
Part Two

Cognition

4. Reasoning and Problem Solving
5. Learning
6. Language and Communication
7. Expert/Knowledge-based Systems

In this part of the book we deal with the gen
eral symbolic machinery that provides a basis
for reasoning, planning, and communication.
A main theme is the need for "representing"
a problem in a form that permits its effec
tivesolution, and the difficulty of obtaining
such representations automatically.

81





4

Reasoning and Problem
Solving

In itsmost basic sense, rea
soning is the ability to solve
problems. However, simply
because a device cansolve a
problem does not mean
that it is capableof reason
ing. For example, a pocketcalculator can
"solve" a variety of mathematical prob
lems, but certainly such problem solving
ability is not an example of reasoning.
Whatare some of the necessary condi
tions that distinguish reasoning from
"mechanical" behavior?

First, we requirethat a reasoning
system be capable of expressing and
solving a broad rangeofproblems
and problem types-including problem
formulations that do not correspond to
rigid templates anticipated bythe system

83

designer. (The pocket calculator,
for example, fails this test.) Thus,
our first requirementimplies that
a reasoning system be based on
a set of representations that has
broad expressive power.

Second, the system must be able to
make explicit the implicit information that
is known to it, i.e., for any information
possessed bythe system it can systemati
cally obtain all equivalent representations
of this information. I For example, from
the information (1) all tigers are danger
ous, and (2) this animal is a tiger, the sys
tem shouldbe able to obtain the explicit
statement (3) this animal is dangerous.

'This is meant in a conceptual sense; in practice,
obtainingall equivalent representations could take
an impractical amountof time.



84

REASONING AND PROBLEM SOLVING

Note that (3) wasimplicit in statements
(1) and (2). Thus, we require a set of
operations or transformations that pro
duce other "valid" representations
when applied to the representations of
information possessed bythe system.
The system must be able to translate
a problem situation expressed in some
external representation into its own
(internal)representation as well as being
able to "syntactically" transform infer- '
mation already expressed in its own for
malism. For example, a translation may
be made from natural language to a logic
formalism, and expressions in the logic
formalism may then undergo additional
transformations duringthe courseof
constructing a proof.

Third, we require that the system
have a control structure that determines
which transformationsto apply, when a
solution has been obtained, or when fur
ther effort is futile.

Finally, we require that all the above
be accomplished with a reasonable degree
of computational efficiency.

In the remainderof this chapter, we
will consider a numberof distinct formal
isms for reasoning, and describe how
these formalisms are applied to problem
solving. Some of the issues addressed
include:

• What is reasoning, and whatis its role
in intelligent behavior?

• How can a reasoning system use a for
mal language to represent things and
their relationshipsin the world, and
how can it solveproblems using such
a representation?

• What are the conceptual and practical
limits of problemsolving systems em-

ployingformal representations?
• How can a reasoning system deal with

imprecisely formulated problems?
• How can a reasoning system select the

best representation for a given problem?
• How can a reasoning system know

which facts in its database are relevant
to solving a given problem?

• How can a machine formulate a plan of
action to achieve a desired goal?

HUMAN REASONING

Until the twentieth century, logic and the
psychology of thought were considered to
be one and the same. In Chapter 1 we
quoted Boole'sstatementas to the pur
pose of his book on logic: to investigate
the fundamental operations of the mind
by which reasoning is performed. Thus, it
is not surprisingthat oftenformal logic or
probability theory is taken as the ideal,
and human reasoning is found to deviate
from this ideal. Thispoint of view is in
contrast to investigations in visual percep
tion and language, where the biological
system is taken as the exemplar and an
attempt is made to attain similar perfor
mance by machine.

As discussed in Chapter2, almost
nothing is known about the physical ma
chineryused by the brain to carry out its
reasoningactivity. Attempts to gain in
sight into the functional aspects, if not the
actual brain mechanisms involved in hu
man reasoning havemotivated a large
bodyof psychological research. However,
unlikeexperiments in which the speed or
accuracy of a perceptual or motor action
can be objectively measured, experiments
in reasoning are subjectto contextual
conditions and variables that are difficult
to control, and that can onlybe quantified



85

HUMAN REASONING

using subjective judgment. For example,
sincesubjects cometo such experiments
with a lifelong experience of cooperative
ness in conversation, they expect to en
countera cooperative experimenter who
will provide them with information useful
for solving the posed problem. Thus,
although the experimenter may have
provided redundant or misleading infor
mation, subjects will attemptto use this
material to find a solution. There is also
the problem of experiments that are for
eignto the natural reasoning processes
used by people, resulting in misleading
conclusions. Scribner [Scribner 77] de
scribes some of the fascinating cultural
influences on logical processes.' Finally,
the experiments oftenrequirethat human
subjects describe their reasoning activities
as they solvea problem; the recorded
protocols are then analyzed. Suchproto
col analysis suffers from the factthat
people typically do not have access to the
reasoning mechanisms that theyare really
using.

Much of the research on human
judgment and reasoning is basedon the
studyof "errors." Thisapproach is similar
to the studyof optical illusions to under
stand the principles of visual perception
or the studyof forgetting to learnabout
memory. Research on systematic errors
and inferential biases in reasoning can
sometimes reveal the psychological pro
cesses that govern judgment and infer-

'For example, supposea subjectis presented with
the statements, All women in Biranga aremarried.
Mary lives in Biranqa, and is asked"Is Mary mar
ried?" In somecultures, subjects might reply that
they cannotanswer becausetheydo not know Mary.
Others will not accept the initial premise because
they know that there are unmarried women in
Biranga,

ence. Such researchcan also indicate
which principles of logic and statistics are
nonintuitive or counterintuitive. However,
given the large bodyof work investigating
human problem solving, there have been
surprisingly few results concrete enough
to be suitable for transferto machine
based formalisms.

Human Logical Reasoning

Some of the rulesof formal logicare quite
intuitive for people, but many others are
not. Experiments [Rips 77] haveshown
that people readily use forms of inference
such as "From (P implies Q) and P you
can deduce Q." For example, "If John is
good, he will be rewarded. John is good.
Therefore, John will be rewarded." How
ever, the valid deduction "From (P implies
Q) and (not Q) you can deduce (not P)" is
mistrusted bypeopleuntrained in formal
logic. For example, "IfJohn is good, he
will be rewarded. John will not be re
warded. Therefore, John is not good."
The difficulty with this form may be due
to the fact that peopleare not used to
reasoning about whatis not true. In ad
dition, peopletend not to seek negative
information when carrying out reasoning
processes.

People have difficulty withmany
deduction forms, "syllogisms," that deal
with "all" and "some." For example, the
invalid syllogism "Somef.:s are B's; some
B's are C's implies that some f.:s are C's"
is considered correct by most people.
Figure4-1 shows that there are situations
for which this syllogism is false. The valid
syllogism "Some B's are f.:s; No C's are
B's: thereforesome f.:s are not C's" was
considered as invalid by 60% of tested
subjects [Anderson 80).



86

REASONING AND PROBLEM SOLVING

Testing the syllogism "Some Pl.s are B's: some B's are
C's; therefore some Pl.s are C's, " The diagram givesan
instancein which the syllogismis false.

FIGURE 4-1
The Use of a Venn Diagram to Testa
Syllogism.

Johnson-Laird and Wason summarize
the situationas follows [Johnson-Laird
77]: "There is not much of a consensus
about the psychological mechanisms un
derlying deduction or evenabout so fun
damentala matter as to whetheror not
human beings are basically capable of
rational inference.. .. [p.76]." In later
work, described by Gardner [Gardner 83,
pp. 363-367], Johnson-Laird offers the
theory that peoplereason bysequentially
integrating the premises and conclusion of
an argument into one or more "mental
models" which are then searchedfor
inconsistencies (i.e., any interpretation in
which the premises leadto a denial of the
conclusion). If no such inconsistencies can
be found, the conclusion is acceptedas
valid; while formal logic provides system
atic methodsfor searching for counter
examples, ordinary human reasoning
employs no such methods.

"This is the phenomenon that exceptional perfor
mance is more often than not followed by disap
pointingperformance and failures by improvement.

Human Probabilistic Reasoning

There are majordifferences between
human and formal probabilistic reasoning
[Tversky 74]. When dealing with ques
tions concerning the probability that
objectA belongs to class B, or the proba
bility that event Aoriginates from process
B, a person generally evaluates the degree
to which A is representative or resembles
B, while ignoring prior probabilities, the
effects of sample size, and a statistical
principleknown as "regression to the
mean."?

In a typical experiment, subjects were
shown briefpersonality descriptions of
several individuals, allegedly sampled at
random from a groupof 100 persons
engineers and lawyers. For each descrip
tion, the subjects were asked to assess the
probability that it belonged to an engineer
rather than to a lawyer. One set of sub
jects were told that there were30 engi
neers and 70 lawyers, and the other group
of subjectswere told that there were70
engineers and 30 lawyers. Ignoring the
prior probabilities, the two sets of subjects
came up with essentially the same proba
bility judgments.

Other experiments have shown
that people expect that a sequence
of events generated by a random process
will represent the essential characteristics
of that process evenwhen the sequence is
short. For example, in tossing a fair coin,
people regard the sequence H-T-H-T-T-H
to be more likely than the sequence
H-H-H-T-T-T [Tversky 74]. Thus, people
expect that the essential characteristics of

Some B's are C'sSome A's are B's



87
FORMAL REASONING AND PROBLEM SOLVING

the processwill be represented, not only
globally in the entire sequence, but also
locally in each of its parts.

Another heuristic used by people is
assessing the probability ofan event based
on the ease with which instances or occur
rences can be brought to mind. For exam
ple, one may assess the riskof heart
attack among middle-aged people by
recalling such occurrences amongone's
acquaintances. Conceringthis "availabil
ity" heuristic, Tversky and Kahneman
have pointed out [Tversky 74]:

Lifelong experience has taught usthat,
in general, instances oflarge classes
are recalled better and faster than in
stances ofless frequent classes; that likely
instances areeasier to imagine than
unlikely ones; and thattheassociative
connections between events arestrength
ened when theevents frequentlyco
occur. As a result, man has at his disposal
a procedure, the availability heuristic, for
estimating the size ofa class, the likeli
hood ofan event, or thefrequency ofco
occurrences, bytheease with which the
relevant mental operations ofretrieval,
construction, or association can be per
formed. However, this valuable estimation
procedure results insystematic errors.

In both the logical and statistical .
domains, it appears that the human rea
soningprocess is context-dependent, so
that different operationsor inferential
rules are required in different contexts
[Hayes 77]. Consequently, human reason
ing cannot be adequately described in
terms of context-independent formal
rules. Furthermore, performance is dra
matically improved when an experimental
task is related more clearly to the sub
ject's experiences. The difficulty in solving

a posed problem is often not intrinsic to
the logical structure of the task, but
rather to the mode ofpresentation (e.g.,
[Johnson-Laird 77]).

FORMAL REASONING AND
PROBLEM SOLVING

Requirements for a Problem Solver

A problem existswhen there are condi
tions that certain objects must satisfy,
givensome set of constraints or facts. A
solution is a way of satisfying the condi
tions. Thus, given the problem of getting
from home to the airport, the database of
facts should contain information concern
ing the transportationavailable, the time
available, the distance to be traversed,
etc. The condition to be satisfied is your
presence at the airport, and the solution,
the "plan," is the sequenceof operations
that you use in satisfying the condition
consistentwith the given (or implied)
constraints.

An obvious first step in solvinga
problem is to recognize that a problem
exists. However, prompt recognition that
a problem exists may not be simple. For
example, novice chessplayers may not
notice that they are being drawn into a
losingposition until it is too late. A child
may not realize that the bicycle is going
too fast until it goesout of control. One
might drive for a considerable distance
before recognizing that one is lost.

Once the problem is recognized, the
problemsolvermust represent it in a
suitable formalism and then plan a course
of action using this representation and a
knowledge of the effects of proposed
actions. As indicated in Chapter 3, the



88

REASONING AND PROBLEM SOLVING

heart of the problem-solving process con
sists of choosing the right representation,
and being able to set up the appropriate
correspondencebetween the problem and
the representation.

In carrying out a plan, the problem
solvermust know whenthe information at
hand is inadequate and should be supple
mented or supplanted. If the environment
changes, the problemsolver must change
the plan accordingly. For example, in the
airport problem, we may plan to take
Bayshore Highway but find that construc
tion has slowed traffic too much, requiring
us to take First Street instead.

Any proposed solutionmust satisfy
the conditions of the problem. However,
in real-world problems wefind that some
of the most important conditions are not
stated. In the airport problem, the impor
tant condition-"I want to get to the
airport in a reasonableamount of time"
may not be stated. The solution "walk
there" may satisfy the stated conditions
but not the implicit ones.

Categories of Reasoning

There are many differentsystems of rea
soning that can be used to solveprob
lems. Wedivide these systems into the
three majorcategories presented below;
however, wewill encounter some reason
ing techniques that span more than one
category.

Deductive Reasoning. In deductive
reasoning, we attempt to find a "deductive
chain" of "valid" assertions leadingfrom
statements which are assumed to be true,
to some given assertion whose validity we
wish to establish. The powerof the deduc-

tive approach lies in the fact that the rules
of deductive inference obtain new true
statements from existing ones. Deductive
argumentsare characterized by their
logical necessity; the conclusion is "en
tailed" by (implicit in) the premises.

Deduction is meaningful only in the
context of a formal system in which sym
bols are combined and transformed under
a given fixed set of rules. The essence of
a deductive system is the maintenance of
validity or consistency: a statement and its
contradiction cannot both be derived. We
are thereforeguaranteed validity of de
rivedresults. However, to insure this
property, deductive systems are often
extremely awkward in expressing certain
types of information. Thus, deductive
logicsystems have no practical way of
dealingdirectly with probabilistic asser
tions, or with information implied by
quantitative assertions requiringnumeri
cal computation; mathematical systems
have no practical way of dealingdirectly
with conflicting or probabilistic assertions,
or with qualitative statements(e.g., "Bill
looks quite a bit likeJohn"); probabilistic
systems, to the extent that they can be
considered to be deductive, have no prac
tical way of expressing relationalinforma
tion (e.g., "Bill is twice as tall as John"),
and no effective way of manipulating
assertions that are strictly either true
or false.

InductiveReasoning. In inductive rea
soning (nondemonstrative inference), a
form of reasoningbasic to scientific in
quiry, we attempt to find some generaliza
tion or abstractionthat describes or
categorizes a set of data. Amajordistinc
tion between deduction and induction is



89

FORMAL REASONING AND PROBLEM SOLVING

that in induction we havea set of con
straints to satisfy, rather than an explicit
(given) assertion to establish. Further,
inductive problems are lesslikely to be as
precisely formulated as deductive ones.

