[9] Parallel Architectures for Fast 3D Machine Vision

Chris R Brown and Chris M Dunford

AT Vision Research Unit
University of Sheffield, Sheffield S10 2TN, UK

1. Introduction

The TINA software suite, developed within AIVRU during
the period 1984 to 1987, has demonstrated an encouraging
level of visual competence by delivering (from
stereoscopic TV images of a relatively cluttered scene)
three-dimensional edge-based geometrical scene
descriptions sufficiently accurate to guide a robot arm in a
pick-and-place task. Against this success must be offset
the large computational effort required to pass even a
single image through the TINA suite.

This paper describes work undertaken by AIVRU to
develop a computing engine of realistic cost, yet powerful
enough to provide three-dimensional machine vision at
speeds commensurate with the real-time needs of an
assembly robot, or an autonomous guided vehicle. Firstly,
we make some observations about the opportunities for
exploiting parallel MIMD architectures and other
specialised hardware, including sequential pipelined frame-
rate processors. Secondly, we discuss the results of a
pilot study in which parallel implementations of the
Canny edge detector and the PMF stereo matching
algorithm were implemented on an array of eight
transputers. Thirdly, we describe ‘Marvin’ - a Multi-
processor ARchitecure for VIsioN, currently being
developed within AIVRU.

To give some idea of the extent of improvement in speed
being sought, it is interesting to examine the CPU time
required to process an image through the TINA suite at
the time it was originally demonstrated, which for a
typical scene at 256 by 256 resolution are shown in Table
1. These times were obtained on a Sun 2 with a SKY
floating point accelerator.

Process Stage Time (sec)
Canny (Edge detection) 428
Rectify (Convert to parallel camera geometry) 57
PMF (Stereo matching) 1118
Connect (Establish connectivity of 3-D edges) 214

GDB (Classify connected edges as lines & arcs) 1442
Model Matcher (Find 3-D match of edge model) 300
TOTAL: 3559

Table 1

Exactly what is implied by ‘real-time’ operation of the
system is open to debate, but a throughput of 1 image per
second is probably the minimum requirement. In addition,
a move to higher resolution (say 512 by 512) images is

desirable. We seek, therefore, a speed increase of order
10,000.

Much work is in progress within AIVRU to reduce the
computational load by refinement of the algorithms; for
example by restricting the areas of image which are
processed to specific regions of interest, and to further
reduce the amount of searching by predicting forward
within a sequence of images. The work reported here
however, is concerned with the provision of more raw
computing power, through the use of parallel MIMD
architectures.

The transputer is an ideal candidate as a processing unit in
such a system, and our work centres around the use of this
device. A powerful 32-bit processor in its own right, it
has four high-speed serial links that enable the
construction of highly parallel architectures without the
system engineering problems and bus bandwidth
limitations experienced by shared memory designs. The
transputer’s flexibility and price allow a modular system
to be constructed for prototyping fast vision systems,
without imposing a heavy financial burden.

2. The Exploitation of Parallelism

In this section we discuss the parallelism inherent in the
TINA processing stages, and how this might be exploited.
The discussion focusses mainly on the use of a transputer
array, although some comments on the use of specialised
pipelined hardware are also made. It is important to note
that we seek opportunities for parallelism on quite a
large scale. Schemes which allow us to exploit, say, two
or three transputers are simply not worthwhile. Thus, the
extent to which any given scheme can be extended to
greater numbers of transputers, and the extent to which a
linear increase in speed is achieved, are important issues.

Three types of parallelism can be identified within the
processing stages: spatial, featural, and temporal. We
will consider these in turn.

2.1 Spatial Parallelism

Each processor is allocated a patch of the image. This is
appropriate for operators which require access to
relatively small pixel neighbourhoods, such as Canny and
PMF. Load-balancing (that is, arranging for each
processor to have the same amount of work to do) can be
performed by adjusting the size of the patches. Although

in principle a decomposition into a 2-D array of rectangles
could be used (see Fig. 2), in practice the use of ‘slices’
(rectangles extending the full width of the image) is
easiest (Fig. 1). If 2-D decomposition is used, it is
difficult to adjust the size of the patches to balance the
processing load, and still have the patches tesselate the
image. Also, because of the ‘raster scan’ order in which
digital video busses operate, it is somewhat easier from an

engineering standpoint to distribute data in complete.

rasters.

