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SIMPLE POLYHEDRAL SCENES

The pattern classification techniques described in the previous
chapter have been applied primarily to the recognition of images of
two-dimensional objects. The world of our everyday perception is, of
course, three-dimensional. Perceiving a three-dimensional scene from a
single point of view, which gives a two-dimensional image, adds some
new and unique difficulties. Interpretation of these two-dimensional
images is inherently ambiguous; the same image can be formed by an
infinite number of three-dimensional scenes. Also, the image formed
by a particular object changes with the viewing angle; this is also known
as perspective change. Above all, in scenes with multiple objects, parts
of otherwise visible surfaces of some objects may be occluded by others.
A perceptual system needs to separate the objects in the image and
recognize them from the partial information.

3.1 PERCEPTION OF SIMPLE POLYHEDRAL SOLIDS

The study of machine perception of three-dimensional objects was
launched by the classic work of L. G. Roberts [1]. In his work, and
much of the early work in three-dimensional scene analysis, the scenes
were restricted to consist of polyhedral solids with homogeneous
surfaces against uniform backgrounds. Such scenes can be adequately
characterized by the intersection lines of the objects. His work contains

24

SIMPLE POLYHEDRAL SCENES 25

many concepts that extend beyond the simple scenes considered, and a
detailed study of these methods is appropriate.

Consider an image of a simple cube, painted uniformly white
against a dark background. We may consider recognition of the cube by
the methods described in Chapter 2. As the observed picture changes
with the viewing angle, simple geometrical properties are not invariant.
A template-matching process could, in principle, be used. We would
need to store (or generate) templates for each known object from
different viewing angles and different viewing distances. Matching with
such a large set of templates is clearly prohibitive in computational cost
and still does not account for changes in the lighting conditions.

Instead of operating on the picture directly, it may be simpler to
extract a line drawing from the picture, corresponding to the
intersection of the planar surfaces of the three-dimensional object, and
to attempt recognition from the line drawing. There is evidence that
boundaries suffice for many perceptual tasks in human perception [2].
Certainly, for polyhedral objects, the boundaries directly determine the
visible faces. Ideally, the boundaries shown in Fig. 3-1 would be
extracted from the image of a cube and are adequate to distinguish it
from objects with boundaries shown in Fig. 3-2, for example. (Of
course, since the projection of three-dimensional scenes is inherently
ambiguous, the distinction between the objects is limited.)

A D

Figure 3-1: Outline of a cube
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)

Figure 3-2: Outline of a wedge

3.1.1 Extraction of Line Drawings

Extraction of lines that correspond to object edges is based on the
assumption that the light intensity is constant or smoothly varying over
the image of an object face and jumps discontinuously at the
intersection with the image of another face. This assumption is valid if
the object surfaces are smooth, homogeneous, and opaque and the
lighting is uniform and arranged to eliminate shadows. It is also
assumed that the object surfaces do not have mirrorlike reflections.

i |,

I+1, i+1, j+1

Figure 3-3: Roberts’ gradient operator

. In a continuous image plane, points at which the intensity changes
discontinuously are easily identified to be those where the gradient of
the intensity function is infinite (or larger than a threshold). An
approximation for this gradient for a digital picture is given by
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RG, j) = Vg(, J)

=V{gli+ 1L,j+1) — g, )F + {eli,j+ 1) — gi + 1, PP

where g(i, j) is the image intensity at pixel (i, ;) (see Fig. 3-3).
Absolute values may be used instead of squared values in Eq. (3-1)
above. Also the direction of the gradient is given by the angle o, where

o= —2 + tan~! [ (3-2)

gli, j+ 1) — gl + 1,,-)]
4

gi + L, j+ 1) — gG )

The above definition of gradient is due to Roberts [1], and this operator
is often called Roberts’ cross-operator. An edge is said to be present at
pixel (i, ) if R(i, /) > =, where 7 is a chosen threshold. If pi(ftures
were noise-free, = could be chosen to be 0. In the presence of noise, 7
is chosen by a trade-off between obtaining all desired edges and picking
too many noise edges. Figure 3-4(a) shows the image of a f:omplex
block and Fig. 3-4(b) the edges detected in it by using the
above-described method. (The threshold was chosen interactively for
best subjective performance.) In this example, the block is carefully
painted and has smooth surfaces. Any markings on the surface or the
texture of the material would, of course, also show in these cases.
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Figure 3-4: (a) An image and (b) edges detectedin it

