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Abstract. A successful detection and classification system must have
two properties: it should be general enough to compensate for intra-class
variability and it should be specific enough to reject false positives. We
describe a method to learn class-specific feature detectors that are robust
to intra-class variability. These feature detectors enable a representation
that can be used to drive a subsequent process for verification. Instances
of object classes are detected by a module that verifies the spatial re-
lations of the detected features. We extend the verification algorithm
in order to make it invariant to changes in scale. Because the method
employs scale invariant feature detectors, objects can be detected and
classified independently of the scale of observation. Our method has low
computational complexity and can easily be trained for robust detection
and classification of different object classes.

1 Introduction

Object detection is fundamental to vision. For most real world applications,
object detection must be fast and robust to variations in imaging conditions such
as changes in illumination, scale and view-point. It is also generally desirable that
a detection system be easily trained, and be usable with a large variety of object
classes. In this paper we show how to learn and use class specific features to
detect objects under variations in scale and intra-class variability.

Our approach is similar to the work of Agarwal [1] who proposes a detection
algorithm based on a sparse object representation. While her system is robust to
occlusions, it can not deal with scale changes. She demonstrates her system on
side views of cars. We extend Agarwal’s idea to a larger set of object classes. We
automatically construct class specific feature detectors that are robust to intra-
class variability by learning the variations from a large data set and propose a
representation for geometry verification with low computational complexity.

Fergus [4] has described a method to classify objects based on a probabilistic
classifier that takes into account appearance, shape and scale of a small number
of detected parts. His approach is robust to changes in scale, but is limited in
the number of candidate parts that can be considered (=~ 30 maximum). The ap-
proaches of both Fergus and Agarwal depend on reliable interest point detectors
with a small false positive rate. Our approach is independent of such interest
point detectors, and not affected by a large number of detections. Furthermore,



our feature detectors are scale invariant, and thus provide object class detection
under scale changes.

The article is organised as follows. Section 2 discusses the design of a detec-
tion and classification system. The components of this design are described in
Section 3 and 4. The performance of the proposed system is demonstrated in
the experimental Section 5.

2 Architecture of a detection and classification system

A successful detection and classification system must have two properties: it
must be general enough to correctly assign instances of the same class despite
large intra-class variability and it must be specific enough to reject instances
that are not part of the class. Features robust to intra-class variability can be
constructed by learning from examples. The result is a feature or part detector
that can generalise from a small number of examples to new examples. Such a
detector can provide a hypothesis about the presence of a class instance, but it
is in general not specific enough for reliable detection and classification.

The relative position of distinct object features is important for classification
and needs to be modeled as for example in the approaches of Fergus and Agar-
wal. In these approaches, the verification is computationally expensive, because
the relations of all candidate parts need to be verified. A geometry verification
module can provide the required specificity of the system. The flexibility of fea-
ture extraction and the specificity of spatial relations can be implemented in an
elegant way by an architecture with two components (see Figure 1): a feature
extraction module that provides features invariant to intra-class variability and a
geometry verification module that introduces specificity, increases the reliability
of the detection and rejects false positives.
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Fig. 1. System architecture consisting of low level feature extraction and higher level
geometry verification.

3 Low level feature extraction

Our low level measurements are local image features with limited spatial extent.
Local features are commonly described by neighborhood operators [7] that func-
tion as convolution masks and measure the responses to classes of local image



patterns. A set of neigborhood operators provides a feature vector that measures
several aspects (appearance) of a local neighborhood. Many different families of
local neighborhood operators can be used. For example grey-scale invariants [17],
gabor filters [19], or Gaussian derivatives [5,11,15].