Fig 2. 2-D Spatial Partitioning

2.1.1 Data flow within spatially parallel systems

The data flow within spatially parallel systems is
complicated by the fact that most algorithms require
access to pixel neighbourhoods surrounding the pixels for
which they are to deliver output. This can be handled in
various ways:

(a) By migrating data at the slice boundaries across the
transputer links. The order of processing may be
important, especially in iterative algorithms such as
PMF. For example, if all slices are processed top-to-
bottom, and slice 4 needs complete or partial results
from slice 3 etc., processing activity will ripple down
through the slices and parallelism will be lost.

(b) By duplication of effort at the slice boundaries. That
is, a slice’s transputer will replicate some of the
processing which its neighbour is performing on pixels
near the slice boundary. The input slice will be bigger
than the output slice.

These considerations lead to the following observation: if
the width of the slice allocated to a processor is reduced,
the -processor spends a larger proportion of its time either

68

talking to its neighbour or duplicating its neighbour’s
efforts. If the slice becomes narrower than the
algorithm’s neighbourhood size, this effect dominates and
little speed increase is obtained. This yields a (very
approximate) upper limit on the number of transputers
which can be gainfully employed in this way of

image size/neighbourhood size

Taking image size = 512 and neighbourhood size = 8,
yields an upper limit of 64 processors. At present, this
value is larger than the number of transputers we have the
money to buy -- though not by a large factor.

An alternative form of spatial parallelism could arise
from multiple region of interest processing, in which a
number of relatively small rectangular regions of the
image have been identified as worthy of detailed
processing. In this case the regions will not necessarily be
horizontal slices, and there is no requirement for them to
tesselate the image.

2.1.2 Load Balancing in Spatially Parallel Systems

Load balancing, as mentioned earlier, can be accomplished
by adjusting the size of the slices. The computational load
of some operations, such as Canny, is relatively
insensitive to the actual content of the image. For others,
such as PMF, cluttered regions take much longer. Since
pictures (usually) have the important bits in the middle, a
load-balanced partitioning will typically have wide slices
at the top and bottom edges and narrower slices in the
middle. Partitioning adjustments are ideally carried out
before processing an image, if the ‘cost’ of processing each
raster can be somehow evaluated before hand. For
example, a simple count of the number of edges found by
Canny could be used to guide a pre-partitioning of the
data prior to PMF. Alternatively, if the system is being
used to process a series of images, partition sizes can be
adjusted after each image has been processed, on the
assumption that each image in the sequence has a similar
‘complexity distribution’ to its predecessor.

2.2 Featural Parallelism

Each processor is allocated a subset of the geometrical
features in the image (See Fig. 3). This is appropriate for

7

@
Fig 3. Featural Partitioning

operations on lines and regions which potentially could
span large distances across the image. The rules by which
features are allocated to processors are less obvious than

for spatial parallelism, but could continue to have a
spatial basis; for example, each processor is allocated a
slice; features are allocated to processors on the basis of
which slice their top-most point lies in. The real
problems lie in the transformation of the data structures
between spatial-parallel and feature-parallel stages, and
in efficiently re-distributing the data around the processor
array.

Load balancing in this scheme could be performed by
using a ‘processor farm’, consisting of a master processor
and a number of worker processors. The master keeps a
list of busy and idle workers, and assigns ‘work packets’
to processors as they become idle. (A work packet might
be, for example, an attempt to match a geometric feature
in the image with a pre-computed object model). The
fundamental characteristic of a processor farm is that the
workers do not need to communicate or synchronise with
one another. Processor farms are automatically load-
balanced, and it is very easy to add more transputers; the
master simply needs to be made aware of the increased
number of workers. A desirable characteristic of a
processor farm is a topology which provides short data
paths between the master and all of its workers. Given
that transputers have only four links, a ternary tree is
perhaps sensible. The transputer is well-suited as a
worker node as its design allows the passing of data from
one link to another in parallel with the actual work
process running on it. CPU time is required only to
initiate the operation, thereafter DMA logic in the links
carries out the transfer with minimal inpact on the CPU.
The master task should ensure that this overlap of
processing and transferring data is exploited. Further,
efficient processor farms reduce the CPU overhead and
maximise the communications bandwidth of the network
by sending small numbers of large messages in preference
to large numbers of small ones.