For example, given the problem of
finding the next numberin the sequence
< 1,2,4,8,16>, mostpeople will givethe
answer "32" without requiring anyaddi
tional problem specification. It is typical
of problems in induction that there is
more than one acceptable answer to the
problem (any answer couldbe justified in
the above example). Such problems often
require extrapolation, and generally do
not permita definitive way to check the
"correctness" of a final answer. Premises
support, but do not logically entail the
derived solution. The rulesof inductive
inference do not provide an assured
means for deriving new true statements
from existing ones.

One of the most importantdistinc
tions between deductive and inductive
reasoning is the amountof "evidence"
that must be invoked to derive a new
assertion (or verify somehypothesis).
Because of assured consistency and com
putational considerations, deductive sys
temsgenerally use longreasoning chains
consisting ofsmall steps; in each step,
only a very small subset of the total set of
"facts" known to the system is explicitly
invoked. Deductive systems make "local"
syntactic transformations-they cannot
take a "global" perspective in solving a
problem. On the other hand, becauseof
the possibility of erroneous information,
inductive systems use short reasoning
chains consisting ofbigsteps. Inductive
systems generally attempt to explicitly use
as muchof their available information as

possible in every step since they depend
on consensus to insure "correct" conclu
sions. Thus, inductive systems must work
at a global level in solving a problem.

Analogical Reasoning. In analogical
reasoning, weset up a correspondence
between the elements and operations of
two distinctsystems. Typically, one of the
systems is well understood, and the other
is the one we wish to ask questionsabout;
weanswer the questions by posing them
in the system we understand. An example
of analogical reasoning is the solution
to the 15 game bythe known procedure
for playing tick-tack-toe, as described in
Chapter 3. Anotherexample is using our
knowledge and intuitions about fluid flow
to reason about the flow of electrical
current.

The majorproblem in reasoning by
analogy is to find the correspondence
between the known and unknown sys
tems. For example, ifwe have an analogy,
"An electric battery is like a reservoir," it
is not the size, shape, color, or substance
of a batterythat is relevant, but rather
that both store potential energyand re
lease energy to provide power."Thus, only
relationships dealing with the storage and
release of energy would be meaningful in
this analogy. The insightused by a person
to recognize that a previously encoun
tered situationis analogous to another
situationeludes mechanization.

Common-sense reasoning, discussed
later in this chapter, combines analogi
cal and inductive techniques to solve
everyday problems about the behaviorof
physical objects in the world. Analogical
reasoningalso plays an important role in
learning, as will be shown in Chapter 5.



90

REASONING AND PROBLEM SOLVING

The following sections describe a
number of different reasoning formalisms.
No matter which formalism is employed, a
majorpart of the reasoning process is the
conversion of somegiven problem into
that formalism. Thisconversion or trans
lationstep is actually a problem in ana
logical reasoning for whichwehave no
adequate solution at present; i.e., westill
consider the translation step to be a crea
tive process.

THE DEDUCTIVE LOGIC
FORMALISM

In this section wewill discuss a special
kind of reasoning called "logical deduc
tion," in which true conclusions result
when"rules of inference" are applied to
true statements. Thus, weare interested
in consistentsystems in which one propo
sition may be inferred or deducedfrom
other propositions. A deductive system
with a consistentset ofpremises will be
consistentin assigning truth-values to
conclusions: such a system cannot prove
both that B is true and that B is false.
Although the words "true" and "false" are
used in the continuing discussion, these
words do not necessarily meantrue or
false in the real world. Oneshould think
of "true" and "false" as labelsor values
(truth-values) that have been assigned to
statements, regardless of their relationship
to the real world.

Below, we will describe how real
world situationsare expressed in the
notation of formal logic and how to de
duce new facts from a given set of prem
ises. Wefirstdescribe the propositional
calculus that allows us to deal with given

propositions (sentences), and composi
tions ofsuch sentences, which must be
either true or false. Then wewill treat
the predicatecalculus that allowsus to
compose true or false sentencesfrom
more primitive elements than complete
sentences. These two logic systems have
been thoroughly investigated and are
well understood, but they correspond to
a very small part of the reasoning used
by people. However, theyform the basis
of many AI reasoning programs, and are
also part of the machinery underlying
"logic programming," as typified bythe
language PROLOG, discussed in Ap
pendix 4-1.

Propositional Calculus

The calculus of propositions dealswith
statements or sentences of the type
"Water boilsat 212 degreesFahren
heit" "The number 3 is an even num
ber," where the firstsentence has an ass0

ciated truth-value designated byT for true
and the second one F for false. Sentences
will be denoted by capital letters such as
P, Q, R. The following "connectives" are
used to combine or modify sentences.

Negation. Negation is indicated bya mi-
nus sign, e.g. - P, and designates "it
is NOTthe case that P." If P is true,
then - P is false; if P is false then
-p is true.

Conjunction. The conjunction of two
sentences P, Q is true if both P and Q
are true. Conjunction is designated
by P&Q, read as P and Q, e.g. (the
block is made ofwood)&(theblock
is red).

Disjunction. The disjunction of two sen
tences P, Q is true if at least one ofP,



91

THE DEDUCTIVE LOGIC FORMALISM

Since the columns P-Q and -PvQ
are identical, P-Q is equivalent to -PvQ.

P Q P&Q

F F F
FT . F
T F F
T T T

Propositional Resolution

One can verify bytruth-table comparison
that the theorem QvS can be proved from
the premises PvQand - PVS. From an
operationalpoint of view, we can say that
the P and - P terms in the twopremises
have been eliminated (resolved), leavinga
single expression that is the disjunction
(logical sum) of the remainingterms.
Any proposition can be put in the form
(P1)&(P2)&(P3).. ., where PI , P2, and P3

P the block is heavy
P-Q if the block is heavy, then

the blockis hard to move

Proof by truth-table comparison is gener
ally not practical becauseif n different
propositional variables occur in the prem
ises, then a table with 2" rows must be
filled out. A more efficient approach is to
use an inference rule such as:

Q the block is hard to move

which can be informally expressed as: "if
P is true, and if the statement P-Q is
true, then wecan inferthat Q is true. This
deductiverule ("modus ponens"), which
can be provedby meansof a truth-table,
can be used to establish proofs without
resorting to the truth-table.

The studyof logic involves the study
of various inferenceprocedures and the
technique of applying these procedures.
Until the workof Hao Wang [Wang 60] in
1960, the use of such procedures required
intuition, and thus these methods were
unsuited for computer implementation. A
more recent approach to computer mech
anization of logic, called"resolution"
[Robinson 65], will be described below.

T
T
F
T

-PvQ

T
T
F
T

F
T
F
T

F
F
T
T

Thus, P&Q is true only ifboth P and Q
are both true. Tho expressions are equiva
lent if (and only if) their truth-tables are
identical. For example, to show that P-Q
is equivalent to - PvQ, wedevelop the
following truth-tables:

P Q P-Q

Q is true. Disjunction is designated
by PvQ, read P or Q, e.g, (Tom is a
man)v(Tom is poor). PvQ allows us to
express that at least one of the state
ments is true withoutsaying which
one is true.

Implication. Implication, designated as
P-Q, asserts "if P then Q," where
P is knownas the antecedent and Q
the consequent. The sentence is false
only if the antecedent is true and the
consequent is false; otherwise it is
true. Note that, unlike the ordinary
use of if-then, e.g., "If taxesrise then
the market will drop," no causality is
inherent in a logical if-then sentence.

A truth-table is a way of specifying
the results of assigning all possible combi
nationsof truth-values to a proposition.
For the conjunctionoperation, the truth
table is of the form:



92

REASONING AND PROBLEM SOLVING

ent with the premises and therefore true.
Arriving at a contradiction is a useful
termination condition for an automatic
theorem-proving process. An example
of a resolutionproof is given below.

Given the premise (- PvQ)&(- QvR)
&(- RvS)&( - Uv-S) , wewant to prove
the theorem (- Pv- U). Note that this
would require a truth-table of 25 rows for
a truth-table proof. To prove the theorem
by contradiction, wetake the negation
of the theorem, - (-Pv- U), which by
De Morgan's theorem in the equivalence
table of Box4-1 is P&U. We placethe
clauses P, U in the set of clauses (we have
placed each in a position that allows the
reader to see how the resolution process
is carried out):

are expressions consisting of disjunctions
of variables or negated variables. This
transformation can be performed using
the propositional equivalences shown
in Box 4-1. PI, P2, and P3 are called
"clauses," and clauses can be resolved
to eliminate variables. For example, the
expression (- PvQ)&(P) consists of the
clause - PvQ and the clause P. P and
- P in these clauses can be resolved to
obtain the resultQ. Clauses preceded by
a negation sign mustbe transformed
to remove the negation sign. Aclause
such as - (PvQ) mustbe converted to
-P&-Q using De Morgan's theorem
given in Box4-1.

An important approach to theorem
proving assumes that the theorem to be
proved is false; i.e., its negation is true.
Then one shows that this assumption,
taken together with the premises, leads to
the impossible situation of some variable
and its negation both beingtrue (a "con
tradiction"). Thus, if the negationof the
theorem is inconsistent with the premises,
the unnegated theorem must be consist-

I] I BOX 4-1 Equivalences in Logic

P -PvQ -QvR -RvS

~ I
Q~

R

~S

-Uv-S U

\/
-S

The following equivalences can be used to convert logic expressions to a standard normal form:

Propositional Calculus

P&Q=Q&P
PvQ=QvP

- - P = P Double negation
- (P v Q) = -P & -Q DeMorgan's theorem

- (P & Q) = - P v - Q DeMorgan's theorem
P & (Qv R) = P&Qv P&R

Predicate Calculus

- (x)P(x) = (Ex)[ - P(x)] P does not hold for allx 
there existsan x for which P does not hold.

(x)[P(x) -+(y)[Q(y)]J = (x)(y)[P(x) ..... Q(y)]



93

THE DEDUCTIVE LOGIC FORMALISM

Sincewe obtain a contradiction, S
and - S, for the negation of the proposi
tion, the original proposition - Pv- U

. mustbe true, i.e., deducible from the
given premises.

Predicates

The propositional calculus is limited in
its expressive power; sentences cannot
be composed of primitives standingfor
individual objectsand their properties
or relationships, but mustbe composed
of primitive elements that are capable
ofbeingassigned a truth-value. For ex
ample, there is no way of representing an
individual such as "John" without mak
ingsomeexplicit assertion about him,
such as "John is a student." Also, the
fact that certain relationships hold for
some, or for all individuals, cannot be
expressed withoutbeingexplicit and
exhaustive.

In order to provide additional expres
sive power, the propositional calculus is
expanded to the predicate calculus by
introducing terms, functions, predicates,
and quantifiers, as follows:

Terms or individual variables serve
the grammatical function ofpronouns
and common nouns. They are the things
talked about, e.g., "car," "John," or un
specified things such as x, y, or z.

A "predicate"denotesa relationship
between objects. A unary relation specifies
a property of an object. Red(x), a unary
relation, is a predicate expression that
assertsthat x is red. Father(John,Tom)
assertsthat John is the father ofTom. A
predicate can take on a value of true or
false when its variables have assumed
specific values (converting them to terms).

Quantifiers

The universal quantifier, shown byparen
theses around the variable,' e.g., (x ), is
the notation that indicates "for allx:"
Thus, "all men are animals" is expressed
as (x)[Man(x)- Animal(x)]. A second
quantifier, "there exists," is designated by
an E. "There is at least one x such that x
is greater than zero" can be represented
by (Ex)(x > 0). "A red object is on top of
a green one" can be represented by
(Ex) (Ey)[Red(x)&Green(Y)&ontop(x,Y)).

Universal and existential quantifiers
can be combined in the same expression.
Thus, "Everyone has a mother" can be
expressedas (x)(Ey)[(Human(x)
Mother(x,y)].

Note that (Ex)Q(x) allows us to ex
press the factthat something has a certain
property without saying which thing has
that property, and (x)[P(x)- Q(x)) ex
presses the fact that everything in a cer
tain classhas a certain propertywithout
saying what everything in that class is.

Semantics

Even though we may use symbols that
form English words, it must be kept in
mind that to an automatic theorem prov
ing system these are merely symbols that
are to be manipulated. The system sees
no difference between P(x) and Red(x);
the meaning or semantics must be pro
vided by the user mapping the variables
and functions to things in the problem
domain. The specification of a domain
and the associations between logical sym-

'The confusion between parentheses denotingthe
universal quantifier and those used to denote the
variables in a function iseasily resolved by context.



94

REASONING AND PROBLEM SOLVING

bois and the problem domain constitute
an interpretation or a modelof the logical
system.

Computational Issues

Mechanized inference techniques in the
predicate calculus first convert the expres
sions into a normal form, consisting of

propositional-type expressions; the various
connectives and quantifiers are removed
using the steps shown in Box4-2. (In
logicprogramming languages such as
PROLOG [seeAppendix 4-1], the ex
pressions are written directly in a
"clause" form, eliminating the need for
this conversion.)

In the early 1930s, Herbrand

BOX 4-2 Converting Predicate Calculus Expressions
to Clause FormI] L- ---l

The following sequence of operations is used to convert
a predicate calculus expression to clause form:

1. Removing implications. Occurrences of p .....Q are
replaced by -PvQ. Thus, (x)[Man(x) ..... Human(x)] is
replacedby (x)[-Man(x)vHuman(x)].

2. Moving negation inwards. Wereplace
- [Human(Caesar)&Living(Caesar)] by
- Human(Caesar)v - Living(Caesar). The quantifier
"all" preceded bya negation is transformed as in
the example - (y)[Person(y)J to (Ey)[ - Person(y)J .
That is, if not all things satisfy a predicate, then
there must be at least one thing that does not
satisfy it.

3. Removing the existentialquantifiers. The
removal of existential quantifiers, known as
"skolernizing," is done byintroducing newconstant
symbols. Insteadof saying that there existsan
object with a certain set of properties, one creates
a name for one such objectand simply saysthat
it has the properties. Thus, for (Ex)[Female(x)
&Motherof(x,Eve)], wesayFemale(Gl)&
Motherof(Gl,Eve). When there are univer-
sal quantifiersin a formula, skolemization
is not quite so simple. If weskolemized
(X)[Human(x)..... (Ey)(Motherof(x,y))],
"every human has a mother" to (x)[Human(x) .....
Motherof(x,Gl)], wewould be saying "every human
has the same mother." Thus, wehaveto use a

function, such as G2 in the expression, (x)[Hu
man(x) .....Motherof(x,G2(x))], to indicate the depen
dence of the y on the particularx selected.