3.1 Appearance description by Gaussian derivatives

Orthogonal families of neighborhood operators describe a local neighborhood
with a minimum number of independent local features. Among the different
neighborhood operators, several properties make the Gaussian derivative family
an ideal candidate for appearance description of local neighborhoods. The family
is orthonormal and complete. Scale is controlled by an explicit parameter. The
low order Gaussian derivatives measure the basic geometry of a local neighbor-
hood. Similarity of neighborhoods can be measured by defining a distance metric
in feature space. The low dimensions of the feature space enables fast algorithms
and avoids computational problems due to the curse of dimensionality.

Lindeberg [10] has proposed an algorithm to determine the intrinsic scale of
local image features. Normalising features to the intrinsic feature scale enables a
scale invariant description of local appearance. The intrinsic scale of a feature is
characterised by a maximum in scale and space. Such a maximum can be found
by sampling the response of a normalised Laplacian at different scales. Gaussian
derivatives are applied successfully to various computer vision problems. The
fast implementation of derivatives [18] and the algorithm for scale normalisation
makes the Gaussian derivative local jet an ideal candidate for the scale invariant
description of the appearance of local image neighborhoods.

In this article we focus on the detection of instances of object classes. The
color information of images of the same class has a high variance. The variance
of the texture in the luminance channel is less pronounced. The luminance chan-
nel is less affected by changes in illumination conditions. In our experiments,
we use first and second derivatives computed from luminance and normalised to
the intrinsic scale. The raw features are therefore points in a five dimensional
scale invariant Gaussian derivative feature space. We do not normalise for orien-
tation, because the absolute orientation of features is discriminant for particular
features. If orientation invariance is required, a rotation invariant feature space
can be used such as the one proposed by Schmid [16].

3.2 Features appropriate for classification

The raw Gaussian derivative features are appropriate for retrieval of correspond-
ing matching candidates according to the distance in feature space that measures
their similarity. This matching principle produces very good results in identifi-
cation, image retrieval or other applications where the exact entity of the local
neighborhood is searched, because in such cases the appearance variance between
model and observed neighborhood is small. An image class is characterised by the
co-occurrence of typical parts in a particular spatial arrangement. The typical
parts can also have a large variance in their spatial relation. Using raw Gaussian



derivatives directly for detection and classification is going to fail because the
intra-class variability makes matching unreliable.

Features that can compensate for intra-class variability can be found by
extracting the common parts of images of a visual class and learning the variation
in appearance. Fergus [4] learns a probabilistic classifier from a large number of
examples. Classification is obtained by evaluating a maximum likelihood ratio on
different combination hypotheses of potential parts that are indicated by a salient
region detector. This detector is essentially equivalent to a scale invariant interest
point detector, such as the Harris Laplacian proposed by Mikolajczyk [13], that
is also applied by Schmid and Dorko in [3,16]. The approach depends on the
detection of salient regions. No false negatives are tolerated and at the same time
the number of potential candidates should be small, because the computational
complexity is exponential.

Much effort is done to make interest point detectors stable and accurate.
However, interest point detectors respond to image neighborhoods of particular
appearance (corner features or salient features). This limits the approach to
objects that can be modeled by this particular kind of features. Uniform objects
can be missed because the interest point detector does not detect any points.
In the following section we propose a method to compute class specific feature
detectors that are robust to the feature variance of images of the same class and
that are independent from general interest point detectors.

3.3 Computation of class-specific feature detectors

For the extraction of class-specific features, we learn the appearance of class-
specific object parts from a dense, pixelwise, grid of features by clustering. Clus-
tering of dense features is similar to Leung and Malik’s approach for computation
of generic features for texture classification [12]. The feature extraction is fast
due to the recursive implementation of Gaussian derivatives [18]. Furthermore,
the clustering produces statistically correct results, because a large amount of
data points is used.

We use k-means clustering to associate close points in feature space. K-means
is an iterative algorithm that is initialised with points drawn at random from the
data. In each iteration, the points are associated to the closest cluster centers
which are updated at the end of each cycle. An overall error is computed which
converges to a minimum. The risk of returning a sub-optimal solution is reduced
by running k-means several times and keeping the best solution in terms of
overall error.