2.3 Temporal Parallelism

Temporal Parallelism, or pipelining, refers to the use of
several processing elements in series, with each element
responsible for one stage of the processing. Typically this
provides N-fold parallelism for only small values of N,
simply because there are conceptually only a few stages in
the pipeline. In practice each element could be a group of
transputers which themselves employed spatial or
featural parallelism. For example, one might envisage 4
groups as shown in Fig. 4. Different numbers of
transputers are placed in each group to balance the
processing loads of the various stages. Effective
parallelism is achieved only if a continuous flow of
images are to be processed, so that, for example,
processor group D is processing image N, whilst group C
is processing image N+, and so on.

Insofar as it provides opportunity to use more
transputers, pipelining increases the throughput of the
system, but it does not reduce the overall latency from
image acquisition to delivery of the geometry. For
example, suppose each processor group in the pipelined

69

system of Fig. 4 were able to perform its task in, say, 0.5
seconds. The pipeline would thus deliver fresh 3-D
geometry every 0.5 seconds, but each one would be 2.0
seconds out of date. The same number of transputers
employed without pipelining would achieve a four-fold
increase in the fineness of the spatial or featural
parallelism, thus (assuming the load was balanced)
completing each processing stage in 0.125 seconds. It
would still deliver results every 0.5 seconds, moreover,
each would be only 0.5 seconds out of date.

Model
PMF Connect Matcher

Canny

Fig. 4. Pipelining of Transputer Groups

These comments apply when general purpose processors
are used at each stage in the pipeline, such that each
processor is actually able to turn its hand to all
processing stages. A very different picture emerges when
we consider the use of specialised pipelined hardware
which runs at video frame-rate. Such hardware offers
extremely high performance for very specific tasks, of
which convolution is a good example. Typical of this type
of device is the MaxVideo range of modules manufactured
by Datacube, Inc.

Whatever the hardware, pipelining also creates difficulties
where feed-forward predictive techniques are used to
reduce the computational load. It is difficult to see how
results derived from image N could influence the
processing of image N+I, if that image is already well
through the pipeline.

3. Pilot Study

A pilot study (carried out in the Dept. of Computer
Science at Sheffield University during 1986-87 with
funding from GEC) implemented three of the algorithms
at the front end of the TINA suite on a tranputer array.
These are the Canny edge detector, the PMF stereo
algorithm, and an edge-grouping stage. (These correspond
to the ‘Canny’ ‘PMF’ and ‘Connect’ stages in the table of
timings shown earlier). The system comprised a network
of 8 T414 transputers each with 1 Mbyte of memory,
with a Research Machines ‘Nimbus’ PC as host. The
algorithms were coded in Occam II, using the Inmos
Transputer Development System (TDS).

3.1 Pilot Implementation of Canny

3.1.1 The Canny edge detector algorithm takes a 2-D
intensity map as input, and identifies positions (‘edgels’)
at which the intensity gradient is a local maximum. The
algorithm has four stages: gaussian convolution,
differentiation, non-maximal suppression, and
thresholding with hysteresis.

3.1.2 Exploitation of parallelism within Canny

Canny is essentially a pixel based algorithm, which (apart
from the thresholding stage) requires only local
neighbourhood access to pixels. Therefore, a (1-D) spatial
partitioning of the image was adopted. As with all
algorithms which require access to pixel neighbourhoods,
complications arise at the slice boundaries. In the case of
the convolution and non-maximal suppression stages,
these problems can be solved by supplying each transputer
with input data which includes a few rasters adjacent to
the slice for which the processor is responsible for
generating output. That is, the input slice is bigger than
the output slice.

In the case of the ‘thresholding with hysteresis’ stage, the
problem is less easily solved. This stage is implemented
by imposing two thresholds, T; and T}, on edge strength.

Edges with strength above T, are unconditionally
accepted. Those with strength below T; are rejected. Then

for each marked edgel, a search for a neighbouring edgel
with strength between 7; and T}, is made. If one is found,

it is marked to be kept, and then in turn its neighbours are
examined, and marked. Effectively this is a recursive line
following algorithm. Finally, when all high contrast
edges have been examined, (and lower contrast segments
have been followed and marked), the thresholding stage
terminates. All unmarked edges are then discarded. This
algorithm allows isolated weak edgels to be discarded
whilst allowing weak points in otherwise strong edges to
survive.

