can achieve is the value 2,
obtained by selecting the left-hand branch.

maximize 02
moves available
to 1st player
minimize 02 o1~
moves available
to 2nd player
maximize 0 o} o} 0
4 2 1 3 value of each

final move

Complete evaluation of a game tree is usually im-
practical, and is indeed unnecessary. In the above tree, if
the analysis is carried out from left to right, the maximiz-
ing player would eliminate the choice marked with * as
soon as the value of 1 is projected up from the lowest
level, since this is less than the other node (whose value,
2, is assumed to have already been determined). Thus, it
is not necessary to evaluate the lowest level node whose
value is 3. '

The alpha-beta heuristic is a tree-pruning algorithm
that formalizes the following concept: Whenever we
project a value to a parent node from a lower node that
is better than the existing value of the parent node,
check how that parent node now compares with other
nodes on its level. It may be that no further exploration
is needed below that parent node.
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For this location,

what is the nearest

town? What is the

nearest highway intersection
where three roads

come together?

O Lakeview

O Ontario

FIGURE 3-11

Example of an Iconic/Isomorphic Representation.

string model for determining the shortest
path in a graph (see Box 2-8). Consider
the problem of finding the shortest route
from city A to city B over some given
network of roads. Construct a “map”
made out of pieces of string to represent
the roads connecting the cities. Let the
length of each piece of string be propor-
tional to the length of the road segment it
represents, and knot together the strings
at places where the roads intersect. Now
with both hands, grasp the points in the
string map corresponding to cities A and
B and pull these points in opposite direc-
tions. The shortest path will correspond
to the road segments represented by the

strings supporting the rest of the dangling
road network.

Solving a problem using an isomor-
phic representation is often similar to
performing a physical experiment on a
“real-world” situation, as opposed to
obtaining the solution by an algorithmic
technique applied to a symbolic descrip-
tion. A physical experiment, unlike a
symbolic solution, can proceed without
complete specification or understanding
of the problem domain. Thus, at least in
part, the power of an isomorphic repre-
sentation resides in the fact that there is
no need to make explicit the problem
domain constraints and relationships,
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since they are captured by the structure
of the representation. Even if understood,
attempting to make such knowledge ex-
plicit is often impractical because of the
enormous amount of detail needed to
capture the many aspects of the natural
world. Isomorphic (iconic) representations
are discussed in Chapter 9.

DISCUSSION

It is generally acknowledged that most
elements comprising an Al system cannot
function without knowledge of the appli-
cation environment. For a computer sys-
tem, this knowledge must be represented
in some formal notation that can be ma-
nipulated for the purposes of storage,
retrieval, and inference making. A basic
philosophical question concerns the ex-
tent to which the complexities of the
world can be reduced to a manageable
set of symbolic relations susceptible to
logical analysis (see [Nilsson 83]). There
are those who feel that many subtle con-
cepts cannot be captured using a formal
representation [Pentland 83]. Some
examples of things that are not readily
represented by a symbolic description are
a person’s face, a taste, the sound of a
musical instrument, and a smell.

The assumption that we can capture

people’s knowledge, actions, and experi-

ences in a computer program by using
formal representations has also been
challenged by the phenomenologists.'

"Phenomenology is a philosophical examination of
the foundations of experience and action.

Martin Heidegger, a leading phenomenol-
ogist, believes that our implicit beliefs and
assumptions cannot be made explicit. As
Winograd [Winograd 86] says, “Heidegger
rejects both the simple objective stance
(the objective physical world is the pri-
mary reality) and the simple subjective
stance (my thoughts and feelings are the
primary reality), arguing instead that it is
impossible for one to exist without the
other. The interpreted and the interpreter
do not exist independently: existence is
interpretation and interpretation is exis-
tence’’[p.31]. If the phenomenologists are
correct, we can never capture the subtle-
ties of interpretation required to function
in the world until we find some way of
capturing in the machine the interactive
nature of interpretation.

We sidestepped a basic problem in
representation: Suppose an intelligent
entity has a wide spectrum of representa-
tions available. How can it determine
which representation or model of the
world is applicable for a given situation?
People seem to select appropriate repre-
sentations for real-world problems without
difficulty. This problem of knowing which
representation to use at any given time
arises in many contexts, e.g., in the frame
selection problem discussed in Chapter 6.

Finally, a question that still plagues
our attempts to achieve machine intelli-
gence: If a suitable model is not currently
available, how can one systematically
obtain a new and efficient model for the
given situation? People are very adept at
developing new representations when
their existing ones are inadequate, but we
have no idea how this is accomplished.