We assume that the data in feature space can be represented by multi-
dimensional Gaussians. Non-elliptical clusters are represented by a mixture of
Gaussians. Cluster C; is caracterised by its mean p; (the cluster center) and
covariance X; (the shape of the cluster). This allows to compute the probability
that a measurement belongs to cluster C; as:

pm) = s S5 (m — )" 5 m = ) 1)



This gives rise to k probability maps where the image position (z,y) of proba-
bility map j is marked by p;(ma, ) of the extracted Gaussian derivative feature
Mgy . The probability maps can be condensed to a single cluster map M with k
colors where the label at position (z,y) is computed as:

M(z,y) = arg max p;(1may ) (2)

Ly

Figure 2 illustrates the feature extraction process. The top right graph shows
an example of the probability maps (low probabilities are black, high probabil-
ities are light grey). We observe maps which mark uniform regions, bar like
regions or more complex regions such as the eyes. The corresponding clusters
are the class-specific feature detectors. Many neighboring pixels are assigned to
the same cluster and form connected regions. This is natural, because the local
neighborhood of close pixels have a strong overlap, with a high probability that
the image neighborhoods are assigned to the same cluster.
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Fig. 2. Algorithm for raw feature extraction and mapping to most probable class spe-
cific features. The probability maps are condensed to a single color coded cluster map,
where color k marks points that are assigned to cluster k.

The cluster map representation is an enormous data reduction, but at the
same time, it preserves the information about class specific features and their
location. This is the minimum information required for detection and classifi-
cation. The cluster map representation is specific enough to provide detection
and it is general enough to enable classification of images with a large intra-class
variability. Evidence provide the experiments.

Another important point is that this cluster map representation is scale in-
variant. The scale invariance property of the raw features translates to the cluster
prototypes and also to the mapping. In Figure 3 we show the original image at



numerically scaled resolutions and the computed cluster map. Despite the reso-
lution changes of factor 5 (left to right) corresponding face parts have the same
color label, that is My, (01x,01y) = My, (02, 02y).

Fig. 3. Cluster maps Moy, Ms,, My, computed from images at different resolutions.
The class-specific feature detectors are scale invariant.

3.4 Parameter optimisation

In this section we explain how we can judge the quality of a particular clustering
and select those clusters that are useful for object description. A useful object
description marks the class specific features such that the description allows to
generalise from the training examples to unseen objects of the same class and
the description allows to discriminate the object from non-objects such as back-
ground. A small number of clusters produce high generality, but bad discrimi-
nance. A high number of clusters has high discriminance and bad generalisation.
This problem is related to finding the correct model and avoid overfitting.

We observe that neighboring image features are frequently assigned to the
same cluster. This is a sign for the stability of the feature. Such stable features
that have a good generalisation ability. A good set of feature descriptors therefore
divides the object into several connected regions and forms a particular pattern
in the cluster map representation. This pattern is exploited for detection.

The clusters should provide a segmentation into a number of connected re-
gions. The regions should mark particular class specific features. There should
be not too few regions neither too many. We tested k in the range from 5 to
40 and selected those clusters that are stable within the region of the training
objects. As stability criteria we consider the average connected component size.

4 Verifying spatial relations

The complexity of identifying the best spatial configuration of a set of parts is
related to a random graph matching problem. The complexity of matching a full
graph with N model parts and M candidate parts is O(M " ). This exponential



complexity is the reason that Fergus and Agarwal’s approaches can handle only
a small number of candidate parts. Labelling of graph nodes reduces the com-
plexity to O(]_[kN:1 M) and M}, the number of candidate parts of model part
k [9]. The complexity can be further reduced by imposing stronger constraints on
the graph topology. This reduces the flexibility of the graph with the advantage
of an efficient graph matching algorithm. The details of such an elastic matching
of labelled graphs as proposed in [8,14,19] is explained in the next section where
we also propose an alternative cost function that enables matching invariant to
scale.