Because of the slice partitioning of the image, provision
must be made to allow the line follower to follow lines
across slice boundaries. This is implemented by having
each transputer request one raster from the transputers
processing the neighbouring slices. The hysteresis
procedure operates on the whole of the slice and each of
these two rasters. At the end of the iteration, these two
rasters (which may have been modified -- i.e. some edgels
may have been marked) are returned to the appropriate
transputers which compare them with the original rasters
sent out. If they detect a new marked edge on this raster,
they apply the line follower to it, which will mark the
edgels comprising any line segment extending from it
into the slice. In turn this may cause the slice edge raster
to be modified again (if the line loops back towards the
slice boundary), which will precipitate another iteration.
These iterations continue until all transputers detect no
change to the raster they previously transmitted.
Typically the number of iterations will be one or two for
nearly all images, unless a line wobbles across a slice

70

boundary several times. In any event, each iteration
consumes only a small amount of processing time as the
line follower is being applied to only one or two points
on the raster.

3.1.3 Pilot study -- Canny timings

Table 2 shows the time in seconds taken to execute Canny
on a 256x256 image (similar to the one used for the
timings in Table 1) using a network of 2, 4, or 8
transputers, both with and without load balancing. Due
to the memory requirements of the program, no slice size
adjustment was possible using two transputers, as each
had sufficient memory to store only 128 rasters.

Condition Number of Transputers
2 4 8
No load balancing 4.4 24 1.5
With load balancing ~ --- 2.1 1.1
Table 2

3.2 Pilot Implementation of PMF

PMF is a stereo matching algorithm. Is takes as input a
stereoscopic pair of edge maps, and attempts to match
corresponding edgels in the two images. From the
measured disparity of each matched pair, and the known
camera geometry, a 3-D edge map is generated.

3.2.1 The PMF algorithm

The algorithm is not described in detail here. Essentially
it consists of two distinct stages. The first establishes a
matching strength for each potential match, computed
from some measure of edge quality (for example, contrast
strength), of every other potential match in the
neighbourhood (typically about 15 pixels in diameter).
Each contribution is weighted inversely by its distance
away. This is the match generation phase, and is relatively
fast, accounting for typically 5% of PMF’s total run
time.

There follows the disambiguation phase which chooses the
correct matches using a form of discrete relaxation.
Matches which have the highest matching strength for
both of the two image primitives forming them are
immediately chosen as correct. To satisfy the uniqueness
constraint, all other matches associated with these
primitives are then discarded. Other matches that were
not previously accepted or rejected are then considered
again. Typically four or five iterations of this are needed
to provide satisfactory disambiguation.

3.2.2 Exploitation of parallelism within PMF

PMF is essentially a local neighbourhood operation,
albeit one in which communication with neighbouring
pixels is frequent. The neighbourhood in the match
generation phase is inherently anisotropic, as matches are

sought only along corresponding horizontal rasters. These
considerations again suggest the use of a 1-D spatial
partitioning. Once again, problems arise at the slice
boundaries.

Two methods of having the transputer acquire
neighbouring rasters were investigated. These are the slice
overlap method, and the slice communication method.

The simpler slice overlap approach requires each
transputer to apply the match generation phase of PMF
not only to the rasters within the slice to be processed,
but also the N (typically 10) neighbouring rasters above
and below. Thus, no transputer communication is required
as all the data required for the disambiguation phase for
the slice is already computed and held in memory. During
the disambiguation phase, only the match strengths of
edgels within the slice are altered, and matches are
rejected or accepted accordingly. The match strengths of
the neighbourhood rasters are not altered, nor are they
rejected. This is not a true implementation of PMF, and
it was anticipated that this could cause irregularities in
the depth map at the slice boundaries. It transpired that
although the disambiguation power was slightly reduced,
the depth map was still of good quality, and not greatly
different from the original serial implementation. Because
there is no communication between the transputers, and
hence no synchronisation, the time taken to process the
slice varies considerably with complexity.

The slice communication method initially sends each
transputer only those rasters within its slice. The match
generation phase is then executed for each of the slice
rasters. Before and after each iteration of the
disambiguation phase, N neighbourhood rasters are copied
from the neighbouring transputers. This approach ensures
that matching strengths of the slice neighbour rasters are
always updated and correct. This method gives a more
satisfactory result than the slice overlap method. The
timing variations are much less because the raster
communication at the start of each iterations effectively
forces the transputers to synchronise.