4. Moving universal quantifiers outward. We can
move universal quantifiers outward without affecting
meaning. Thus, (x)[Man(x) ..... (y)[Woman(y) .....
Likes(x,y)]] can be transformed to (x)(Y)[Man(x)-+
(Woman(y) ..... Likes(x,y))].

5. Conjunctive normal form. The expression is now
transformed so that conjunctionsno longer appear
insidedisjunctions, i.e., we obtain the form (P)&(Q)
. .. , where P, Q .. . do not contain &. This normal
form is used in propositional resolution.

6. Clause form. The formula we now have is made
up of a collection of &'s relating thingswhich are
either literalsor composed of literals connectedbv
v's. Ifwe havesomething like (A&B)&(C&(D&E)),
where A,B,C,D.E represent (possibly complex)
propositions that have no &'s in them, then we can
ignore the parenthesesand writeA&B&C&D&E,
and wecan considerthis a collection of clauses
A,B,C, . . .

Proof proceduressuch as resolution can now be invoked
in a manner similar to that described for the proposi
tional calculus; the maindistinction is due to the possi
ble existence ofvariables in the predicateclauseswhich
then requiresthe use ofunification to achieve the neces
sary matching.



95

THE DEDUCTIVE LOGIC FORMALISM

[Herbrand 30] proved that if a set of
clauses containing variables is contradic
tory, then there will exista finite set of
variable-free instances of these clauses
that can be shown to be contradictory by
propositional methods. An efficient proce
dure for finding such a contradiction was
developed in 1965 byJ. A. Robinson
[Robinson 65]. This procedure makes
inferences by the use of "unification" and
propositional resolution. Thus, once we
have the expression in clause form, we
can carry out these procedures to obtain
a proof.

Propositional resolution requires that
two clauses to be resolved have a common
element (literal), negated in one clause
and unnegated in the other. Sometimes a
constant, another variable, or a function
(notcontaining the variable) must be
substituted for some given variable in
order to satisfy the above condition. The
process of finding substitutions that make
two clauses resolvable is called unifica
tion. An importantfeature of the resolu
tionmethod is that it does not require
that the clauses beingresolved contain
only constants, but allows the mostgen
eralpossible form of the variables to be
retained consistentwith the resolution
condition. For example, we can resolve
the two clauses P(c,x)vF and - P(c,y)vG
bymaking the substitution x = y ; we need
not assign a specific value to x or y.

Resolution proofprocedures are
hopelessly inefficient if they haveno
mechanisms to specify which of the many
possible sequences of resolutions to se
lect. Many different techniques havebeen
developed to deal with thisproblem. For
example, the "set ofsupport" strategy
takes the first clause to be resolved from

the negationof the statement to be
proved (because such a step will eventu
ally be required to complete the proof). It
further dictates that at least one resolvent
in every resolution mustbe descended
from the negation of the statement to be
proved, because only such resolutions are
relevant. The "linear format" strategy
attempts to keep the sequence of resolu
tions relevant by requiring that each new
resolution make use of the results of the
previous one.

Agood discussion of the "art" of
setting up the proofstrategy is discussed
in Wos [Wos 84]:

The use ofan automatic reasoning pro
gramis an art, even thoughthe program
employs unambiguous and exacting
notation for representing information,
precise inference rules for drawing con
clusions, and carefully delineated strate
gies to control those inference rules. . . .
In using an automated reasoning pro
gram, one makes goodchoices for the
representation, for inference rules, and
for strategies.... Withoutstrategy, an
automated reasoning program will drown
in new information. Withstrategy, a
reasoning program can sometimes per
form as a brilliant assistant or colleague.

Nonstandard Logics

In the firstorder predicatecalculus it is
not possible to represent relationships
among predicates, temporal relationships,
hypothetical assertions, beliefs, assertions
of possibility, and vague asssertions based
on incomplete information. In addition,
there is no mechanism for deletingstate
ments from the database. There is a grow
ing literature devoted to the creation and



96

REASONING AND PROBLEM SOLVING

exploration of alternative logics and asso
ciated inference mechanisms. Some of
these systems are extensions designed to
supplement standard logic, while others
are alternatives to standardlogic. These
systems, being explored for use in AI, are
described briefly below; a detailed treat
ment is given in Turner[Turner 85].

Modal logicis concerned with concepts of
necessity and possibility. It extends
standard logic by using the operators
"it is necessary that" and "it is possi
ble that." This type oflogiccan be
used to deal with the concept of
"belief," an importantconsideration
in the planningof actions. A modal
logic suitable for representing knowl
edge and action has been developed
by Moore[Moore 85].

Temporal logic deals with the representa
tion of time, important in automatic
planningand in diagnosis. Concepts
such as is true, was true, will be true,
and has always been true must be
expressed, as well as time-interval
relationships such as during, before,
and overlaps in time.

Higher order logiccan represent proper
ties ofpredicates or evenproperties
of properties ofpredicates. For exam
ple, in the secondorder predicate
calculus, equality can be defined as

(P)(x)(y) [x=y]-[P(x)-P(y)],

i.e., ifx and y are equal, then for all
predicates, the predicate of x equals
the predicate ofy. This quantification
overpredicates is not permissible in
the firstorder predicate calculus.

In higher order logic, care must be
taken to avoid contradictions of the sort
discovered by Russell and treated bythe

theory of types in Russell and White
head's Principia Mathematica. Higher
order logic has not as yet seen much use
in AI.

Multivalued logics. While classical logic
employs two truth-values, a multi
valued logic can represent interme
diate values. Multivalued logics are
useful forsituations in which one
cannot always make a commitment
to either true or false, and yet one
wants a deductive system that is
consistent.

Fuzzy logic. In fuzzy logic, predicates
such as "red" and "tall" are consid
ered as vague predicates, and an
elementis considered to have a
"grade of membership" in anygiven
set. Truth-values are alsoconsidered
to lie on a scalebetween true and
false. "A issmall; A and B are ap
proximately equal; therefore, B is
more or lesssmall"is an example
of a fuzzy inference.

Nonmonotonic logic. In classical logic,
the system increases its stock of
truths as knowledge is added and as
inferences are made. There is no
mechanism for discarding informa
tion or revising beliefs. This aspect of
classical logic is termed "monotonic."
In nonmonotonic systems, inferences
can be madeon the basisof available
data, but these inferences can be
rejected and new ones madewhen
new data become available.

INDUCTIVE REASONING

In inductive reasoning we form generaliza
tions that characterize a class of data from
the characteristics of a set of samples of



97

INDUCTIVE REASONING

the class. These generalizations, and the
inferences based on them,are inductive
because it is always possible that our
initial conclusions will be invalidated by
new evidence, acquired by observing a
largersample, or evena single new sam
ple. Despite this risk, induction is an
indispensable modeof reasoning, used
continually in everyday life as well as in
the development of scientific theory.

In this sectionwedescribe the Bayes
ian and Shafer-Dempster probabilistic
formalisms; these formalisms are impor
tant tools used in inductive reasoning.
While the deductive systems described
previously cannot deal with conflicts in
evidence because such conflicts lead to
logical contradictions, probabilistic tech
niques are able to makepredictions in the
presence of conflicting evidence. These
predictions will not always be true, but
they are good guesses that make effective
useof the given information.

Just as there are various forms of
deductive reasoning, various forms of
probabilistic reasoning are possible. The
different forms dependon the nature of
the beliefmeasures usedand how they are
manipulated. Philosophers have identified
at least fourdistinctversions of the con
cept of probability:

1. The measured frequency of occur
rence of events.

2. The disposition ofevents (or a single
event) to occur, e.g., "Everyone who
looks at this car agreesthat there is a
low probability that it will be able to
make the trip from New York to Los
Angeles"

3. The subjective belief a person has
about the likelihood of occurrences
of different events

4. The logical relationship between
evidence and relevant hypotheses,
e.g., "If the patient has a fever and
his glypus test is positive, then it is
probable that he has Hendrix syn
drome"

Probabilistic reasoning first requires
the construction of a problemrepresenta
tion. This step, called "sample space con
struction," or developing the "frame of
discernment," formulates the vocabulary
and statementsthat will be used to de
scribe the given problem. Next, a belief
"value" is provided for each statement,
either by rankingthe statements, assign
ing a beliefnumber to each, or assigning
a lowerand upper beliefnumber (bound)
to each. Finally, the known beliefvalues
are combined or pooled, and propagated
to modify the belief numbers of other
statements, and especially that of the
target hypothesis. As in most AIprob
lems, the representation step is crucial. It
depends on the designer's understanding
of the relevant events in the world, and
the availability of evidence that relates to
these events. Representation as an issue
in probabilistic reasoning is discussed
later.

Measures of Belief

There are various characteristics that a
beliefmeasuremighthave. Aset of intui
tively satisfying characteristics waspro
posed byCox [Cox 46] and discussed
in detail in Horvitz and Beckerman
[Horvitz 86]:

1. Clarity. The propositions must be
defined precisely enough so that one
can tell when a propositionis hue or
false.



98

REASONING AND PROBLEM SOLVING

2. Completeness. It must be possible
to assign a degree ofbelief to any
proposition.

3. Scalar continuity. Measures of
degreeof belief should vary continu
ously between certain truth and cer
tain falsehood.

4. Contextdependency. The degreeof
beliefin a particular proposition
shoulddependon knowledge about
the truth of other propositions.

5. Consistency. Iftwo propositions are
logically equivalent, the degreeof
beliefin one proposition given cer
tain evidence should equal the degree
of beliefin the other.

6. Hypothetical conditioning. The
beliefin the proposition A&B should
be a function of the beliefin A and
the belief in B given that Ais true.

7. Complementarity. The beliefin the
negation of Ashould be determined
bythe beliefin A itself.

Cox showed that these seven proper
ties are logically equivalent to the axioms
of classical probability theory; alternative
beliefformalisms change one or more of
these properties. Below we first describe
beliefrevision in classical probability
theory, and then discuss the Shafer
Dempster (SID) theory that rejects several
of the above properties.

Bayesian Reasoning

Bayesian reasoning is the classical mecha
nism usedto revise belief, given new evi
dence [Feller: 50, Parzen 60]. We begin
with a probability distribution that com
pletely describes our degrees of beliefin
a set of·hypotheses before obtaining new

evidence. Ifa probability P is assigned to
an eventA, then (1 - P) is assigned to
- A, the nonoccurrence ofA. New evi
dence results in modifying or "condition
ing" P based on computations relating
evidence to the hypotheses.

In Bayesian reasoning, the logical
form of the implication "if E then H," is
replaced by"if E then H with a probabil
ityP." This "conditional probability"
assertion is written P(HIE), and is read
"the probability of hypothesis H given that
the evidence E is true." Probabilities are
updatedaccording to Bayes's theorem:

P(H[E) = P(EIH) P(H)/P(E).

This equation, derived in Box4-3,
states that we can updatethe probability
of hypothesis H, P(H), given that new
evidence E, assumed to be true, has been
received. Bayesian calculus for compli
catedsituations requires knowledge of
the a priori probability ofsome events,
e.g, P(H) and P(E), and depends on the
sequential use of known conditional prob
abilities, P(EIH), to evaluate the corres
ponding values for implied propositions.
If the required a priori and conditional
probability values are known, an evalu- .
ation path can be found to allow the
computation of the likelihood ofsome
target event. However, the determina
tion of all these necessary a priori and
conditional values is often impossible
or impractical, and one is then forced
to heuristic or approximation techniques
to compute the unknown values.

Whenthe relationship between
events is unknown, a basic technique
used is to assume their independence. We
can then compute, rather than guess, the
a priori values ofjoint events, suchas



99

INDUCTIVE REASONING

Il BOX 4-3 Conditional Probability and the Bayes Theorem

Aconditional probability P(HIE) is the probability of an
event or hypothesis, H, given that weknow that some
othereventor hypothesis, E, is true. The relationships
are readily derived usingsimple sets. Supposewehave
N things, someof them with propertyH, some of them
with property E, and some with both properties E and
H asshown in the Venn diagram in Fig.4-2.

Property E Property
Eand H

Property H

The conditional probability P(HIE) = N(E and H)/
N(E), whereN(E and H) is the number of elementsthat
have both propertiesE and H, and N(E) is the number
of elements with propertyE. If we divide the top and
bottom of the right-hand side byN, the total number of
elements, we get

N(E and H)

P(HIE) = N = PIE and H) (4.1)
N(E) PIE)

N

Using a similar argument, we can obtain the expres
sion for P(EIH), the probability ofthe event E, given
that event H is true:

PIEIH) = P(H and E)/P(H). (4.2)

Since P(Hand E) is the same as PIE and H), we
can solve for P(Hand E) in Eq. (4.2), P(Hand E) =

P(EjH)P(H), and substitute in Eq. (4.1) to obtain Bayes's
theorem,

FIGURE 4-2
Example of Conditional Probability Calculation
Using the Venn Diagram Representation.

P(HIE)=N(E and H)IN(E)
N(E)=5
N(E and H)=2
P(H[Ej -2/5

P(A,B). Thus ifA and B are independent
P(B\A)=P(B), so that P(A,B)=P(A)P(BIA)
= P(A)P(B). Obviously, weget incorrect
answers if we assume independence when
it is not appropriate.

A second technique is to employ the
principle of insufficient reason. This prin
ciple states that if there is no reason to
believe x to be more or less likely than y,
then assume that the probability ofx
equals that of y. Thus, in the absence of

P(HIE) = P(EIH)P(H)/P(E). (4.3)

This says that ifwe havean initial (a priori) proba
bility of event or hypothesis H, P(H), and we know that
event E is true, then we can get an updated probability,
P(HIE), assuming that wealso know both the probability
of event E, PIE), and the conditional probability of E
given that H is true, P(EIH).

any additional information, the probability
assignedto anyone hypothesis becomesa
function of the number of hypothetical
alternatives. This is an undesirableprop
erty since a particular hypothesis can
always be broken down into severalsub
hypotheses, thus altering the a priori
probabilities assigned to other hypothe
ses. For example, given that an apple has
disappeared in a locked room containing
two men and a woman, we might assign to



100

REASONING AND PROBLEM SOLVING

each of two competing hypotheses a prob
ability of 1/2:

PI: A man ate the apple.
P2: A woman ate the apple.

However, wealso could have formu-
lated our hypotheses as:

Q1: Bill ate the apple.
Q2: Bob ate the apple.
Q3: Mary ate the apple.