4.1 Elastic matching of labelled graphs

Elastic graph matching has previously been applied for grouping neurons dynam-
ically into higher order entities [8]. These entities represent a rich structure which
enables the recognition of higher level objects. Model objects are represented by
sparse graphs whose vertices are labelled by a local appearance description and
whose edges are labelled by geometric distance vectors. Recognition is formu-
lated as elastic graph matching, that optimizes a matching cost function, which
combines appearance similarity of the vertices and geometric graph similarity
computed from the geometric information of the edges.

The matching cost function consists of two parts, C, appearance similarity
of the node labels, and C, spatial similarity of the graph edges. A sparse graph
G = ({x;},{A4 }) consists of a set of vertices {z;} with image positions v; and
labels m; that measure the local image appearance. The vertices are connected
by edges Az = v; — v; which are the distance vectors of the image position of
the vertices x;, x;.

The spatial similarity evaluates corresponding edges of the query and the
model graph by a quadratic comparison function:

Se(Ag', Ag™M) = (AyT — A5 M), (i,j) e B (3)

where FE is the set of edges in the model graph. The set E,,,, containing the four
nearest neighbors of a vertex is better suited to handle local distortions than the
complete edge set [8].

The spatial similarity, S., measures the correspondence of the spatial dis-
tances between neighboring nodes. Distances are measured in pixels. The mea-
sure in (3) is scale dependent. This means that the measure can not distinguish
between scaling and a strong distortion. We propose a normalisation by a scal-
ing matrix, U, that can be computed from a global scale factor estimate. This
normalisation makes the spatial similarity measure scale invariant.

I
w_M 0
U= <w0 ;_]\1{) (4)
Sev(Ag!, AgM) = (As" —UAG;M)? (5)

with w!, w™ width and k', A™ height of the query and the model region respec-
tively.



Appearance similarity of labels is computed as the Mahalanobis distance of
the feature vectors mf,m™ ¢ R%:

Sy(mI, mM) = (m! — mM)TC~H(m! — mM) (6)

where C' is the covariance of the local feature vectors of the training data. The
Mahalanobis distance has the advantage to compensate for the covariance be-
tween the dimensions of the feature space. This measure is known to be stabler
than the Euclidean distance in a features space composed of Gaussian derivatives
of different order [2].

The cost function Cyore; is a weighted sum of the spatial similarity and the
appearance similarity.

Crotar({zi }. {2}"}) = A\Ce + C,
=A Z Sev(Ayzt, Ay — st(mf»miw) (7)

(i,J)€E 2%

The weighting factor A controls the acceptable distortions of the query graph by
penalising more or less the spatial similarity. The graph rigidity can be varied
dynamically during optimization, which allows to employ a two stage algorithm
that first places a rigid graph at the locally optimal position. The global cost
function is then improved by allowing local distortions.

Fig. 4. Example of a detection by elastic graph matching on cluster map representation.

The original algorithm proposed by Lades is non-deterministic. Peters has
proposed a deterministic version, that proceeds as follows. First a rigid graph is
placed at the best position by raster scanning the image with a coarse step size.
Then the graph is distorted locally by updating each node within a small window
such that the labels are the most similar. An example is shown in Figure 4.

When scale changes must be considered, we search the optimal position and
the optimal scale in the first step of the algorithm. These parameters are kept
constant for the local optimisation phase. The optimal scale is selected among
a predefined range of discrete values. We envision a preprocessing module that
provides a rough estimate of the global object size, and the object position.
Such a module would reduce significantly the computation time of the matching
algorithm.

Without the preprocessing module, the matching algorithm has a complexity
of O(knodeskwinIN) = O(N) with ky,odes the number of nodes (typically in the



range of 70 to 200), N the number of tested positions in the image (related to
the image size), and ky;, the size of the search window for the local position
refinement. We use this graph matching algorithm to compare a query graph to
a reference model graph.