The next step is to connect the computed edge points in straight

@G-D
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lines and determine the vertices from their intersections. Each edge is
specified by a position as well as a direction (normal to that of the
gradient at the point) and should be connected only in a line in that
direction. Spurious noise points can be removed by eliminating short
line segments. Gaps in lines caused by missing edges are bridged by
extension up to predetermined lengths. Roberts was able to obtain
"perfect" line drawing as in Fig. 3-1, for a limited class of scenes.
However, such line detection has proven to be difficult for real scenes.
More sophisticated techniques of determining object boundaries are
given in Chapter 7. For the remainder of this chapter, it is assumed
that perfect boundaries are available for further processing,.

3.1.2 Model Matching

Once a line drawing is obtained, recognition can be achieved by
determining which of the models can generate, under some permissible
transformation, a line drawing that is most similar. The two line
drawings must match fopologically (or structurally) —that is, in the
number of lines and vertices and their interconnections. The distances
between vertices should also be as predicted by the model
transformation.

For a topological match between two line drawings, it is useful to
extract polygons in them. Further, the polygons corresponding to an
object face should be distinguished from others, if possible (for
example, in Fig. 3-1, only polygons ABCD, BEFC, and CFGD are
desired and not ABEFGD, ABEFCD, ABCFGD, or BCDGFE). A clever
algorithm to separate interior and exterior polygons was developed by
Roberts. As an example, consider starting from an arbitrarily chosen
line in a chosen direction, say from A4 to B along line 48, When vertex
B is reached, we choose the line making the largest exterior clockwise
angle with 4B (that is, BC). If this procedure is repeated, polygon
ABCD will be traced. Starting along 4B in the other direction from B to
A, and repeating the same steps, polygon ADGFEB is traced, However,
this time the traversal of the polygon is in a counterclockwise direction
(this can be determined from the scan of the exterior angles of the
traversed polygons, +27 for counterclockwise and —2m for clockwise
traversal). If the above procedure is applied until each line has been
traversed in both directions, the interior polygons will be traced in one
direction and the outer ones in the other.

For a polygon to possibly correspond to an object face, the
number of sides and the number of convex and concave angles of this
polygon must be the same as for some polygon in at least one of the
models.  Such polygons will be called approved polygons (partially
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occluded faces are not approved polygons).

The topological match proceeds by first looking for a vertex
completely surrounded by approved polygons (vertex C in Fig. 3-1 is
such a vertex). If such a vertex exists, it is characterized by the
number of sides of the surrounding polygons and is matched with a
model vertex with the same characteristics. Matching of the vertices
then leads to the matching of the polygons around them and the other
vertices of these polygons.

In a partially occluded object, no vertices of the above types may
exist, as would be the case if vertex 4 were hidden in Fig. 3-1. In this
case, the topological match uses a line surrounded by approved polygons
(such as line CF for the cube example) to obtain matching lines and
then matching polygons and vertices. In case of further occlusion, the
desired line may also not exist; in this case, a single approved polygon is
used. Failing this also, any vertex with three (or more) lines is used for
matching. (A more formal approach to such structural matching is
given in [3].)

Once a topological match with a model is found, a geometric
transformation for the best geometric match with that model is
computed. Suppose that

V,= {v, » Vo o v"p} are the vertices in the picture,

v, = {v1 m Vo o v”m} are the matching model vertices and,

’_ ! '
Vp_ {v]pa‘ Vz% teey
transformation T,

We wish to choose T,, to minimize E,, which is defined as

v,’,p} are the predicted vertices, under a

En= 2 |bvp — vyl (3-3)
i=1

(Details of a transformation and minimization are given in Section 3.2
below.)

The model producing the minimum matching error is chosen,
consistent with one more requirement. The picture positions for the
unmatched model vertices must not fall outside the picture line
drawing—that is, they must be predicted to be hidden. This is
verification by picture synthesis.

If the scene contains more than one object, the above procedure
will find one object at a time. Once an object has been recognized, the
lines corresponding to it are removed and the remainder of the scene
processed repeatedly as before. Complex objects formed by composing
simpler objects are analyzed similarly. A sequence of such processing is
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shown in Fig. 3-5. This method is effective only if parts of each object
sufficient for recognition are visible. (Analysis of complex, occluding
scenes is discussed in the next chapter.)
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Figure 3-5: Successive analysis of a complex object
(from Roberts [1])

3.2 MODEL TRANSFORMATIONS

A component of object recognition is to verify that a hypothesized
model produces an image similar to the observed image, under some
pen_nissible transformation. We will consider the transformations of
scaling, translation, rotation, and image formation—that is, the
perspective transformation.

