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Résumé

Dans cet article nous proposons une methode pour
l’apprentissage automatique de caractéristiques robustes
et générales à partir d’images de luminance de visages.
Les détecteurs ainsi obtenus sont robustes aux change-
ments d’illumination, de personne et d’expression faciale.
Pour obtenir un détecteur de visage fiable, les relations
spatiales entre les caractéristiques détectées doivent être
prises en compte. Nous proposons d’apprendre les rela-
tions des caractéristiques les plus remarquables par un his-
togramme en espace logarithmique angulaire. La recon-
naissance est obtenue par évaluation de la mesure de di-
vergence entre l’histogramme modèle et l’histogramme ob-
servé. Nos exemples montrent des détections fiables dans
des cas qui représentent des défis pour notre approche. Nos
experiences montrent qu’un modèle de n’importe quelle
classe d’images peut être généré à partir d’un faible nom-
bre d’exemples.

Mots Clef

Extraction et représentation des connaissances, classifica-
tion, reconnaissance de formes dans l’image

Abstract

In this article we propose a method for learning generic
and robust features from a visual image class and apply
it to face images. The resulting feature detectors are ro-
bust to illumination, person identity, gender, and facial ex-
pressions. In order to obtain a powerful class detector, we
learn the spatial relations of the most stable class features
by computing a histogram in log-polar space. Detection
is then performed by computing the histogram divergence
between query and model histogram. The target objects, in
our case faces, are detected under challenging conditions,
even in the case of unconstrained images. The proposed
method is general, and can be applied to learn any visual
image class.

Keywords
Knowledge representation, classification, appearance
based pattern recognition.

1 Introduction
In this article we propose a method for the automatic com-
putation of robust and generic features from images form-
ing a visual class. We have chosen faces to demonstrate
the performance of our method. The goal of our research
is to develop a system that can learn any visual class. For
this reason we avoid to use any constraints that simplify
the face detection task and make the system more spe-
cialised. We focus on the fast and simple training phase
and on the possibility to apply our method to any set of
images. The system presented here is not meant to com-
pete with the very specialised face detection systems sum-
marised in [18]. We use the face detection example to val-
idate our approach.
In our example application, the features are learned from
face images acquired under controlled illumination condi-
tions and can be applied to unconstrained face images. This
experiment demonstrates the ability of our generic feature
detectors to generalise from few examples to unknown im-
ages of the same class. A key point to the robustness to il-
lumination changes is the detection of facial features from
luminance. The robustness to the changes in acquisition
conditions of the generic features is demonstrated in the
experiments.
In the second part of this article, we propose a method to
learn the spatial relations of the generic features. The ob-
tained model in form of a log-polar histogram serves for
detection. This two stage learning system has the advan-
tage that it combines the properties of the low level fea-
ture extraction and the higher level spatial relation context.
The resulting model inherits the robustness from the fea-
ture extraction and the discriminance from the spatial rela-
tion context. A model computed from few images produces
good detection results. The system can be applied to any
type of images and it requires little supervision during the
learning stage.



The remaining article is organised as follows. Section 2 ex-
plains the extraction of the raw appearance features using
scale normalised Gaussian receptive fields. Section 3 de-
scribes the clustering approach for computing the generic
and robust feature detectors from the raw features. In Sec-
tion 4 we describe how to judge the quality of the generic
feature detectors. The developed measure allows to select
high quality feature detectors. Section 5 describes an ap-
proach to learn the spatial relations of local measurements.
The proposed log-polar histograms are a means to model
the data and to avoid over-fitting. Experimental results are
given in Section 6. The experiments show examples of suc-
cessful detection in challenging cases.

2 Feature Selection
Gaussian derivative receptive fields are used by many
researchers for the description of local feature appear-
ance [2, 8, 11, 12, 14]. Low order derivatives measure the
basic geometries of features [5]. Local features are rep-
resented by the response to a bank of Gaussian derivative
receptive fields centered on the image position. Scale in-
variant receptive fields are obtained by normalization to in-
trinsic scale at each pixel, where the intrinsic scale is de-
termined from extrema in the normalised Laplacian over
scale [7].
Many popular face detection methods use chrominance to
detect skin regions [15, 17]. However, the chrominance in-
formation perceived by the camera is the product of the ob-
jects pigment and the color of the illumination according to
the dichromatic reflection model described by Klinker [4].
By restricting the feature space to the luminance compo-
nent, we obtain a facial feature detector that is not sensitive
to changes in illumination color.
For the description of local appearance features we use first
and second order Gaussian derivatives of the luminance
channel. The restriction to the luminance channel and the
suppression of the derivative of order zero makes the fea-
ture vector less sensitive to illumination variations. In our
previous work [3], experiments with feature spaces up to
third order derivatives showed no increase in discrimina-
tion quality. The higher dimension of the feature space in-
creases the average distance between associated features
which augments the error rate.
Features situated at positions of a dense pixel-wise grid are
extracted at the specific intrinsic scale. This produces a
large number of data points from a small number of im-
ages which is good for the subsequent learning algorithm.
The data is normalised to compensate for the dynamic of
receptive fields of different orders such that the distribution
has 0.0 mean and 1.0 standard deviation.
Traditional methods use scale invariant local feature de-
scriptors. This has the advantage that features that occur at
different scales due to perspective transformation are asso-
ciated. Scale invariant feature description allows matching
invariant to the feature scale. If such features are used for
modelling, the model does not contain information of the

(a) (b)

Figure 1: Cluster examples. (a) scale invariant feature space up
to order 2. (b) feature space up to order 2 with scale.

relative scale between features.
The relative scale relations are discriminant for the object
and should be preserved. For this reason we have devel-
oped a feature space that we refer to as scale feature space
which allows the generation of a globally scale invariant
model that preserves the internal scale relations. We pro-
pose to use (Lx, Ly, Lxx, Lxy, Lyy, σ), where Lx denotes
the first derivative of image I in direction x. This corre-
sponds to an extension of the Gaussian derivative feature
space by an additional dimension containing scale. This
additional scale dimension allows to take into account the
local scale for clustering.