5 Experiments

First we explain how the experiments are evaluated. Then the first experiment
detects and classifies objects of approximately constant object size. This demon-
strates the advantage of the class specific features over raw Gaussian derivative
features. In the second experiment, artificially scaled objects are located by elas-
tic graph matching using the model of the first experiment. This demonstrates
the robustness to scale changes of our approach. The third experiment shows
the performance of the system to detection of target objects in unconstrained
images.

5.1 Set up

Fergus evaluates the results by ROC (receiver operator characteristics) equal
error rates against the background dataset. His system evaluates a maximum
likelihood ratio % where the background is modeled from the Caltech
background set. In this way, few insertions are observed for this particular back-
ground set, but an equivalent performance on a different background set is not
guaranteed. As stated by Agarwal [1], the ROC measures a system’s accuracy as
a classifier not as a detector. To evaluate the accuracy of a detector, we are inter-
ested in how many objects are detected correctly and how often the detections
are false. These aspects of a system are captured by a recall-precision curve.

Number of correct positives
Recall =

(8)
(9)

Total number of positives in dataset
Number of correct positives

Precision =

Number of correct positives + Number of false positives

In order to suppress multiple detections on nearby locations, Agarwal imple-

ments the scheme of a classifier activation map, that allows to return only the

activation extrema within a rectangular window with parameters w.in, Pwin. A
point (%o, jo) is considered an object location if

cost(ig, jo) < cost(i,5),V(i,j) € N (10)

where N = {(i,7) : |i — io| < Wuwin, |7 — Jo| < hwin} and no other point in N has
been declared an object location.

We use the image database provided by Caltech! and the BiolD database [6],
with known object position and size. Figure 5 shows some example images. We
consider a detection correct when following constraints are fulfilled.

! available at http://www.vision.caltech.edu/html-files/archive.html



1. |7:true - idet| < 5width and |jtrue - jdet| < 5height7 and
2. the detection and the ground truth region have an overlap of at least 04;¢q.

The parameters are set as a function of the object size, (w™,hM). We use
Owidth = %wM, Oheight = %hM and 64,¢, = 50%. This corresponds to the param-
eter setting used by Agarwal.

Fig. 5. Example images of the Caltech databases and the BiolD face database.

5.2 Detection without scale changes

Table 1 summarises the detection results for different object classes, evaluated
with different maximum cost thresholds (rectangles mark the best results with
a false detection rate of < 10%). There is a tradeoff between recall and precision
according to this threshold. We compare elastic graph matching on 5 dimensional
Gaussian derivative features (first and second derivatives, scale invariant) and
elastic graph matching on the cluster map representation. For faces, the Gaussian
derivatives have a higher precision than the cluster map representation. This is
due to the significant data reduction which increase the frequency of insertions.
However, we obtain very good detection rates with both techniques.

For the other data bases, the cluster map representation produces superior
results. Motorbikes and airplanes can be reliably localised (> 95%) with false
detection rates < 10%. Elastic graph matching on Gaussian derivative features
has a higher false positive rate. This confirms that the cluster map representation
detects the class-specific feature robustly to intra-class variations.

The data base of rear views of cars has a much lower precision rate. This is due
to the lack of structure of the target objects. Many false positives are found. The
targets display a large variance in appearance and also in the spatial arrangement
which explains the lower detection rate. The current non-optimised implemen-
tation requires an average of 3.3s for processing an image of size 252x167 pixels



on a Pentium 1.4GHz (automatic scale selection, 5 Gaussian derivative filter op-
erations on all image pixels, transformation into cluster map representation and
optimising elastic graph matching function).