Under the principle of insufficient
reason, we assign Q1, Q2, and Q3 each a
probability of 1/3. P2 and Q3 are identical
assertions which are assigned different
probabilities under the principle of insuffi
cient reason simply because of the way we
chose to express the remaining alterna
tives. Even ifwe could improve the value
assignmentprocessfor the priors, we
mightstill want to profess ignorance.
However, Bayesian probability offers no
mechanism to permit this option.

Belief Functions

The Shafer-Dempster belieffunction for
malism [Shafer 76, Garvey 81] rejects the
completeness assumption that asserts that
a degree of beliefcan be assigned to any
proposition.This approach also rejects
the principle of insuffient reason or any .
probability assignment that provides a
value to a proposition when not enough
is known about the proposition. In addi
tion, separate measures are assigned to a
proposition and its negation, rejecting the
complementarity assumption.

In the Shafer-Dempster formalism,
the evidence received bya knowledge
source results in its apportioning a "unit
of belief' among a set of propositions.

The amountof belief (called "mass")
committed to a proposition represents a
judgmentas to the strength of the evi
dence that specifically favors that propo
sition. It is not required that belief not
committed to a given proposition should
be given to the negation of the proposi
tion. This is in contrast to the Bayesian
approach in which a unit ofprobability
must be apportioned between the two
sides of every question.

The Shafer-Dempster formalism
makes lackof information concerning
probabilities explicit byexpressing the
beliefin a proposition as a subinterval
[support(a), plausibility(a)] in the unit
interval [0,1]. Using this notation, a prop
ositionwould be written A[.25,.85] to
indicatethat the probability ofA is be
tween .25 and .85. The lower value repre
sents the support for a proposition A, and
sets a minimum value for its likelihood.
The upper value denotes the plausibility
of Aand establishes a maximum likeli
hood. The support may be interpreted as
the total positiveeffect a bodyof evidence
has on a proposition, while plausibility
represents the total extent to whicha
body of evidencefails to refute a proposi
tion. The degree of uncertainty about the
probability value for a proposition corres
ponds to the width of its interval. Table
4-1 presents some additional examples of
beliefassignment employing the Shafer
Dempsterrepresentation.

To use belieffunctions, one partitions
evidence into relatively simple compo
nents, makesprobability judgments sepa
rately with respect to each of these
components, and then combines these
judgmentsto obtain a final judgment that
represents the total evidence.



101

INDUCTWE REASONING

TABLE 4-1 • Examples of Belief Assignment in the Shafer-Dempster Approach

[0,1]
[0,0]
[l,l]
[.25,1]
[0,.85]
[.25,.85]

no knowledge about the proposition
proposition is false
proposition is true
evidence provides partial support for proposition
evidence provides partial refutation of proposition
evidence is conflicting, providing both evidence for and against the proposition

The Shafer-Dempster formalism has
the desirableproperty that the intervals
become points when precise probability
information is available, and under certain
independence assumptions, the corres
ponding computations produce results
consistent with Bayesian probability the
ory. If the only events that can occurare
known to be either true or false, then the
results of the Shafer-Dempster computa
tions are consistentwith those of deduc
tive logic. The Shafer-Dempster formalism
also provides a way of dealing with con
flicting information, but now the resulting
likelihoods can no longerbe interpreted
in the same way as Bayesian probabilities,
and in particular, they no longerhave a
simple frequency of occurrence interpreta
tion.

The underlying representation for the
Shafer-Dempster formalism consists ofan
exhaustive list (L) of mutually exclusive
eventpossibilities with eachsubset(A of
L) interpreted as the "proposition" that
the true state of the world is one of the
elements of L containedwithin A. L is
called a "frame of discernment," to em
phasize that each possibility in L can
always be split into more specific possibili
ties, i.e., the resolution with which we
view the world can be increased, thus .
increasing the number of propositions
that L discerns.

Single Belief Functions in the SID
Formalism. A "knowledge source" dis
tributes a unit of belief across a set of
propositions for which it has direct evi
dence in proportion to the weight of that
evidence as it bearson each proposition.
For example, if there are five possible
events, a knowledge source KSI might
distribute beliefas < .13, .22, .35, 0, 0>
for the events A, - A, B, C, D. Once mass
has been assigned to a set of propositions,
the evidential intervals can be determined
directly. Support for a propositionA is the
total mass ascribed to A or to its subsets;
the plausibility ofA is one minusthe sum
of the mass assigned to - A or to the
subsets of - A; the ignorance about A is
equal to the mass remaining. For exam
ple, the evidential interval for the event A
given by KS1 is [.13, .78], since the mass
of -A is .22.

Intuitively, mass isattributed to the
most precise propositions a bodyof evi
dence supports. Ifa portion of mass is
attributed to a proposition, it represents a
minimal commitment to that proposition
and all of the propositions it implies.

Composition of Individual Beliefs.
There is a formal rule for combining
belieffunctions, known as "Dempster's
rule." Dempster's rulecombines a belief
function (constructed on the basis of one



102

REASONING AND PROBLEM SOLVING

item of evidence) with a secondbelief
function (constructed on the basis of
another, assumedindependent itemof
evidence), so as to obtain a belief function
representing the combined body of evi-

dence. An example of this procedure is
given in Box4-4. Dempster's rule makes
explicit the fact that the SID formalism
has not escaped a critical weakness of all
inductive methods, i.e., the need (for

11 BOX 4-4 Combining Two Sets of Evidence Using Dempster's Rule

Dempster's rule for combining two different sets of
evidence can best be understood byexample. Suppose
there has been a hit and run accident, and there are two
witnesses. The witnesses are willing to assign beliefas to
the culpritas follows:

Witness #1: I'd say it wasa Fordwith belief.3
I'd say it wasa Chevy with belief.5
I don't know howto distribute .2 of mybelief.

Witness #2: I'd say it wasa Chevy or a Toyota with
belief.7
I don't know howto distribute the remaining .3 of
mybelief.

We illustrate Dempster's rule usingthe following tableau:

Witness #1:

Undistributed .2 Chevy or Toyota Undistributed
belief 0.14 0.06

Ford .3 null Ford
0.21 0.09

Chevy .5 Chevy Chevy
0.35 0.15

Chevy or Toyota Undistributed
0.7 0.3

Witness #2

The beliefdistribution for witness #1 is shownon
the leftof the array, and for witness #2 at the bottom of
the array. Wemultiply the row and column weights to
obtain the values assigned to each elementof the array.
For example, the value of the upper leftarrayelement

is 0.2 • 0.7 - .14 . Whenever the evidence is incompat
ible, e.g., the beliefof witness #1 that it wasa Ford is
incompatible with the beliefofwitness #2 that it was a
Chevy or Toyota, we assign that product to the null set.
When there is undistributed beliefof one witness, we
assign that cell the value of the other witness, e.g.,
undistributed belieffor witness #1 causes the upper
left cell to be assigned the Chevy or Toyota classification
of witness #2.

When weadd up all the areas, weobtain:

Pooled Ford values - 0.09

Pooled Chevy or Toyota - .14
Pooled Chevy - .35 + .15 - .50
Pooleduncertain - .06
Conflict (nullset) - .21

Since there is 0.21 unit of conflicting mass, we
normalize the mutually consistentpooledvalues so that
they sum to 1.0 by dividing each by (1- 0.21), to obtain:

Ford pooledbelief - .11
Chevy or Toyota pooledbelief - 0.18

Chevy pooledbelief - 0.63
Uncertainty - 0.08

The evidential interval for Chevy is [.63, .89], indio
eatingan uncertainty interval of .26.

These final resultsagreewith our intuition. We
would expect that the beliefabout the Ford would be
decreasedsince witness #2 mentioned nothing about a
Ford. The belieffor a Chevy has been increasedsome
whatabovethe .5 beliefof witness #1, since bothwit
nesses havesome degreeof beliefin the Chevy.



103

INDUCTIVE REASONING

either practical or theoretical reasons) to
assume independence of observations
and/or events.

Representing a Problem in a
Probabilistic Formalism

As in the case of logical reasoning, choos
ingan appropriate representation for a
given problem is the creative step in prob
abilistic reasoning. We will illustrate the
nature of the representation problem by
an example, firstdescribing the problem
formulation and then showing the compu
tations. Our example is inspired bythe
work ofShaferand Tversky [Shafer 85].

Suppose wehave an election predic
tionservice and wish to estimate the prob
ability of candidate Jonesbeing elected.
Thereare many facets ofelection politics
that might be considered, including the
amount of campaigning effort, the effect
of the world situation, the condition of the
economy, etc. Suppose our election ex
pertsdecide that "campaigning effort" is
the most crucial determinant They might
set up the alternative strategies for a
candidate: (1) maintain currentlevel of
campaigning, (2) slightly increase current
level of campaigning, (3) greatly increase
level ofcampaigning, and (4) decrease
currentlevel. Notice that the expertsmust
supply an estimate ofthe probability of
each eventand ofthe effect that the event
will have on winning the election.

Suppose it was feltthat the other
leading contender, Smith, should be taken
into accountin making the estimate. We
might believe that candidate Smith's cam
paigning effort could be described by
using three levels of activity. Now the
interaction ofJones'sand Smith's cam-

paign mustsomehow be computed. Esti
matesmust be madeofthe probability
of activity forSmith and the conditional
probabilities ofJoneswinning, given vari
ous levels of activity for both Jones and
Smith. At thispoint an important (and
perhaps unrealistic) assumption mustbe
made if weare to avoid estimating how
Jones and Smith will respond to each
other's strategies. We mustassume that
the campaign level ofeach candidate is
independentof the activity of the other.
A Bayesian computation for this situation
is shown in Box4-5, and an evidential
reasoning approach is shown in Box4-6.

After examining the resultsof the
analysis, the analysts might make other
partitionsof the problem, usingmore
or fewer levels of campaign activity, or
introducing other campaign factors. For
each of these it would be necessary to
supply the required probability or belief
measures.

Comments Concerning the
Probabilistic Formalism

Our nominal view ofthe world embodies
the conceptthat there is a uniquecourse
of events that can be characterized by
observed or measured physical quantities.
Our understanding of the world is, in
turn, characterized byour ability to pre
dict the values of these "observables.'
Physical theories (models, paradigms) can
be ranked in terms of how accurately they
perform the prediction task. Reality pro
vides an exactand explicit basisfor eval
uation ofproposed theories.

On the above grounds, wemight
considerprobabilistic models as descrip
tions of processes and events that we



104

REASONING AND PROBLEM SOLVING

.1 BOX 4-5 An Example ofBayesian Analysis

Smith

Probability of activity
level

.85 Maintain .3 .5 1.0

.03 Increase .5 .6 1.0
slightly

.07 Increase .7 1.0 1.0
much

.05 Decrease 0 0 .5

ility ofactivity level --+ .1 .7 .2
olitical activity level --+ Increase Same Decrease

Jones

Afour-level breakdown of campaign activity for Jones
and a three-level breakdown ofcampaign activity for his
opponent, candidateSmith, is shown in the table. Ex
perts have assigned probabilities to each ofSmith's
activity levels. Entries in the tablespecify conditional
probabilities that Jones will win,given the activity of
Jonesand the activity of Smith. Thus, a conditional
probability of 0.3 in the upper left element of the table
indicates that ifJones maintains his campaign and Smith
increases his campaign, then there is a 0.3 chance of
Joneswinning. A conditional probability of 1 indicates a
sure winfor Jones, while a 0 indicates a sure loss. The Probab
table indicatesthat a candidatewho decreases his cam- P
paign activity is going to be in trouble unlesshis oppo
nent also does so.

The probability ofJones winning is the sum ofthe probabilities of hiswinning for each of the twelve situations
described by the above table. The computation is known as a total evidence design sincethe final probability is the
sumof the probabilities of all the possible situations. The probability for eachpair of activity levels is determined by
using the formula,

Prob(Jones wins Icondition A and condition B)*Prob(A and B),
where P(A and B) = Prob(AIB)*Prob(B).

The independence assumption allows us to saythat P(A IB) = P(A).
Thus, Prob(Jones wins) = (.3)(.85)(.1) +(.5)(.85)(.7) + ... + (.5)(.05)(.2).

Prob(Jones winning) = .586

resort to when deterministic models are
not available; they are necessarily cruder,
but shouldbe capable ofbeingranked in
terms of accuracy on the samescaleas
the deterministic models.

Given two probabilistic descriptions
of the same situation, such as provided
by the Bayesian and Shafer-Dempster for
malisms, we might expect to be able to
compare their relative performance and
chooseone or the other asbeing more
accurate. Thus, in the caseofthe election
examples, .presented in Box4-5 and Box

4-6, the Bayesian formulation tells us that
candidate Joneshas a .586 probability of
winning the election, while the Shafer
Dempster formulation tellsus that the
likelihood ofcandidate Joneswinning is
between .239and .96 (both predictions
were basedon the sameevidence). All this
seems quitestraightforward, exceptthat
the numbers produced bythe two formal
isms do not really mean the samething,
nor can they be directly compared or
evaluated. Suppose, for example, that
Joneswins the election. Thisfact cannot



105

INDUCTIVE REASONING

be used to favor either the Bayesian or
the SID approachsince neither estimate
has a clear meaning that is decisively
verified by the real-world result.

Then whatdo the probabilities really
mean? The Bayesian formalism assumes
an underlying random processsuch that,
if the election were held often enough
underthe same conditions, Jones would
win 58.6 percent of the time. The Shafer
Dempster formalism provides a way of

combining evidence which satisfies our
intuition in regard to the ordering of
possible outcomes (even when the evi
dence sourcesconflict), but does not
always have a simple interpretation in
terms of the relative frequencies of the
outcomes ofa random process. Thus, the
Bayesian and Shafer-Dempster formalisms
provide different underlying models of
reality--they are not directly comparable,
nor is there generally anyway to choose

11 BOX 4-6 An Example of Belief Function Analysis

Smith

This results in an evidential intervalfor Jones of
[.239, .96], indicating a small support, a small refutation
of the event "Jones willwin," and a very large degreeof
uncertainty remaining. Thus, weare unable to choose a
likely winnerin this election.

These conclusions are weaker than the conclusion
of the Bayesian analysis, since we are not claiming to
haveevidence about whatwill happen in the cases where
our descriptions of Smith's and Jones's behavior do not
determinethe outcomeof the election.