3.2.3 Load Balancing of PMF

A simple 1-D pre-partitioning of the data was performed
by allocating roughly equal numbers of edgels to each
transputer. This simple algorithm reduces the time taken
by the slowest transputer by as much as 50%. A more
complete algorithm to pre-partition the data would need
to take into account other factors such as the distribution
of edgels as well as their numbers, but no simple rule
could be found which was effective. Further investigation

71

might yield a more effective measure, but a requirement
of the measure is that it is quick to compute, else more
time could be lost than gained.

It would in principle be possible to re-partition the image
after each iteration in the disambiguation phase. However,
this re-distribution of rasters could be so substantial that
large pieces of the image would need to be transmitted
across several transputers. Instead, it was felt that load
balancing would be best performed between images
(assuming an image sequence), by controlling the initial
distribution of the slices into the transputer array.

In this pilot study, only a single pair of images was
available, so a re-partitioning of the same image was
performed to simulate the effect of pre-partitioning the
next image in the sequence.

3.2.4 Pilot Study -- PMF Timings

Table 3 shows timings for the same 256x256 image used
in the pilot implementation of Canny, using 8
transputers.

It is particularly interesting to note how ineffective the
pre-partitioned load balancing is (i.e. based on
distributing equal numbers of edgels to each transputer),
as evidenced by the 3-15 second timing spread. The
computational load of one raster of PMF depends not
only on the number of edges but also their distribution.
(A large number of edges close together take longer to
disambiguate than the same number more evenly spread).
This is reflected in the much wider range of slice sizes in
the post-partitioned results.

3.3 Fixed versus Floating Point Arithmetic

This pilot study placed some emphasis on the avoidance of
floating-point arithmetic by using scaled integer
arithmetic wherever fractional accuracy was required. This
was sensible in view of the fact that the T414 transputer
has no floating point hardware. The T800 transputer being
used in the new system can, remarkably, multiply two
floating point numbers in less than one third the time
taken to multiply two integers. This tums the tables -- it
may be that in the future it should be integer arithmetic
we should avoid!

Pre-partitioned data

Time Slice sizes Time Slice sizes
Slice Overlap Method: 3-15 36,20,15,14,17,15,16,37 7-9 63,19,74,4,11,13 4
Slice Communication Method: 5.1-5.9 36,20,15,14,17,15,16,37 4.3-5.0 43,26,13,6,10,14,16 4

Post-partitioned data

Table 3

3.4 Some comments on Occam II

The study did not find that the occam language is any
better for program development than other languages
with which the authors are familiar, such as Pascal and
C, although the large number of compile time checks can
reduce the number of potential runtime bugs. However,
occam provides tighter control in a parallel processing
environment and maps very efficiently onto the transputer
instruction set.

Occam II has several shortcomings for the programmer
used to procedural languages such as C and Pascal. Only
the most basic data types are available: integers, booleans,
and reals of different lengths, together with arrays of
these types. Absent from occam are facilities such as
pointers, record structures, and enumerated types. The
transputer implementation of occam also requires static
data allocation -- dynamically allocated structures such as
record heaps or linked lists are not available. The lack of
dynamic memory allocation further prohibits the use of
recursion, requiring the programmer to resort to ‘manual’
simulations using loops and explicit parameter stacks.

Nonetheless, occam does offer considerable advantages to
the parallel systems programmer. Networks of parallel
processes can be set up very easily, and interconnected by

72

‘occam channels’ -- an abstraction of a serial inter-process
communication channel which implements a rendez-vous
between the two processes, and which corresponds
directly to the behaviour of a transputer link. Networks
of parallel processes can be implemented on a single
transputer then later migrated onto an appropriate multi-
processor network by the addition of a very small amount
of configuration information, and without changes to the
code itself.

4. MARVIN

4.1 Introduction

The work currently in progress as part of the Fast Vision
Project in AIVRU centres around the construction of a
hybrid computing engine containing both pipelined frame-
rate hardware and an MIMD transputer array, with fast
data paths between them. We call this machine Marvin.

4.2 Marvin Hardware Architecture
4.2.1 Hardware Components

The hardware architecture of the system is shown in Fig.