Detection by elastic graph matching using

Cluster map ||Gaussian derivatives, 5 dims

Faces, 435 images, graph 7x10 nodes, 5 classtons

Max cost| Recall |Precision||Max cost| Recall Precision
25 95.7% || 160 91.6%
35 94.3% | 87.7% 180 99.5% 43.8%

45 96.4% | 77.7%
Motorbikes, 200 images, graph 9x15 nodes, 5 classtons
50 91.5% 96% 600 69.8% 75.5%

70 97% 91.1% 1000 | 82.4% 66.4%
Airplanes, 200 images, graph 7x19 nodes, 5 classtons

55 95.3% || 90.3% 800 74.8% 98.8%

65 96.3% | 84.4% 1000 | 94.4% 87.1%

75 96.3% | 74.6%
Cars (rear view), 200 images, graph 11x15 nodes, 10 classtons

100 2% 62.1% 1000 | 65.5% 62.6%

120 91.2% | 54.3% 1200 84% 58.3%
Table 1. Detection results without scale changes (rectangles mark best results with
precision > 90%).

5.3 Detection under scale changes

To evaluate the performance of our system to objects of different sizes, we have
created artificially scaled images from the Caltech database and a database with
natural scale changes (the first 99 images of the BioID database [6]). The cluster
map representation is scale invariant due to the scale invariant feature extraction
(see Figure 3). The spatial relation model in form of a labelled graph is scale
dependent. When searching a best fitting graph, we search the best position and
the best scale among a set of discrete positions and scales (we test positions
that are evenly spaced by 3 pixels and the tested scales are 0.56,0.75,1.0,1.25).
Table 2 shows the detection results. We observe high detection rates. However,
many more false positives are observed, elastic graph matching optimises the
matching function in space, distortion and scale. As a consequence we observe
more false positives which decreases the precision rate. Figure 6 shows an exam-
ple of typical insertions. The object is detected correctly and in addition several
subparts of the motorbike are detected as well. An algorithm which removes mul-
tiple detections would help to reduce the high number of insertions and improve
the detector precision.



Scale range|Recall|Precision|Max cost
Faces 0.56 - 1.0 [96.2%| 42.1% 35
93.6%| 54.5% 30
Motorbikes | 0.56 - 1.0 |82.9%| 57.3% 85

80.9%| 65% 70
Airplanes |0.56 - 1.25 [89.6%| 58.9% 65
83.6%| 68% 55

BiolD faces| natural [89.9%| 75.4% 30
Table 2. Detection of objects on images with scale changes (method elastic graph on
cluster map).

Fig. 6. Example of typical insertions under scale changes.



5.4 Detection in unconstrained images

We tested our method on images with natural scale changes. For detection of
faces, we use the cluster map representation that is learned from the faces of
the Caltech face database. For detection we perform elastic graph matching on
cluster map over different scales. Figure 7 shows an detection example. The
model image is significantly different from the query faces. All faces are detected
and we observe no false positives.

Mode: labelled ?raph )
. on cluster map Yepresentation

Fig. 7. Successful detection of faces in unconstrained images. The white rectangles
mark the position and size of the graphs with lowest cost.

6 Conclusions and future work

In this article we have proposed a method to generate class-specific feature de-
tectors that learn the intra-class variability and allows to represent an image as
a cluster map, which preserves the position and the type of the class-specific fea-
ture. This is the minimum information required for detection and classification.
Reliable detection is obtained by verifying spatial constraints of the features by
graph matching. We proposed a method for geometry verification that has a
much lower computational complexity than other algorithms. Furthermore, the
proposed verification method is invariant to scale and enables successful detec-
tion of different kinds of object classes. The method allows to locate objects



observed at various scales and produces good results for a selection of uncon-
strained images.

The strong data reduction of the cluster maps increases the probability of
false positives. This is natural and caused by the information reduction of the
cluster map representation. The current implementation is non-optimised and
requires to search scale space for optimising the matching cost function. We are
working on an additional preprocessing module that extracts candidate locations
by image signal properties at very large scale. The a-priori knowledge of the
location and approximate size of candidate regions is the key for a fast detection
and classification system.
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