Referring to the Bayesian analysis of the two-candidate
problem (Box 4-5), we choose to interpret the a priori
probabilities for different levels of campaign activity as
degreesof belief. Thus the degrees ofbelieffor the four
hypotheses concerningcandidate Jones are (.85, .03,
.07, .05). For candidate Smithwehave(.1,.7, .2) as the
degrees ofbelief for the three hypotheses concerned
with his campaign activity. From Box4-5wesee that
Jones will win when the table entry has the value 1.0.
We convertthese 1 entries to the proposition "Jones
will win" denotedby "Win" in the table on the right.
The 0 entriesare replacedby the proposition "Jones
will lose" denotedby "Lose," and everything elseby the
proposition "We can't assigna win or losejudgment"
denotedby"?"

We now combine these beliefs by Dempster's rule,
againassuming independence. The use of Dempster's
rule is similar to that shownfor the Ford/Chevy/Toyota
example of Box 4-4. We add up the productsof compati
ble beliefs. For example, in the upper right-hand ele
ment,wehave beliefs for Jones and Smith that both
agree on the event"Win." We thereforeget a contribu
tion of .85·.2 toward that event. Adding up the areas
pertaining to a win for Jones weget .85(.2) + .03(.2) +
.07[(.7) + (.2)] = .239 .

Adding up the areas that support the proposition
"Jones loses" weget (.05)(.1 + .7) = .04 .

Jones

Degrees Political
of belief activity

level

.85 Maintain ? ? Win

.03 Slight ? ? Win
increase

.07 Large ? Win Win
increase

.05 Decrease Lose Lose ?

Degrees of belief-+ .1 .7 .2
Political activity -+ Increase Same Decrease



106

REASONING AND PROBLEM SOLVING

between them in unconstrained real-world
situations.

ADDITIONAL FORMALISMS
FOR REASONING

There are someforms of reasoning that
involve combinations ofthe deductive/
inductive/analogical paradigms. Below,
wedescribe some of these: mathematics,
programming systems, "production sys
tems," and common-sense reasoning.

Algebraic/Mathematical Systems

In the algebraic/mathematical approach
to reasoning, westart with a set of mathe
matically described (physical) relationships
relevantto some (real-world) situation;
the problem information is then phrased
in terms of these known relations to pro
videa set of equations; the equationsare
solved usingthe standard techniques of
mathematics.

Thus, solving a problem such as "If
one person can do a job in 3 hours and
another can do the same job in 5 hours,
howlong will it take for them to do the
job together?" requires the following
steps:

• We must know that the appropriate
basic relationship is "rate of doingwork
times the timeworked equals the
amount of workdone."

• We must assume that working together
does not changethe individual rates of
work.

• Wemust reason that if a person can do
a job in N hours, he does lIN of the job
in 1 hour. Thus, in the given problem,
the firstperson works at a rate of 1/3 of

the job per hour, and the second at a
rate of 115 of the job per hour.

• Time is represented by the variable t.
We finally can write the equation
(1/3)t + (1I5)t = 1

• The equationcan now be solved for t
usingalgebra.

Note that the difficult aspectof this type
of reasoning consists of (a) knowing that
the pertinent relationship is "rate times
time equals work done," (b) that people
are assumed byconvention to work at a
constant rate in this problem context, and
then (c) translating the problem statement
into these algebraic relations. Thesesteps
are quite difficult to automate in a general
problem-solving context. However, ifwe
knowbeforehand the types of problems
that will be encountered, ifthe problem
language is simple enough, and ifno
superfluous information has been pro
vided, then wecan write a program that
solves such word problems by looking for
"key words" (see Box4-7).

Heuristic Search

One form of reasoning is to search
through all possible alternatives for a
solutionto a problem. We oftenuse this
approachin our daily lives. For example,
wemisplace an objectand searchfrom
location to location in an attemptto find
it. Note that wedo not blindly explore
everywhere, rather weonly search in the
most probablelocations for it. Problems
are oftenamenable to solution bysearch,
provided that there is someorganized way
of rulingout alternatives that have little
probability of beinga successful solution.
Many AItechniques are basedon heuris-



107

ADDITIONAL FORMALISMS FOR REASONING

I] BOX 4-7 Solving Algebraic Word Problems by Computer

The STUDENT program, developed by Bobrow in the
late 1960s[Bobrow 68), solves algebraic wordproblems
phrased in natural language. STUDENT sweeps through
the input statements several times, carryingout a differ
ent transformation on each pass until suitablealgebraic
equations are obtained. The equations are then solved.

The words and phrases of the problem are consid
ered to be in one of three classes:

Variables. Words that nameobjects. One important
problem that has to be dealtwith is how to deter
mine when two different stringsrefer to the same
variable (e.g., at one point the problemmightstate
".. .John's money" while at another point the
problem mightask ".. .how much is Tom's money
and how much is John's.")

Substituters. These are words and phrases that are
replaced to obtain a more standard representation,
e.s, "twice" is replacedby "2 times."

Operators. These are words or linguistic formsthat
represent functions. One simple operator is "plus"
which indicates that the two variables surrounding
it are to be added.

Anappreciation for the procedures used can best
be gainedfrom a printout of the various passes made by
the program on a typical problem:

Theoriginal problem to be solved is:
(THE SUM OF LOIS' SHARE OF SOME MONEY
AND BOB'S SHARE IS $4.50.
LOIS' SHARE IS TWICE BOB'S. FIND BOB'S AND
LOIS' SHARE.)

After substitutions the problem becomes:
(SUM LOIS' SHARE OF SOME MONEY AND BOB'S
SHARE IS 4.50 DOLLARS. LOIS' SHARE IS 2 TIMES
BOB'S. FIND BOB'S AND LOIS' SHARE.)

After words havebeen tagged byfunction , the
problem is:
«SUM/OP) LOIS' SHARE (OF/OP) SOME MONEY
AND BOB'SSHARE IS 4.5 DOLLARS (PERIOD/
DELIMITER) LOIS' SHARE IS 2 (TIM ES/OP. 1) BOB'S
(PERIOD/DELIMITER) (FIND/QUESTIONWORD)
BOB'S ANDLOIS' SHARE (PERIOD/DELIMITER)

Converted to simplesentences:
«(SUM/OP) LOIS' SHARE (OF/OP) SOME MONEY
AND BOB'S SHARE IS4.5 DOLLARS (PERIOD/
DELIMITER)
(LOIS' SHARE IS 2 (TIMES/OP 1) BOB'S (PERIOD/
DELIMITER)

«FIND/QUESTION WORD) BOB'S AND LOIS'
SHARE (PERIOD/DELIMITER)

Converted to equation form:
(EQUAL (LOIS' SHARE) (TIMES 2 (BOB'S)))
(EQUAL (PLUS (LOIS' SHARE OF SOME MONEY)
(BOB'S SHARE» 4.5 DOLLARS)

However, these equationswere insufficient to find a
solution. The program then assumes:
«BOB'S) ISEQUAL TO(BOB'S SHARE»
«LOIS' SHARE) IS EQUAL TO (LOIS' SHARE OF
SOME MONEY)

A solution can then be obtained:
(BOB'S IS 1.5 DOLLARS)
(LOIS' SHARE IS 3 DOLLARS)

Note that since the system could onlymake a partial
match on the nameof the variables, it assumedthat a
partial match, e.g., BOB's to BOB's SHARE, wasequiva
lent to a completematch. This allowed a solutionto be
obtained.

Thus, STUDENT is a system for dealingwith a
restrictedclass of problems, but it is veryeffective in this
limiteddomain.



108

REASONING AND PROBLEM SOLVING

tic search procedures, rule-of-thumb tech
niques that direct the search process to
the more attractive candidates for solu
tion. Procedures that search forvalid
proofsequences, discussed in various
parts of this chapter, are typically con
trolledby heuristic rules,"

Programming Systems that Facilitate
Reasoning and Problem Solving

Conventional programming languages
require the user to specify.procedures
that are to be carriedout on the data.
The flow of control,and the teststo be
performed must be explicitly described.
However, programming systems have also
been designed to acceptnonprocedural
"programs," i.e., there are systems that
permit the user to state his goal or intent,
and the built-in mechanisms of the system
attempt to devise procedures to attain
these goals. Suchsystems are oftenwrit
ten in programming languages that facili
tate writing programs whose purpose is to
reason and solveproblems.

A formal algorithm for carrying
out a reasoning procedure couldbe
implemented in anyone of the many pro
gramming languages that provide symbol
storage, matching, combining ofstrings
or lists, and sometypeof conditional
branchingoperation. AIproblem solving
programs are moreconcerned with ma
nipulating stringsofsymbols, e.g., rear
rangingsymbols or substituting one
symbol for another, than with numerical
computation, e.g., multiplyingtwonum
bers together. Special languages designed

"Thesubjectof heuristicsearch techniques is dis
cussed extensively in Nilsson[Nilsson 71] and in
Pearl [pearl 84].

for AIprogramming have thereforebeen
developed-the mostpopularbeingLISP
and its dialects. A briefdescription of
LISP is given in Appendix 4-1. In addi
tion, manyAIproblems have the charac
teristic that after a certain amountof
progress is made toward a solution, a
dead end is reached, and the program
must"backtrack," returningcertain vari
ablesto their originalstate. This requires
muchbookkeeping activity that is extrane
ous to the "logic flow" of the solution for
the given problem. The logic-based lan
guage PROLOG, described in Appendix
4-1,provides deductive procedures and
automatic backtracking.

In a typical program, even one writ
ten in LISPor PROLOG, the flow of
control and the utilization of data are
specified by the program's code, but in
"pattern-directed inference systems"
(POlS), the processing modules are acti
vatedby patterns in the input data or in
the "working storage." A module is inac
tiveuntil a certaindata pattern or situa
tion exists, at which point a responseis
made. The module's activity typically
consists of adding or deleting data in the
working store. Such a system is "data
driven" rather than "program driven,"
and "programming" in such a system
consists ofspecifying the pattern to be
matched byeach module and the corre
spondingaction to be taken.

The system is controlled bysoftware
that handles the tasks ofpattern match
ing, monitoring database changes, and
carrying out the actionsspecified by the
active modules. Typically, the control
structure of the system is given, and the
investigator supplies the specifications of
the modules.

An importanttypeof POlSis the



109

ADDITIONAL FORMALISMS FOR REASONING

"rule-based" or "production" system,
discussed further in Chapter7, in which
eachmodule is a rule that has a left-hand
sidecontaining the pattern templates that
must be satisfied, and a right-hand side
that specifies the actions to be carried
out. Because the rulesare kept separate
from the controlstructures, it is possible
to modify ruleswithout requiring any
programming changes to the rest of the
system. The OPS-5 production language
presented in Appendix 4-1 is an example
of a rule-based system. A typical rule is of
the form [(A AND B)~C], which specifies
that ifboth A and B appear in the input
or working storage, then C will be entered
into the working storage. Enteringa new
fact or assertion bysatisfaction of the left
handside of a rule is called "forward
chaining" or "antecedentdriven" reason
ing. It is also possible to interpret the
same rule as "if we wantto establish C,
then it is first necessary to establish both
A and B.' This is known as "backward
chaining" or "consequent driven" reason
ing. Backward chaining is oftenused to
set up a goal tree that directs the search .
forneeded data items.

Practical production systems consist
of many rules, typically several hundred to
a few thousand, and have been appliedto
a variety of applications, mostnotably in
the form of "expertsystems" (seeChapter
7). Systems such as OPS-5 depart from
the "pure" POlSbyproviding features
that permit the programmer to exercise a
considerable degree of controloverthe
processing.

Common-Sense Reasoning

The reasoning techniques that we have
dealtwith in this chapter use representa-

tions of numerical quantities and prop
ositions, i.e., formalisms based on the
concept of numberand on the algebraof
sets. However, we have not yet discussed
another typeof reasoning used bypeople;
their impressive ability to reason using
common-sense theoriesof the world
their everyday beliefs about what the
world is like. Such reasoning appears to
be qualitative in nature. For example,
considerthe reasoning used in answering
the following question: "What happens if
we turn on the water tap in the bathtub,
with the plugin the tub?" We reason as
follows. For sometimethe level of the
waterwill rise, until it reaches the top of
the tub. The waterthen flows overthe
sides of the tub, and covers the bathroom
floor. Afterthe bathroom floor is covered
to some level, the water will flow to other
rooms and will leak into the floor, drop
ping onto any room below. If some of the
waterfinally escapes from the house, and
it is cold enoughoutside, the watermay
freeze, possibly into icicle-shapedforms.

Devising a qualitative theory of liquid
behavior, and developing an associated
reasoning formalism is extremely difficult,
since one must first deal witha coherent
bodyof water, then, as it overflows, some
of the water separatesfrom the main
body, forming a new bodyof wateron the
floor, followed by the conversion to indi
vidual dropsas it falls into the room be
low. Somehow the formalism has to deal
with the creation of new objectsfrom
old, the qualitative physics of water flow,
and the interaction ofwaterwith gravity
forces, physical surfaces, temperature of
the environment, etc.

Some of the issues that arise in trying
to represent and reason about common
sense knowledge are as follows:



110

REASONING AND PROBLEM SOLVING

Representing common-sense knowledge.
In order for an intelligent entity to
deal with everyday things, it must
have a database consisting of descrip
tions of these things. The database
would have to includedescriptions of
general spatial properties, the behav
ior of materialsand liquids, and have
a "naive" understanding of topics
such as physics, botany, zoology,
ecology, etc. For example, the data
base wouldhaveto capture the prop
erties of water, including properties
when it is still, slowly moving, or en
ergetically moving. The behavior in
each of these activity states depends
on whether the water is flowing on a
surface, contained, or unsupported.
In addition, the formulation must
consider whether the water is in bulk
form or divided (as in a mist), and the
time-history of the situation.

A collection of papers describing
efforts to formalize common-sense
knowledge is contained in Hobbs
[Hobbs 85].

Qualitativereasoning. A special type of
reasoningseemsto be involved in
dealingwith everyday objects.Al
though the real worldis continuous
to our senses, a person does not have
to possess continuous representa
tions, such as those typically provided
by mathematics and physics, to deal
withthis world. It seemsthat people
deal with the world by treating it
qualitatively usingonlya few values
for any of the variables, e.g., very big,
big, medium-sized, small, verysmall.
Similarquantizations may be em
'ployedfor nearness, strength of

forces, weights, etc. Reasoning based
on this type of vague quantization
seems to be adequate for solving
everyday problems, for being able to
tell how somethingworks, or using
somethingin a way for which it was
not intended, e.g., usinga fallen tree
as a seat. Formalisms for qualitative
physics and common-sense reasoning
about causality are describedin
De Kleer [De Kleer84] and Kuipers
[Kuipers 84].