3.2.1 Perspective Transformations

A typical camera consists of a lens and a plane on which the image
is formed. For the purpose of geometrical optics (that is, ignoring
diffraction effects), an ideal camera can be modeled as a "pin-hole"
camera. Such an ideal imaging system is shown in Fig. 3-6 and consists
of a lens center C and an image plane /, a distance ffrom C. [ is
known as the focal length of the imaging system. The image of a given
point P is formed on the image plane [/ at point P’ determined by the
intersection of the ray connecting C and P with the plane /. In Fig. 3-6
the ideal image plane is shown to be in fiont of the lens center; in
normal camera systems the physical image plane is behind the lens
center, and the image is inverted. We assume that for algebraic
simplicity the inverted image has been corrected to correspond to the
geometry shown. The image using a TV camera, as seen on a TV
monitor, corresponds to the image plane being in the front.

p'(xl, y', Z') P(X,Y,Z)

Cs 0
¢

lens center f

I
Figure 3-6: An ideal imaging system

Let a Cartesian coordinate system be chosen with the z axis
normal to the image plane. Let the origin be on the image plane along
the principal ray, which is the line from the lens center perpendicular to
the image plane. Then the image P'(x, ' z') of an object point P at
location (x, y, 2) is given by

x = f)_ﬁ: z (B-4)
y' = fiy z (3-5)
zZ7=0 (3-6)
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!

The above transformation from (x, y, 2) to (x ', z') is known as a
perspective transformation.  Note that the transformation is not
invertible; that is, given a picture point (x, » z'), we cannot completely
specify the corresponding object point but can only constrain it to lie
along a certain straight line.

3.2.2 Homogeneous Coordinates

The perspective transformation involves a division and is thus
nonlinear. However, it can be linearized by use of homogeneous
coordinates represented in a matrix form. Homogeneous coordinates of
a point are defined by appending an extra component to the coordinate
vector of the point and are related to the ordinary coordinates as
follows. If (x,], I Zpp w,,) are the homogeneous coordinates of a point P
with normal coordinates (x, y, z), then

x=2t 3-7)
Wy

y =2 (3-8)
Wy

1=22 (3-9)
Wh

The choice of w), is arbitrary and thus the homogeneous coordinates of
a point are not unique. Now consider the following matrix
transformation

- - _ - -
x';, 1 0 0 0 Xy

y';, _ 0 1 0 0 Yu

2 0 0 0 ol]gz (3-10)
’ 1

Wy 0 0 - 1 w

N | A B

Let the 4-by-4 matrix in the equation above be called P. This equation
expands to
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X' = x (3-11)
Y'u = In (3-12)
Zy =0 (3-13)
' Zh
w = —f- + wy (3-14)

Dividing Egs. (3-11), (3-12), and (3-13) by w; and rearranging them,
we get

P e _ S
X R (3-15)
v y,h = f)’
¥ Wy f+z (3-16)
z =0 (3-17)

These are identical with the transformation defined earlier [Egs. (3-4),
(3-5), and (3-6)]. Thus we have defined a linear transformation P,
operating on homogeneous coordinates of a point and its image, that is
equivalent to a perspective transformation.

The transformation defined above does not preserve any
information about the distance along the z axis of an object point P. It
is sometimes useful to augment the matrix P to be
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-1 0 0 O—
S R I
AR
to give
Z'=ffz (3-19)

The value of Z no longer corresponds to the actual image point,
However, the image point is known to be at 2 = 0, and the additional
information contained in Eg. (3-19) above is useful for shading and
hidden line elimination in computer graphics.

3.2.3 Geometrical Transformations

The perspective transformation given above applies when the
object and the image points are specified in a coordinate system aligned
with the camera. It may be more convenient to express the objects in
an independent coordinate system, sometimes called a world coordinate
system. In this case, the object coordinates must be first transformed to
a system aligned with the camera, before the perspective transformation
can be applied. The two systems can be aligned by a translation and
sequential rotation about the three coordinate axes. The three rotation
angles are sometimes referred to as pan, tilt, and swing (or roll),
(Usually, pan refers to rotation of the principal ray in a horizontal plane
tilt to its rotation in a vertical plane, and swing to a rotation of the
image plane; see Fig. 3-7.)