Worker

C

_/

VRAM VRAM VRAM IVRAM | Alainktl
aptors
| MaxBus _I MaxBus
—
Cameras
MW OY—F
Qramestores N Grabbers
N __Jm
I\L -~ VME Bus
PTVME-901 Adaptor
VME Bus

Sun 3/110
Host

Fig 5. Marvin System Architecture

5. It consists of the following major components:
(1) A Sun-3 workstation, referred to as the host machine.

(2) Datacube framestores and frame grabbers (‘Digimax’)
providing for the acquisition, storage, and display of TV
images using conventional interlaced TV timing. Two
frame grabbers facilitate simultaneous acquisition of
stereo images from two (synchronised) cameras.

{3) A network of transputers, referred to as worker
processors, connected via Inmos serial links into a
rectangular array. (The system will actually have an
eight by three array. Only four columns are shown in the
figure for simplicity). Each worker consists of a T800
floating point transputer with 2 Mbytes of memory. The
workers in the bottom row of the array have an additional
1 Mbyte of video memory which is dual-ported between
the transputer and the frame-rate digital video bus
(MaxBus). In other respects they are functionally
equivalent to the other rows. This bottom row are
referred to as TMAX (Transputer-MAXbus) processors.

(4) One additional transputer module referred to as the
root processor. This module is functionally equivalent to
the workers and is special only as regards its strategic
placement between the worker array and the host machine.

4.22 Datapaths
The datapaths within the system are as follows:

(1) Inmos serial links running at 20 Mbits per second
provide interconnectivity within the worker array.

(2) The Datacube framestores are fully mapped into
the Sun’s address space via the VME (A24D16) bus.
There are six 512x512 framestores, collectively
providing 1.5 Mbytes of image storage.

(3) The framestores are dual ported onto a set of four
MaxBus interconnects. [Each interconnect provides an
8-bit parallel, byte-serial data stream at video frame
rate. MaxBus is not a bus in the usual sense. It has no
address lines, and no general arbitration scheme.
Rather, it is a point-to-point data path. The spatial
position of a pixel in the image is inferred from its
temporal position in the data stream relative to frame
sync, line sync, and pixel dot clock signals. The peak
data rate (per MaxBus) is 10 Mbytes/sec; the average
rate (over a 40 msec. frame) is 6.4 Mbytes/sec. The
video memories on the TMAX processors are also dual-
ported onto these MaxBus interconnects. Region-of-
interest circuitry within this interface allows each
TMAX to participate in MaxBus transfers (both in
and out of the TMAX memories) within a software-
selectable region of interest of the image. (See Fig. 6).
This allows, for example, a pair of stereo images held
in the framestores to be distributed across the row of
TMAX processors within a single frame time. The
architecture is clearly designed to exploit 1-D spatial

73

parallelism.

(4) Two links on the root processor are connected to the
Sun host via Inmos link adapters which are mapped into
the Sun’s VME address space. Each provides a serial byte
stream between the Sun and the network of workers. The
maximum data transfer rate acheivable here is limited by
the rate at which the host 68020 processor can execute the
loop which copies the bytes across, and is only about
120Kbyte/sec; however this is not crucial to the
performance of the system as this data path is used only
for initial downloading of code and for relatively short
control messages.

4.2.3 Rationale

Our choice of network topology is made not as the result
of any detailed study but simply because it is richly
interconnected, regular, and (we believe) ‘sensible’. We
do not believe that there is some magic topology awaiting
discovery which somehow resonates with the problem and
offers supra-linear speedup. Of course, some topologies
are demonstrably better than others, for specific
applications. However, the adoption of a specialised
topology is only appropriate if the process structure and
patterns of dataflow are already well understood, and
unlikely to change. Neither condition holds in our case.
Indeed, the scenarios we envisage involve a variety of
vision tasks, with different logical structures and
operating on different time scales, executing on the

4 Inmos Serial Links

[111

Transputer
:?2 Il52
! Address/Data Busr 1
1 to 4 Mbyte
DRAM

Bidirectional MaxBus Ports

ROI Column Bitmap

VRAM [
Start
Address

512
rows

DIMIY

N

512 cols

N

éegxtes

512 x 512 Image

ROI Row Bitmap])
Video Memory Organisation

Fig 6. Architecture of TMAX Processor

system simultaneously. Thus, ‘sensible’ is the most we
can expect of the topology -- ‘optimum’ is not realistic.