Relevance. Given a real-world situation,
howcan a reasoningsystem deter
mine which other objects will have a
significant interactionwith the cur
rent object of interest? We are (again)
faced with the relevance problem in
tryingto determine what aspectsof
what objects, in the whole universe,
should enter the reasoningprocess."

PROBLEM SOLVING AND
THEOREM PROVING

Previoussectionsdescribeda variety of
reasoning techniques; this section will
discuss howthese techniques can be used
to solve problems. Basically, the approach
is to:

(a) Represent the concepts, relation
ships, and constraintsof the task
environmentin the formalism re
quired by the problem solver.

(b) Apply the solutiontechniquesme
chanically by operatingon the repre
sentations; the "meaning"of the

"Theproblemof relevance is a vital part of the
gestalt psychologist view of problemsolving as
originally formulated by Max Wertheimer
[Wertheimer 61].



111
PROBLEM SOLVING AND THEOREM PROVING

expressions is neither required nor
used by the problem solver.

The power of anygeneral problem
solving approach is that a large number
of interesting problems can be cast into
some common form. However, converting
the problem to this form is often the main
step in obtaining a solution. Once the
problem is in the required form, the role
of the computercan generally be viewed
as equivalentto searching a decision (or
game) tree to find a required node or best
path.

At the present timethere are many
classes of problems that (for practical
reasons) cannot be put into the form
required by existing machine-based gen
eralproblem solvers. Someexamples are:
sceneanalysis problems, in which the
machine mustdescribe or understanda
real-world scene; language understanding
problems; and problems forwhich all the
relevant conditions cannotbe specified,
e.g., artisticcreation.

Representing the Problem

To illustrate the nature of the representa
tion issue for the various general problem
solving approaches, wewill use a classic
example, the monkeylbananas problem
(theM/B problem):

"A monkey and a box are in a room,
and some bananasare hanging from the
ceiling, just out of reach of the monkey.
Whatshould he do to get the bananas?"

Given just this statementof the prob
lem, a person readily identifies the perti
nent operators concerned with moving the
monkey, pushing the box, standingon the
box, and finally, reaching for the bananas.

A person ignores other possible opera
tions such as the monkey throwing the
box, kicking the wall, scratching himself,
etc. Thus, whenwepresent a mechanical
problemsolver with only the "relevant"
operations, we are greatly simplifying the
problemsolving effort required. How,
then, mightthe problem be presented
to a general problem solving program?
The initial conditions are clear:

The bananasare at location L. The
monkey is at location X. The box is
at location Y.

The basic operations available could
be indicated as follows withoutgiving
away the solution:

The monkey can walk from locationx
to location y.
If the monkey and the box are at
location x, the monkey can push the
box from location x to location y, or
he can climb the box.
If the monkey can reach the bananas,
he can grab them.

The crucial question that now arises
is: howcan wespecify reachability of the
bananas? In a neutralway we mightsay:

The bananas are 6 feet offthe floor.
The reach of the monkey is 5 feet.
The box is 2 feet high.
If the monkey stands on the box his
reach will be extended by the height
of the box.

An alternative formulation, and one
that gives the problem away is:

If the monkey stands on the box his
reach is within the height of the
bananas.



112

REASONING AND PROBLEM SOLVING

An even more blatantform is:

If the box is under the banahas and
the monkey standson the box, then
he can reach the bananas.

We will showhow the problem can be rep
resented for the mostblatant form of the
problem statement using the predicate
calculus, the PROLOG logic program
minglanguage, OPS-5 (a productionrule
system), and the general problem solver
(GPS) formalism. The intent is to illus
trate the nature of these formalisms in a
simple problem situation. Each of the
approaches must dealwith the frame
problem, i.e., the problem of knowing
what things in the world change as a
resultof an action. For example, if the
monkey wasat location b and moves to
location C, a reasoning system mustdeter
minewhatobjects have changed their
location (e.g., the monkey's pants, but not
necessarily the box he was standingon).

The Predicate Calculus
Representation for the
Monkey/Bananas (MlB) Problem

The representation for a predicatecalcu
lus approach to the monkey/bananas
problemis given in Appendix 4-2, as
described in Nilsson [Nilsson 71b]. For his
exposition, Nilsson simplifies the problem
by ignoringthe need for the monkey to go
to and remain with the box, and wewill
follow his example.

The frame problem is handledby
using the concept ofstate, e.g., the box
is considered to be at a certain location,
b, in a particular state, S,: AT(box, b.s).
"States" and "objects" are represented by

state variables and objectvariables, re
spectively. Relations between objects, and
properties ofstates and actions are indi
cated using "situational fluents" which are
functions that include states among their
arguments, and whose result is also a
state. An operation carriedout on an
object can be viewed as changing it from
one state to another. For example, if the
monkey climbs the box, wecan consider
it to be in a new state of "on-boxness."
Given a timesequence of operations car
ried out on an object, wecan say that the
various operatorscausedthe object to
transition from state to state. The proof
procedure mustfindthe sequence of
operators that will convertthe initial state
in which the monkey does not have the
bananas to the state in which he does.
This final state is given in terms of the
sequence ofstatesthat produced it, thus
indicating the sequence of operations that
must be usedto obtain the end result. A
good proof procedure will avoid blind
alleys and explore only paths that seem
promising.

The initial state is described by
-ONBOX(sO), the monkey is not on the
box at the initial state sO. The bananas
are at locationC. The question now posed
is "does there exist a state such that the
monkey has the bananas?," or formally,
(EXISTS s)HASJANANAS(s). The
predicate calculus solution usingresolu
tion, is given [Nilsson 7lb] as

HASJANANAS[GRASP(CLIMB_
BOX(PUStL-BOX(C,sO)))].

Note the role of the state variable in de
scribing the sequence of operators:

1. Pushing the box to C startingin
initialstate, sO, causes the new state



113

PROBLEM SOLVING AND THEOREM PROVING

PUSH_BOX(C,sO), and we can call
the newstate sl.

2. The CLIMB_BOX operator then
causes a newstate, CLIMB_
BOX(sl), which wecalls2.

3. GRASP(s2) results in a newstate s3.
4. Finally, HASJANANAS(s3) is the

desired solution.

The predicatecalculus expression that
describes the effect of GRASP provides
most of the solution, since the problem
solver is specifically told that the monkey
should be on the box and the box should
be at the locationof the bananas in order
for the monkey to graspthe bananas. The
"solution" is the sequence of operations
that will satisfy the needed conditions for
GRASP.

PROLOG Representation of the
M/B Problem

The PROLOG representation of the
monkey/bananas problem is given in
Appendix 4-2. The frame problemis han
dledbyretracting old and assertingnew
database items, e.g., attmonkey.b) is re
tractedwhenthe monkey moves to c, and
at(monkey,c) is asserted. The order of
statements in the program is unimportant,
except when two rules dealwiththe same
goal (then, the firstone encountered will
be used). However, the order of terms
within statements is crucial, since the
analysis of the right-hand side proceeds
from left to right. Thus, ifweset up the
overall goal in the following manner,

hasbananas:- at(bananas,X),
move(box,X), move(monkey,X),
onbox (X).

we are stating that wherever the bananas
happen to be located, that should also

be the locationof the box. The system
will first instantiate the value of Xfor
at(bananas,X). It will then have the ideal
goalwhen it attemptsto process the next
clause, at(box,X), since it will force the
locationof the box to be at the same
location as the bananas. If wewereto
reverse the terms,

hasbananas:-
move(box,X), at(bananas,X), etc.,

the movetbox.X) goalwill cause a non
productive and semi-infinite search as
the system tries all possible values of X.

Notice also, that in the hasbananas
top-level goal,the use of the same vari
able forces the onboxoperation to be
carried out only under the bananas. This
prevents the monkey from getting on the
box every time his locationwas the same
as the box. Many suchsubtle "cheats" are
scattered throughoutthe program.

Production Rule (OPS-5)
Representation for the M/B Problem

A productionrule representation of the
monkey/bananas problem, usingOPS-S, is
given in Appendix 4-2.The frameprob
lem is handled bythe "remove"and the
"make" operations. A set of production
rules is used for GO, PUSH, CLIMBON,
and GRAB, that causethe monkey to
move, push the box, climb on the box,
and grab the bananas, respectively. Note
that the set of rules for PUSHforces the
monkey to move the box to where the
bananasare. The rule says that if the
monkey and the box are at location 1 and
the bananas are at location2, then make
location 2 the location of the monkey and
the box. The GO and PUSH rules occur
before the CLIMBON rule, and therefore



114

REASONING AND PROBLEM SOLVING

set things up so that although CLIMBON
is satisfied, these other rules take priority
until the monkey and the box are under
the bananas. CLIMBON is thus prevented
fromfiring before the appropriate situa
tion is obtained, avoiding the embarrass
ing outcome of a monkey. trapped on the
box, but not under the bananas, with no
operator to remove him. The careful
arrangement of the rulescan be thought
of as a way of implicitly programming the
desiredstate sequence. Because the be
haviorofthe system can be quite sensitive
to the order of the rules, the designer may
have to program the system by entering
special conditions to keep certain rules
from firing at the "wrong" time. For a
complete (70 pages) exposition of how the
M/B problem can be handledin OPS-5,
see Brownston [Brownston 85].

General ProblemSolver
Representation for the MlB problem

The general problem solver(GPS) [Ernst
69] was a system developed in the 1960s
in which problem solving is carried out by
reducing the differences between the
current state and a goalstate, an ap
proach known as "means-ends analysis."
To use GPS on a problem, it is necessary
to specify the objects and the operators
for transforming the objects. An initial
state and a goal state are alsospecified.
The specificiations must include how the
differences between states are to be mea
sured, and how the procedures to be used
relate to state differences. "Programming"
in GPS consists of providing these specifi
cations.

The representation for the GPSap
proach to the monkey/bananasproblem is

given in Appendix 4-2. This formulation
wasoriginally presentedby Ernst and
Newell [Ernst69]. The task environment
includes the operators to be used
(CLIMB, WALK, MOVE_BOX, and
GET_BANANAS), the "pretest" condi
tions for their actuation, and the effects of
the operators. The "differences" that must
be considered between the present state
of the world and whatone would like it to
be are given, along with the difficulty of
reducing eachdifference. Finally, the
specific task is given, including the ulti
mate goaland the initial state.

Probably the most significant infor
mation given is the quantification of the
difficulty of reducing each difference. This
is the implicit control information that
enablesthe system to solve the problem.
Since the difference between the goal
state and contents of the monkey's hand
is indicated as the mostdifficult problem,
GPStries to eliminate that difference, and
it must createa subgoal to accomplish
this. Sincethe next mostdifficult differ
ence is associated with the location of the
box, it attempts to satisfy this subgoal,
Notice that the box beingunder the ba
nanas is a specific pretest for getting the
bananas into the monkey's hand. The box
location goalis satisfied bycausing the
monkey to move the box to the desired
location. The monkey's place pretest
indicates that the monkey mustbe on the
box in order for the monkey to get the
bananas.This then causes the monkey to
climb onto the box. Notethat without the
given difference ordering, the monkey
would climb the box whenever he was at
the box. If a way of climbing down was
provided, then the monkey would cycle
at this point.



115

PROBLEM SOLVING AND THEOREM PROVING

Formalisms or Reasoning Systems?

In the above examples, we have illustrated
that the M/B problem can be solved in
each of the majordeductive formalisms
previously discussed. It was also noted
that a valid solution would not be ob
tained if there were slight alterations in
how the problem was presented, or in
how the operatorswere defined and or
dered. It is clear that these deductive
formalisms are not "reasoning systems" in
the full sense of this term, (see the defini
tion of reasoning in the introduction to
this chapter), but rather a framework for
problem solving in which human under
standing and intervention is still a neces
sary ingredient. The humanmust "bias"
the mapping of the problem into the
selected formalism so that the "syntactic"
transforms invoked bythe formalism
operate in a highly constrained search
space known to contain the desiredan
swer. The pigeon and the banana prob-

lem, an amusing analog to the monkey/
bananas problem takenfrom the field of
psychological experimentation, is pre
sented in Box4-8.

RelatingReasoning Formalisms
to the RealWorld

Formalsystems for reasoning are con
structed to achieve specific goals such as
completeness and consistency. Because of
the means used to achieve these goals,
there will oftenbe a mismatch between
the formal system and the type of expres
sionsand reasoning used by people. For
example, a formal system will assign
"true" to the implication "If the moon
is made ofSwiss cheese, then France is
a country," since this is of the logical
form "false implies true." However, most
people expect there to be a relationship
between the two parts of the implication,
and would consider this example inane.
Even the conjunction AND does not

. , BOX 4-8 The Pigeon and The Banana Problem

We have indicated the various ways in which the design
ers had to give away the solution to allow their programs
tosolve the monkey/bananas problem. The following
study concerning problemsolving bypigeons (Nature,
March 1, 1984), shows that whatwe had been calling the
monkey/bananas problemwas actually the pigeonand
thebanana problem.

The researchers firsttrainedfourpigeons to push a
boxtoward a green spot at the base of a cagewall. The
birds didnot pushwhenthe spot was removed. Next, the
animals were trained to climb onto a box and peck at a
bananaplaced overhead. Eachbirdwas occasionally
placed alonewith the bananauntil the bird neither flew

nor jumpedtoward it The pigeons wereable to solve the
feeding problem; theypusheda box placedat the edge
of the cageuntil theycouldclimb onto it and peck at the
banana.

Several other pigeons were trained to peck at the
banana but werenot taught to climb onto the box; to
climb and peck but not push the box; and to climb,
peck, and push the box,but not toward a target These
birdsalso learned not to jump or fly toward the banana.
But none ofthem couldsolve the feeding problem.

The successful birdshad to be given all the explicit
steps needed to solve the problem; they wereonly re
quired to put togetherthe correct sequence.



116

REASONING AND PROBLEM SOLVING

translate directly to the logical form; e.g.,
in the sentence "John AND Mary are a
happy couple," "couple" cannot apply to
John or Mary individually. (We cannot
conclude that John is happy AND Mary is
happy. )

There are many real-world concepts
about causality, imagined or fictitious
events, verb tenses, imperative forms, and
modal forms, to nameonly a few, that are
readily expressedin natural language and
are reasoned about bypeople, but are
difficult to capture in any of our existing
formalisms.

DISCUSSION

Wehave described the nature of "prob
lems," and formalisms for reasoningabout
problems. The difficulty of converting
even well-posed problems into a suitable
formalism has been indicated; the difficul
ties of converting ill-posed problemsare
even more overwhelming. Indeed, one
might considerintelligent behavioras the
ability to strip away nonessential elements
from a problem to allow application of a
suitable problem-solving approach.