Rotation. Any rotation of a model can be decomposed into three
consecutive rotations about the three coordinate axes. Let us consider a
rotation of axes about the z axis by an angle 6, as shown in Fig. 3-8.
The direction of the rotation is from the x axis to the Yy axis. The
coordinates of the point (x, y, 2) in the rotated coordinate system are
given by
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Figure 3-7: An example to illustrate pan and tilt angles

v I (x,Ry)
BNN%
y l \ ¥
|
X
\ -

X

Figure 3-8: Rotation of coordinates about the z axis

x' = xcos O + ysin 6 (3-20)
"= —xsin0 + ycos0 (3-21)
z' =z (3-22)

The above transformation can be represented as the following matrix
(for non-homogeneous coordinates):
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cos 6 sin 0 0
—sin 6 cos 6 0 (3-23)
0 0 1

Similarly, rotation by angles ¢ and ¢ about the x and y axes (in the
directions of y to zand z to x) are given by the following two matrices,
respectively:

1 0 0
0 cos ¢ sin ¢ (3-24)
0 —sin ¢ cos ¢
and
cos s 0 —sin
0 1 0 (3-25)
sin Y 0 cos §”

Transformation about more than one axis is obtained by a multiplication
of the above matrices. The general form of this matrix for
homogeneous coordinates is

(3-26)

=

]

=
- O OO

noo .
where [R_] is a 3-by-3 matrix, corresponding to rotational
transformation in nonhomogeneous coordinates.

Translation. Translation of axes b i
‘ ) y (X, ¥, zo) is rep e
the matrix T where o 0) eprosented by
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1 0 0 - Xo
_ 0 1 0 —Yo
T=1o o 1 -% (3-27)
0 0 0 1

Scaling. Scaling of the model by amount |4 is given by the matrix
S, where

(3-28)

S O O =
S O = O
o = O O

“ -0 O O

Note that different scalings along the three axes may be represented by
nonunit terms in the diagonal of matrix S.

Any composite transformation of the object to a picture is now
represented by a product of the matrices of different transformations.
Owing to use of the homogeneous coordinates, it is possible to include
the transformations subsequent to the picture formation, such as scaling
and rotation in a printing process, into a single matrix transformation.
Such a transformation is often called a camera model.

3.3 FITTING OF MODELS

We seeck to choose a model, m, such that the predicted image of

the model under some transformation T, is most similar to the

observed image. T, is chosen to minimize the error E,, between a set
of picture points Vp, and the predicted image points V'’ from a set of
model points V, as defined in Section 3.1.2 earlier (;ee Eq. (3-3)].
Fortunately, this optimal transformation T, can be determined
analytically.

Let a model point, v, be represented in homogeneous
coordinates by a column vector (X, . Z,» W;)' and an image point
v, by a vector (x,.p, Vi w,./,)’. Note that the two vectors use different
coordinate systems, the model points are given in a world coordinate
system, chosen for convenience of measuring model coordinates, and
the image points are given in a coordinate system with the x and y axes

in the image plane. Let V,, be a 4-by-n matrix whose n columns are the
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coordinates of the n model points in the set V, , and let Vp be a similar
3-by-n matrix corresponding to the picture points in the set V. Let
matrix H(3-by-4) represent the transformation of model points to

picture points. If error E,, could be reduced to zero, we would have

HV,, = V,D (3-29)

Nnx

where D is a diagonal, n-@Qatr(i}(. (This matrix is necessary because
the scaling of each point in the homogeneous coordinates may be
different.) Note that we have twelve unknowns in the H matrix and »
unknowns in the D matrix, one for each point. At least six points are
necessary for a nondegenerate solution of Eq. (3-29). Without proof,
we present the optimal solution. (This solution ignores the
interdependence of the elements of matrix H and is also known as the
pseudo-inverse solution). Let

Q =V,7v, (3-30)

A= VmT(VmeT)'—le il | (3-31)

(if,jli ‘(:'g 1 e A Sjmmeby

where I is an identity matrix. Define a matrix S such that s; = ag.
Then D is determined by the solution of the linear equation given by
S()(w_\tg.',‘\ Miopi 3 S O nlzo

SD =0 (3-32)
and
H = V,DV, (V,V," ! (3-33)

After the transformation T,, has been determined, the images of
the npn-matched model vertices are predicted. These vertices should be
nonvisible, and their images should not fall outside the object outline
else the model is an unacceptable match. . ’

The match computed by Eq. (3-32) will be ambiguous with respect
to the scale factor. A larger model farther away from the camera
p.roduces the same image (ignoring absolute brightness levels). If the
distance to the object is known, the size can be computed and vice
versa. In simple situations, the distance may be computed by assuming
that an object rests on a known plane or on another object. More
complex de_:pthjmeasurement schemes are described in Chapter 9.