4.3 Marvin Software Architecture
4.3.1 Task Organisation

The root and worker processors are programmed in 3L’s
Parallel C language. In operation, each transputer is
loaded with some configuration of both operating system
and vision tasks. Operating system tasks include a router,
providing message routing and multiplexing between
tasks, and a memory manager task providing memory
management facilities.

The vision tasks each implement some vision processing
operation. Thus, the collection of vision tasks loaded onto
a worker yields a repertoire of vision operations offered
by that worker. There is no requirement that each worker
carries the same set of tasks. Note, however, that unlike
some of the more fully developed run-time environments
such as Helios or Niche’s PSE, Parallel C does not
permit tasks to be dynamically added or deleted from a
processor. Changing the task configuration requires that
the entire network be rebooted, and this cannot be
considered a real-time operation.

The host processor makes certain services available to the
root processor, including a filesystem and console IO,
through the services of a ‘host file server’ program which
runs on the host all the time the system is in operation.
A program running on the root makes file I/O or console
J/O requests to the server by sending messages via the
host’s link adapter. These messages conform to a tagged
protocol developed by Inmos, and known as the afserver
protocol. Locally developed additions to these protocols
allow the root processor to request the server to spawn
any unix program, and to obtain connections (via unix
pipes) to either or both of that program’s standard input
and standard output streams.

4.3.2 Message Passing

Messages may be passed between any pair of tasks running
on the system, using a store-and-forward mechanism
within the router task running on each processor. Each
processor is assigned a numerical identifier at the
configuration stage, and a message is addressed to a
specified task on a specified processor. This address
information is included in an 8-byte message header which
specifies the destination processor ID, the destination task
ID, the source processor and source task IDs, and the
message’s length. The processors are numbered by simply
counting off in ‘raster scan’ order, with fixed ID numbers
assigned to the root transputer and the host. Each router
knows the number of the processor on which it is
running, and the topology of the network. From this it
builds a lookup table which maps the destination process
number onto the number of the link (effectively north,
south, east, or west) to which the message is to be
forwarded. Note that the routing is fixed; there is no

attempt (for example) to dynamically balance message
traffic within the network. Moreover, each router
forwards messages in the order in which they were
received. Thus, a sequence of messages from any one
source processor to any one destination processor is
guaranteed to arrive in the same order as it was sent.
When the router receives a message addressed to its own
processor, it forwards it via an internal (soft) chanmel to
the appropriate vision task, as selected by the destination
task field in the header.

The router has no compiled-in knowledge of which
internal channel corresponds to which destination task, or
even of how many such channels exist. Instead, each
vision task passes a ‘registration message’ to the router
when it starts up. This message includes the task’s ID
value, and effectively says ‘I wish to receive messages
addressed to this destination task ID’. A vision task could
register more than once, using different identifiers, if
desired. This registration scheme allows the set of vision
tasks to be changed without recompiling the router.

Note that, with this routing software in place, and hence
the ability to send a message from any task to any other,
the actual physical topology of the link connections in the
network is irrelevant, at least from a functional
standpoint. The designer of an algorithm intended to be
implemented as a set of communicating sequential
processes can take a blank sheet of paper, and draw upon it
whatever boxes and whatever interconnection paths he
chooses. Of course from a performance standpoint it is
rather important that a pair of processes which trade large
volumes of data should be placed on nearby (preferably
adjacent) processors. In some cases, it may be best to
place two processes on the same processor, and have them
share memory. 3L Parallel C does permit this. (It would
be more honest to say that the transputer, lacking
memory management hardware, is powerless to prevent
it).

4.4 Marvin’s Performance

It is too early to give trustworthy estimates of Marvin’s
performance as we have only recently begun to build any
real vision software on top of the infrastructure described
above, and also the full array of transputers is not yet
present. We have, however, implemented Canny on a
three-processor subset of this machine, from which we

estimate that the complete system will be able to
perform Canny on a 512x512 image in 1 second.

To improve further on these speeds we expect to have to
exploit Marvin’s potential as a hybrid system in which
low-level processing is performed using frame-rate
hardware interposed in the MaxBus datapaths. The frame-
rate canny hardware developed at GEC (See "A Pipelined
Architecture For the Canny Edge Detector" by Brendan
Ruff) is the most obvious candidate for inclusion in this
way.