This chapter has concentrated on the
problem-solving machinery once the prob
lem representation processhas been
carried out. In a way, this is like looking
under the lamppostfor an object that has
been lost at night somewhere else. Unfor
tunately, weare forced into this stance
because most of the AI workin mecha
nized reasoning has dealtwith the formal
(proof) machinery, and not with the auto
matic problem conversion process.

There is still muchcontroversy con
cerning the role of logic and deductive
inference in common-sense reasoning.

One view is that logic can be used for
analysis of knowledge, but not for reason
ing byintelligent agents. The other view
claims that logic is the only approachthat
offers: (1) an assured procedurefor deriv
ing new facts from known or assumed
truths, (2) the ability to saythat an exis
tentially quantified proposition is true
without knowing exactly whatobject
makes it true, and (3) the ability to reason
bycases.

It was shown that the logic represen
tation can be thought of as providing a
language for making assertions about the
world; various deductive formalisms can
then operateon this representation to
answer questions, devise plans, and solve
problems. However, the computational
feasibility of the deductive process is
strongly dependent on the way that the
assertions are expressed, and the nature
of the external guidance that has been
provided. Combinatorial explosion must
be avoided, sinceall of the formalisms
havea worst casecomputational cost that
increases exponentially with the number
of initial assertions.

Although there are various strategies
incorporated into theorem provers to
improve the efficiency of the proof-finding
process, there are no effective purely
syntactic mechanisms that can direct an
automatic proofsystem to select only
thosestatements that are relevant, but
still adequate, to obtain the desired proof.
If we have a largedatabase, many unpro
ductive pathsare typically pursued,and
an enormous number of inappropriate
deductions carried out.

In a very importantsense, deductive
systems have to be "programmed" ifthey
are to avoid the necessity for the equiva-



117
APPENDIX 4-1

lent of exhaustive search: the user must
understand, and supply to the system,
some approximation to the solution of the
problem to be solved. There is thus an
equivalence between whathas been called
the "automatic programming problem,"
and automatic problem solving by deduc-

tivesystems. Since very littleprogresshas
been madein finding a general solution to
the automatic programming problem, we
shouldnot expectcurrently available
deductive systems to be capableof func
tioning autonomously as generalproblem
solvers.

Appendixes
4-1

AI Programming Languages

The LISP Programming Language

Inprogramming computers for artificial intelligence
applications, one is oftenrequired to representarbitrary
objects and the relationships among them. This is in
contrastto othercomputerapplications where numerical
computation is the maintheme.The LISPlanguage,
designed in 1958byJohn McCarthy of StanfordUniver
sity, hasbecome the primary language used in AI. (Some
ofthe present-day variants include INTERLISP,
FRANZLISP, MACLISP, COMMONLISP, and
ZETALISP.) Simple lists, suchas (obiectl object2 ob
ject3), and morecomplicated structures, such as

object,
object~ ~object4

bi / "bo to ~ect; 0 ~ec 3

can be uniformly represented. LISPcommands permit
the programmer to extractelements fromlists, to com
bine lists in various ways, and to carry out mathematical
and logical operations. A conditional branchingfunction
and facilities for extensive data structure manipulation
are also provided.

One characteristic of :LISP that is often puzzling to
the novice is that procedural knowledge is expressed as
a composition of nestedfunctions. Rather than having a
program consisting ofa series of sequential steps, as in
mostconventional languages, in LISPthe desiredopera
tions are expressed in the form ofa single complex
function that is composed of simplerfunctions. Also,
much use is madeofrecursionin which the function
calls itself.··This is illustrated in the following LISPpro
gramfor factorial.



118

REASONING AND PROBLEM SOLVING

(Define
(factorial (Lambda (N)

(cond «(zerop N) 1)
(T (times N(factorial (sub1 N)

;define a function
;factorial is the name of the
;function, and the argument is N
;if N- 0, then result= 1 and return
;otherwise, N·factorial(N-1)
;c1ose with required number of
;right parentheses

powerful computational capabilities, and can be net
worked to other machines so that resultsand programs
can be shared.

The Tower of Hanoi Problem in LISP. The Tower of
Hanoiproblem is a good example of the use of recursion
and of the type of thinking that goes into representing a
problem in the LISPlanguage. Weare given three pegs,
LEFT, MIDDLE, and RIGHT and N disks of decreasing
sizeon the LEFTpeg.

The problem is to move the disksone at a timefromthe
LEFTpeg to the RIGHT peg without puttinga larger
diskon a smallerdisk. The MIDDLE peg can be used as
an intermediate storagelocation when required. The
basicapproach is to 'assume that we can get the top N-1
disksto an intermediate peg. Wenowcan placethe
remaining large disk on the RIGHT peg. The problem is
then to move the N-1 disksto the RIGHT peg. This can
be accomplished by repeating the original procedure,
i.e., usinga recursive approach.

The LISP solutionuses a function HANOI(N,
SOURCE, DESTINATION, OTHER), where N is the
number of disks, SOURCE (where a diskis to be taken
from), DESTINATION (where the disksremoved from
SOURCE are to be placed), and OTHER (thecurrent
intermediate storage location). SOURCE, DESTINA
TION, and OTHERtake on the values LEFT, RIGHT,
and MIDDLE, in anyorder. For example, HANOI( 1,
MIDDLE, LEFT, RIGHT) indicates that a disk is to be
removed from MIDDLE and placedon LEFT.

Note 1 saysthat ifwecan somehow move N-1 disks
from SOURCE to some intermediate peg, OTHER, then
(Note 2) the remaining disk, the Nth disk, can be moved

A more complex problem programmed in LISP is given
on the following page.

There are many reasonsfor the success of LISP: it
was the firstavailable programming language having the
needed flexibility for AIproblems, and it becamethe
language of choicein university AIcenters. However, a
more important reason is that excellent programming
environments weredeveloped for the language, consist
ing ofpowerful sets of highly integrated editingand
debugging tools. An importantfeatureof these environ
mentswas that LISPcode was interpretedand the pro
grammer couldsee the resultsof executing a portion of
suchcode immediately, withouthaving to go through a
tedious compilation process.Thus, LISPprovided an
interactive environment in which all data and functions
couldbe inspectedor modified bythe programmer. An
error in a function or data objectcouldbe corrected,
and the correctiontested, without the need to recompile
the program. It is LISP'sinteractive environment that
allows massive programs to be developed one "layer"at
a time.

Another useful feature is the dynamic allocation of
storage: intermediateresultsfrom subsidiary functions
are passed on to the calling function, but are not re
tained after they are used. Thus, the system can auto
matically recoverthe memory storage that was used in
obtainingthe intermediate results, freeing program
mers from the responsibility for detailed memory
management.

Finally, the LISPlanguage syntax is quite simple: a
LISPprogram is a binarytree. This uniformity ofsyntax
and functions permitsa LISPprogram to examine other
LISPprograms, and to produceadditional LISPpro
gramsthat can be executed.

Arecent contribution to the popularity of LISPis
the development of personalworkstationsbased on this
language. These "LISP machines" havegood graphics,

LEFT

±
MIDDLE RIGHT

I



;if N== 1
;message to user to move
;disk from the current
;value of SOURCE to the
;current value of DESTINATION

119

APPENDIX 4-1

The actual LISP program is:

(HANOI
[LAMBDA (N SOURCE DESTINATION OTHER)

«(OND
«EQP N 1)

(PRIN1 "MOVE THE DISK ON")
(PRIN1 SOURCE)
(PRIN1 "TO")
(PRIN1 DESTINATION)

)

(T (HANOI (SUB1 N)SOURCE OTHER DESTINATION) ;Note 1
(HANOI 1 SOURCE DESTINATION OTHER) ;Note 2
(HANOI (SUB1 N) OTHER DESTINATION SOURCE) ;Note 3

»
])

LEFT MIDDLE RIGHT

FIGURE 4-3
Solution ofthe Tower of Hanoi Problem.

PROLOG programs consistof (1) declarations of
facts about objects and their relationships, (2)rulesthat
define objects and their relationships, and (3)questions
about objects and their relationships. A periodfollows

from SOURCE to DESTINATION. Then (Note 3) we
now transfer the N-1 disks from OTHER to DESTINA
TION using the original SOURCE pegfor intermediate
storage.

Thesequence of operations ofthe programfor the
caseof3 disks is shown in Fig. 4-3. The reader is en
couraged to work through the LISP program to see how
the recursion "unwinds."

The PROLOG Programming Language

Although onecan express a problem in predicate cal
culus andthen remove the resulting quantifiers using
techniques shown previously, an attractive alternative is
to express the logical expressions directly in a quantifier
freeclausal form. This is the approach adoptedfor the
programming logic language PROLOG [Clocksin 81].
The motivation for such "logic programming" is that
programs will be easierto write (and to read)than pro
grams ina procedural language, sincethey do not re
quire an explicit statementabouthow thingsare to be
done, but are morelikea specification of whatthe pro
gram should achieve.

ThePROLOG clausal form is a resbictedsubset of
the standard form, having the advantage that simpleand
efficient theorem provers have been developed for it. For
some sentences the standardform allows a more eco
nomical and naturalexpression than the PROLOG form.
See Kowalski [Kowalski 79] for a comparison.

±
-±I
-Ll
-Ll
I ±.
1 1
1 I

I I

I

1
1
I

The top N-l disks have
been moved to the OTHER peg.
Now the largest disk is

I moved to theDESTINATION peg,
·--Land the problem has been

I reduced to moving the two
--L disks from the CENTER to

the DESTINATION peg.
I The largest disk on the CENTER

.zr;has now been brought to the
DESTINATION peg.± The solution.



120

REASONING AND PROBLEM SOLVING

every statement in PROLOG. Some examplesof PRO
LOG expressions are given below.

Facts: Some examples of facts in PROLOG are:
likes(mary,john).; valuable(gold).; ownstiohn.goldl.:
and fatherfiohn.mary). Any number of arguments
can be used in a fact. To the system, a fact is of
the form afb.c.d, ...); the mnemonics are merely
an aid to the programmer. The programmer must
decide what any of the fact expressions mean,
e.g., valuable(gold) could mean that a specific
piece of gold is valuable, or that in general the min
erai gold is valuable.

Questions: Once wehave some facts, wecan ask
questionsabout them. Thus, the question
?-owns(mary,book). causes PROLOG to look in the
database of facts for that fact. If owns(mary,book)
is in the database, the system answers "yes," other
wise it responds "no."

Variables: If wewant to ask "Who does John like," we
express this using a variable, e.g. ?-likesOohn,X). If
the database contains likestiohn.flowersj., PROLOG
will respond with X - flowers. The variable X is
now "instantiated" to have the value "flowers."

Conjunctions: Wecan ask "Is there anything that
both John and Mary like" by usingthe expression
"?-likes(mary,X),likes(john,X)., where the comma
between the facts stands for the conjunction
AND. PROLOG first finds an entry of the form
likes(mary,something)., and instantiatesX to "some
thing." The system then tries to find an entry in the
database: likes(john,something). If no such entry is
found, then the systembacktracksand tries to find
another fact that satisfies "likestmary.X).' If it finds
one, then a newvalueof X is instantiated and the
systemtries to find "likes(john,X)"for the new
value of X. Allof this backtracking is performed
automatically by the system.

Rules: Rules have the form "(consequence) IF (condi
tions)," meaningthat a certain consequence follows
if the conditions hold. For example "likestiohn.X)
IF likes(X,wine)" indicates that John likes any X, IF
X likes wine. Using the PROLOG notation B:-A for
B IF A, the relationship "sisterof(X,Y)" can be
defined as:

sisterof(X.y) :- fema le(X).parents(X,m,f).parents(Y.m,t).

which says that X is the sister of YifX is female
and if X and Y have the same parents.

Built-in predicates: PROLOG has a set of built-in
predicates that provide the programmer a way of
expressing control information about how the proof
is to be carried out. This is necessary because
without such mechanisms PROLOG would spend
unacceptable amounts of time tryingto carry out
proof procedures that are not fruitful. (For exam
ple, the "cut" symbol written "1", that allows the
programmerto indicateto the system which pre
vious choices it need not consideragainwhen it
backtracks through the chain of satisfied goals.)

A simplePROLOG program is given below, along
witha target question and a trace of how the program
carried out the deduction. Note that each rule can read
both in a declarative way and a proceduralway. Thus the
user can make declarativestatements that the system
can use in a procedural manner. Both the declarative
and procedural interpretations are given only for the first
of the two rules.

% Rule 1
descendant (B,C):- % declarative: C is a descendant of B

% if C is an offspring of B.
offspring(B,q % procedural: To determine that C

% is a descendant of B
% determine that C is an offspring of B

% Rule 2
descendant(B,C):- % To determine that C is a descen

% dant of B.
offspring(D,C), % determine both that C is an off

% spring of D
descendant(B,D).% AND that D is a descendant of B

offspring(abraham, ishmael). % This is the database
offspring(abraham,isaac). % of offspring data
offspring(isaac.esau).
offspring(isaac.jacob).

The following trace shows how the question "is
esau a descendant of abraham?" is processed. "Call"
indicates a rule is to be invoked in an attempt to answer
a question or achieve a subgoal, The return is either a
"failure," or a successful "exit" withthe instantiated



121

APPENDIX 4-1

This says that

IF in the working memory there is an item known as
a goal, and if that goal is to find a blockof a certain
color, and if there is also an item in working mem
ory describing a block of that color.

change items.Thus the fact that a block named blockl
has the color "red" is added to workingmemory by

(make block
name block1
colorred)

A typical production rule would be written:

(make result pointer< block> )
;then enter a pointer in
;working storage that
;indicates the name of the
;block that satisfies the goal.

(modify status satisfied)
;and change the goal marking
;to satisfied

THEN make an item called a "result" that points to
the block and change the goal item to indicate that
it is nowsatisfied. (The pointer result can then be
used by any other rules requiring a blockof that
color.)

An OP8-S program consists of a set of such produc
tion rules and stored items. The systemis activatedwhen
newitems appear in workingmemorythat cause certain
rules to be activated. The activated rules add, delete,
and modify items in the memory to cause further activity.
Production rule programming requires a differentway of
thinking than conventional procedural programming.