The illusions of Figs. 1-6(a) and (b) can now be explained, if we

SIMPLE POLYHEDRAL SCENES 39

assume that the human system tries to interpret line drawings as
representing three-dimensional scenes when possible. In Fig. 1-6(a),
the two converging lines may be interpreted as two parallel lines in 3-D
viewed with a perspective projection. Then the two horizontal bars
must be at different distances from the viewer, and since their lengths
in the image are the same, the top bar must be longer in 3-D. In
Fig. 1-6(b), the left figure may be interpreted as representing an inside
corner of a room, and the right figure as the outside corner. Again,
differences in the interpreted distance explain the difference in observed
Jengths. Note that 3-D interpretation provides only one explanation of
these illusions; other explanations can be found in the psychology
literature.

3.3.1 Camera Calibration

The transform relating the coordinates of the objects in a certain
world coordinate system to the image coordinates, such as the one
represented by the matrix H above, is also known as the camera model
or the camera transform. For many applications, the camera is fixed
relative to a world coordinate frame, and it is useful to measure or
calibrate the parameters of the camera transform. The parameters
relating the image and the world coordinate systems such as pan, tilt,
and swing may be difficult to measure directly. An alternative is to
observe a known 3-D object in a known position and orientation and
measure points in the image corresponding to known points on the
object. The transform can then be computed as in Eq. (3-33) above.

However, this solution may be inaccurate, as the twelve elements
of H are assumed to be independent. In fact, the matrix H is
completely determined by the three angles, pan, tilt and swing, and the
location of the lens center (three coordinates), assuming that the focal
length and the scaling of the image are known. More accurate estimates
of H can be obtained by using standard, though computationally
expensive, nonlinear optimization techniques for minimizing £, defined
in BEq. (3-28). Also, if nonlinear techniques are used, three points are
sufficient for determining the parameters of H rather than the six
needed for the linear solution of Egq. (3-33). Another important
consideration is to ignore the effects of isolated points that are in gross
error and can have a large effect if the least-mean-square criterion is
used. Some non-linear calibration techniques may be found in [4-6].

For some applications, the camera is mounted such that its
position may be changed—for example, along a horizontal plane with
the camera looking down—or the camera orientation (pan, tilt, or
swing) changed to observe different parts of the scene or track an
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object. In such cases, it is convenient to parameterize the camera
transform by the measurable camera position and orientation parameter.
One such technique is described in [4].

3.4 SUMMARY

Analysis of simple scenes of polyhedra with limited occlusion was
described in this chapter. These techniques are strongly limited by
requiring a priori models of the specific objects that may be present in
the scene. In the next chapter we discuss the analysis of occluding
scenes without the knowledge of such models.
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4

COMPLEX SCENES OF POLYHEDRA

The scene analysis techniques of the last chapter, though general
in principle, are likely to be computationally inefficient as the scenes get
more complex. As the number of models grows and large parts of
objects are occluded by others, recognition by matching with specific
models becomes increasingly more difficult and expensive. A major
simplification occurs if the lines, vertices, and faces belonging to
different objects can be separated. Such segmentation is the major
subject of this chapter. After parts of complete objects have been
segmented, complex objects or structures can be described by
relationships of these parts. Structural descriptions are covered in the
later parts of this chapter.

4.1 SEGMENTATION OF POLYHEDRAL SCENES

Consider the picture shown in Fig. 4-1 (the polygonal regions
have been numbered for convenience). Most human observers would
agree that it consists of one rectangular block occluding another. Here,
we will be interested in techniques for separating the two objects,
without the knowledge of specific objects in the scene (they are only
constrained to be polyhedral). A simple technique that establishes
relationships between regions surrounding a vertex to accomplish
segmentation was devised by Guzman in 1968 [1, 2].
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