;p denotes production
;if there is a goal which
;is active to find
;a block
;of a certain color
;and there is a block
;of that color
;with a certain name

)

(p find-colored-block
(goal

status active
object block
color <z»

(block
color <z>
name <block»

yes
Therefore answeris "yes"

OPS·5: A Programming Language for
Production Systems

OPS-5 [Forgy 77] is a language for writing production
systems programs. If the goal (condition) portion of a
rule is satisfied, then the "action" portion causessome
change to occur in working memory. One can store
items in working memory usingthe "make" command.
"Remove" is used to remove items, and "modify" to

variable indicated. The numbered lines indicate the
"depth" of the portion of the proof beingworked on.
For example, line (4) is examining whether isaac is a
descendant of abraham, and this then requires that the
proof of isaac beingan offspring of abraham (5) first be
established. The control of the system is goal driven,
i.e., the system proceeds from rule to rule as needed to
satisfy subgoals, When there is a failure, the system
automatically backtracks or tries an additional rule
related to the current goal.

I ?-descendant(abraham,esau).
We are asking if esau is
a descendant of abraham

(1) Call: descendant(abraham,esau) ?
(2) Call : offspring(abraham,esau) ?
(2) Fail : offspring(abraham,esau)

Can't be established byfirst rule,
so now try2nd rule, 1st part

(3) Call : offspringL119,esau) ?
119 is an i.d. number that PROLOG
has used to designatea variable.

(3) Exit: offspring(isaac,esau)
Finds that esau is offspring of isaac

(4) Call: descendant(abraham,isaac) ?
Now work on 2nd part of2nd rule

(5) Call : offspring(abraham,isaac) ?
Determine if isaacwas offspring of abraham

(5) Exit : offspring(abraham,isaac)
From database, he was

(4) Exit : descendant(abraham,isaac)
From first rule, isaac is a descendant
of abraham

(1) Exit : descendant(abraham,esau)
Since both conditions of 2nd ruleare
satisfied,esau is a descendantof abraham



122

REASONING AND PROBLEM SOLVING

4-2

The Monkey/Bananas Problem

The PredicateCalculus Formulation

The following predicates and operators are given as part of the predicate calculus formulation of the M/B problem

[Nilsson 7la] :

Predicates
ONBOX(s), monkey is on the box in state s

AT(box,b,s). box is at location b in state s,
HAS_BANANAS(s). monkey has bananas in state s

Operators
(It is important to remember that each operator returns a new state value)

GRASP(s), the state attained when grasping bananas in state s,
CLlMB_BOX(s), the state attained when the monkey climbs box in state s,
PUSH_BOX(x,s), the state attained when the monkey pushes box to location x starting in state s.

The preconditions and effects of operators are expressed in the predicate calculus notat ion:

(It is assumed that the monkey and the box are never separated.)

PUSH_BOX(x,s): If the monkey isn't on the box, in the state s, then the box and the monkey will be at location x in

the new state attained by applying PUSH_BOX to state s.

(ALL x ALL s)[-ONBOX(s) -+ AT(box. x, PUSH_ BOX(x,s)]

CLIMB_BOX: The monkey will be on the box in the state attained by applying the operator CLIMB_BOX to the

state s. Note that the argument of ONBOX is a new state, CLlMB_BOX(s).

(ALL s)[ONBOX(CLlMB_BOX(s))]

GRASP: If the monkey is on the box and the box is at C (the location of the bananas) in state s, then the monkey
will get the bananas in the state attained by applying GRASPto state s.

(ALL s)[(ONBOX(s) AND AT(box,c,s) -+ HAS_BANANAS(GRASP(s))]

In addition, it must be stated explicitly that the position of the box does not change when the monkey climbs on the

box.

(ALL x ALL s)[AT(box,x,s) -+ AT(box,x,CLlMB_BOX(s))J

Asdescribed in the text, the predicate calculus solution using the above formulation is:

HAS_BANANAS[GRASP(CLlMB_BOX(PUSH_ BOX(C,SO)))].

This solution, and its conversion to a plan that could be used by the monkey to obtain the bananas is described in Nils
son [Nilsson 7la).



123

APPENDIX 4-2

The Monkey/Bananas Problem in PROLOG

The PROLOG formulation for the monkey/bananas problem isshown below; see text foradditional comments. The
initial conditions are shown first, followed by the rules.

offbox. %these are the given initial conditions.

at(bananas,c). %lower case characters are constants.

atfrnonkeva). °/othus, a.b,c are constants that represent

at(box,b). %fixed locations of the monkey, the box, and the bananas.

hasbananas:

at(bananas,B),

move(box,B),
move(monkey,B),
onbox(B).

move(monkey,B) :
( at(monkey,B);

at(monkey,C),
goto(C,B) ).

move(box,B) :-
( at(box,B);

at(box,C),
pushbox(C,B) ).

%this is the top level goal. It states

°/othat the monkey has the bananas when

°/othebox and the monkey have been moved
°/oto the same location as the bananas,
°/oand the monkey is on the box.

%to achieve the goal of moving the monkey

%to B, either the monkey is already at B,or
°/othemonkey is at C and we should establish
°lbgoto(C,B) that moves him from C to B.

%to achieve the goal of the box at B
(Yoeither the box is already at B or

%the box is at C, and we should establish
%pushbox to move the box from C to B.

0/0 to get the monkey from B to C, either

%he is already at C, or he is off the box,
goto(B,C) :-

( at(monkey(C»;
offbox,
retract(at(monkey,B», °/oand we then retract his former location

asserttattmonkevOj ). °/oand assert his new one.

pushbox(B,C) :-

offbox,

anbox.B),
move(monkey,B),
retract(at(mon key,B»),
retract(at(box,B»,

assert(at(monkey,C»,

asserttattbox.O).

c1imbbox(B) :

offbox,
move(box,B),
at(monkey,B),
retract(offbox).

%to push the box from B to C,
%the monkey must be off the box,

%the box must be at B
%the monkey must be at B,
°kand we then retract the previous
°/olocationsof the box and the monkey,

°loand assert the new ones.

O/oto establish c1imbbox,

°lbestablish that the monkey is off the box,
0/0 move the box to B,
(Yoestablish that the monkey is at B

% retract offbox.



124

REASONING AND PROBLEM SOLVING

top goal

pushbox(b,c) needed to
satisfy move(box,b)
trying to satisfy pushbox

has to move the monkey to b

using goto to move the monkey

at(bananas,c) established

trying to move the box to c

onbox(B) :
c1imbbox(B).

(7) 3 Call: offbox ?

(7) 3 Exit: offbox
(8) 3 Call: at(box,b) ?
(8) 3 Exit: at(box,b)
(9) 3 Call : move(monkey,b) ?

(10) 4 Call : at(monkey,b) ?
(10) 4 Fail: at(monkey,b)
(11) 4 Call : at(monkey,_143)?
(11) 4 Exit: at(monkey,a)

(12) 4 Call: goto(a,b) ?
(13) 5 Call: attrnonkevtb) ?
(13) 5 Fail: attrnonkevtb)
(14) 5 Call: offbox ?

(14) 5 Exit: offbox establishes that offbox is true
(15) 5 Call: retractfattrnonkeva) ?
(15) 5 Exit: retract(at(monkey,a»
(16) 5 Call: asserttattrnonkev.b) ?

(16) 5 Exit: asserttattrnonkey.b)
(12) 4 Exit : goto(a ,b)

(9) 3 Exit: move(monkey,b) monkey moved to box at b
(17) 3 Call : retract(at(monkey,b)) ?

(17) 3 Exit: retracttattrnonkeyb)
(18) 3 Call: retract(at(box,b)) ?
(18) 3 Exit: retract(at(box,b))
(19) 3 Call: assert(at(monkey,c» ?

(19) 3 Exit: assert(at(monkey,c»
(20) 3 Call: asserttattbox.c) ?

%this merely says that if we establish
%c1imbbox, we establish on box. This
%statement could be eliminated by replacing

%onbox by c1imbbox in all the other statements.

A trace of the operations that occur when we ask to establish hasbananas is given below. The numbers shown on
the left refer to depth levels of search, and the numbers such as _85 represent the labels of temporary variables used by
the system:

I ?- hasbananas.
(1) 0 Call: hasbananas ?
(2) 1 Call: at(bananas,_85) ?
(2) 1 Exit : at(bananas,c)

(3) 1 Call: move(box,c) ?
(4) 2 Call : atfbox.c) ?
(4) 2 Fail: at(box,c)
(5) 2 Call: at(box,_102) ?

(5) 2 Exit : at(box ,b)
(6) 2 Call: pushbox(b,c) ?



(20) 3 Exit: assert(at(box,c))
(6) 2 Exit: pushbox(b,c)

(3) 1 Exit: move(box,c)
(21) 1 Call: move(monkey,c) ?
(22) 2 Call: at(monkey,c) ?
(22) 2 Exft : at(monkey,c)

(21) 1 Exit: move(monkey,c)
(23) 1 Call: onbox(c) ?
(24) 2 Call: c1imbbox(c) ?
(25) 3 Call : offbox ?
(25) 3 Exit: offbox
(26) 3 Call: move(box,c) ?
(27) 4 Call: at(box,c) ?
(27) 4 Exit: at(box,c)

(26) 3 Exit: movelbox,c)
(28) 3 Call: at(monkey,c) ?
(28) 3 Exit: at(monkey,c)
(29) 3 Call: retract(offbox) ?
(29) 3 Exit: retract(offbox)
(24) 2 Exit: c1imbbox(c)
(23) 1 Exit: onbox(c)
(1) 0 Exit: hasbananas

yes

125

APPENDIX 4-2

box moved to c

establishing onbox
establishing c1imbbox
verifying that monkey is off box

verified monkey off box

verifying that box is at c

verifying that monkey is at c

monkey can c1imbbox

monkey has bananas

The Production Rule Formulation

In the OPS-5 production rule formalism, a set of productions is used, each ofwhich specifies the items that can appear
in working storage, and the actionsthat will result when these itemsactually do appear. If more than one production is
satisfied by items in working storage, then the production highest on the listwill be activated. Thus, the ordering of the
productionsis important.

In the production rule approachto the monkey/bananas problem, the initial contents of workingstorage are:

Initial: goal working, at monkey r, at box b, at banana s, on monkey floor

This says that a goal is being worked on, the monkey is at r, the box is at b, the bananas are at S7 and the monkey

is on the floor.

The set of productions are:

go
«(goal working)

(at monkey < loc1 > )
(at box «loc2> <> <loc1»)
(on monkey floor)

>
(remove 2)

(make at monkey < loe2 > »

;if we are still working on a goal,
;goal, and the monkey is in loct,
;and the box is at 10c2 not equal to loc1,
;and the monkey is on the floor

;remove from workl ng storage the

;fact that monkey is at loc1, and replace monkey location with 10c2



push
«goal working)

(at monkey < loc1 »
(at box < loc1 »
(at banana « 10c2 > < >
(on monkey floor)

:>
(remove 2)

(remove 3)

(make at monkey < 10c2 > )
(make at box < 10c2 > )

c1imbon
«goal working)
(at monkey < loc1 >)
(at box < loc1 »
(on monkey floor)

:>
(remove 4)
(make on monkey box»

grab

«goal working)
(at banana < loc1 »
(at box < loc1 »
(at monkey < loc1 >)
(on monkey box)

:>

126

REASONING AND PROBLEM SOLVING

;if monkey is at loc1 and the box
;is at the same location

< loc1») ;and the banana is not at loc1
;and the monkey is on the floor

;remove ws entry for monkey location

;remove ws entry for box location

;enter into ws that monkey is at 10c2
;and so is the box

;if the monkey is at loc1,
;and the box is at loc1
;and the monkey is on the floor

;delete fact that monkey is on
;f1oor, and add to ws the fact that monkey
;is now on box

;if the banana is at loc1
;and so is the box,
;and so is the monkey,
;and the monkey is on the floor

(remove 1)

(remove 2)
(make monkey has bananaj)

;goal has been satisfied

;banana has been removed
;enter result in ws

The sequence of working memory states is:

after go: goal working, at monkey b, at box b. at banana s, on monkey floor

after push: goal working, at monkey s, at box s, at banana s, on monkey floor

after c1imbon: goal working, at monkey s, at box s, at banana s, on monkey box

after grab: at monkey s, at box s, on monkey box, has monkey banana



127

APPENDIX 4-2

General Problem Solver Representation

Inthe CPS approach to the monkey/bananas problem, weare given a taskenvironment that specifies the set of places,
theoperators, the "differences," the difference ordering, and the task. These are as follows:

I. Task Environment
A. Miscellaneous: the set of places on the floor = (place1, place2, under the bananas)

B. Operators

1. CLIMB
Pretest: The monkey's place is the same as that of the box
Result: The monkey's place becomes on the box.

2. WALK

Variable: x is in the set of places
Result: the monkey's place becomes x.

3. MOVE_BOX
Variable: x is the set of places

Pretests: the monkey's place is in the set of places
the monkey's place is the box's place

Results: The monkey's place becomes x
The box's place becomes x

(Note: the difference ordering discussed below keeps the monkey from being on the box at this point. Thus, one can
omit the test for the monkey being on the floor to move the box.)

4. GET_BANANAS

Pretests: The box's place is under the bananas
The monkey's place is on the box

Results: The contents of the monkey's hand is "bananas"

C. Differences (this indicates the kinds of difference that one can have between what is and what should be. For
example, the monkey's place may be different than the desired monkey's place.)

01 is the monkey's place
02 is the box's place
03 is the contents of the monkey's hand

D. Difference ordering (this indicates the order of difficulty in reducing a difference)

03 is more difficult to reduce than is 02 which is more difficult to reduce than D1 (Thus, it is more difficult
to take care of the difference of the monkey's hand being empty, than it is to change the difference involved
with the monkey's location.)

11. SpecificTask
A. TOP GOAL: Transform the Initial OBJ into the Desired OBJ

·(Le. take the situation described by Initial OBJ and somehow attain the Desired OBJ)



128

REASONING AND PROBLEM SOLVING

B. Objects
1. Initial OBJ

a. The monkey's placeis place1
b. The box's place is place2
c. The contents of the monkey's hand is "empty"

2. Desired OBJ
The contentsof the monkey's hand is "bananas"

GPSwill first note that there is a difference to be reduced with respect to the contentsof the monkey's hand whenthe
Initial OBl is compared to the Desired OB]. There is no way of achieving this reduction directly, sincethe pretests for
GEL_BANANAS are not satisfied. In trying to satisfy these preconditions, GPSwill find differences between whatis
and what should be, and guidedby the difference ordering, GPS will choosethe next difference to eliminate. The pro
gramtries to eliminate the more difficult differences before tryingthe simpler ones. The various WALK, MOVEJOX,
and CLIMB operators will have to be exercised beforethe GET--.BANANAS operator can be invoked.