3 Computation of generic features
The idea of vector quantization or clustering of the out-
puts of linear filter sets has been applied by Leung and Ma-
lik for texture recognition and image segmentation [6, 9].
They define texture as entity with spatially repeating prop-
erties. Zhu and his collaborators obtain clusters robust to
rotation and scale changes by applying a transform com-
ponent analysis to image patches before clustering [20].
The textons that represent the texture clusters allow the ef-
ficient modeling of textures. Schmid has applied the same
k-means clustering scheme to compose generic features for
image indexing [13].
Faces are composed of facial features, that consist of par-
ticular local appearances. Facial features of different faces
have similar appearance such that all face images can be
considered to form a visual class. The local feature appear-
ance is captured by an appropriate feature space such as the
scale feature space described in Section 2. A visual class
has spatially repeating properties over the elements of the
class. Clustering as applied by Malik for texture classifica-
tion finds these repeating properties and learns their varia-
tions. The result is a set of associated point clouds which
we refer to as generic features or classtons. The choice of
this name is an analogy to Malik’s texton prototypes.
We use k-means to associate nearby points and find the
classton clusters. K-means is an iterative algorithm that
converges to a local minimum. To avoid the problem of
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Figure 2: Feature extraction algorithm.

finding a suboptimal solution, k-means is performed sev-
eral times and the best solution in terms of overall error
is kept. We experimented with k in the range of 10 to 50.
Figure 1 shows examples of clustering results. The clusters
are represented as the center of gravity of the cluster ele-
ments. The vectorial representation of the gravity centers
provide the weights of the linear combination of the im-
pulse responses of the Gaussian derivative receptive fields.
This linear combination is only used to visualize the mean
feature of the associated cluster points. It contains no in-
formation about the shape of the point cluster in feature
space. Figure 1 (a) shows the cluster centers using a scale
normalised feature space, Figure 1 (b) shows the centers of
a feature space with additional dimension for scale.
The classtons are a set of descriptors that model the re-
peating properties of any image class. For an observed im-
age, we can compute classton channels in the same way
as Malik. In a classton channel those image positions are
marked whose underlying feature is mapped to the partic-
ular classton by evaluating a distance measure such as the
one described in equation 2. The classton channels pro-
vide a partition of the image. It is therefore possible to
display several classton channels in a single image (cluster
map) coded as different colors (pixels marked by the same
grey-level correspond to the same classton channel). The
mapping from the Gaussian derivative features, ~mxy, to the
cluster map representation, M(x, y), can be formalised as
follows.

M(x, y) = arg max
j=1,..,k

dj(~mxy) (1)

where
dj(~mxy) = |~mxy − ~µj | (2)

dj(~mxy) is the Euclidean distance of the measurement and
the cluster center ~µj of cluster Cj in a Gaussian derivative
feature space with 0.0 mean and 1.0 standard deviation.
Figure 2 illustrates the feature extraction process. The top
right graph shows the classton channels. Features associ-
ated to the particular channel are marked light grey. We

observe maps which mark uniform regions, bar like re-
gions or more complex regions such as the eyes. The cor-
responding clusters are the class-specific feature detectors.
Many neighboring pixels are assigned to the same cluster
and form connected regions. This is natural, because the
local neighborhood of close pixels have a strong overlap,
with a high probability that the image neighborhoods are
assigned to the same cluster.

4 Cluster quality
Clusters are dense collections of data points. They are use-
ful for classification because they represent a collection of
highly similar features. Under the condition that the train-
ing images are visually similar, those dense clusters rep-
resent the most significant features for the trained image
class and allow to learn the variations of these features.
Anyhow, there is an incongruity between the clusters that
are automatically computed using density criteria and the
feature detectors that we wish to obtain. This is natural,
since the clustering associates points only based on dis-
tance in feature space. As a consequence, clusters may
emerge that group similar features having no semantic
meaning. In the following we have formalised additional
selection criteria to judge the quality of a cluster. Appli-
cation of these criteria allow to select the feature detectors
that correspond to those features that are focussed by hu-
man saccades when presented to a face image as described
by Yarbus [19].
In order to judge the quality of a cluster, we discuss the fol-
lowing measures: the compactness and the density in fea-
ture space and the average size of the regions in the classton
channel (ACCS).

Compact(Ck) =
A

V
≈

∏D
i=1 σi

maxi(σi)D
(3)

Density(Ck) =
# points
A

(4)
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Figure 3: (a) Classton channels producing the largest average
components (ACCS measure). (b) The 6 most compact classton
channels. (c) The 6 densest classton channels.

(b) 15 most compact clusters(a) intersection of (b) and (c) (c) 15 largest ACCS channels

Figure 4: (a) Combination of compactness and image-based
measure. (b) The 15 most compact classton channels. (c)
Classton channels with large ACCS.

ACCS(I) =
1

N

N∑

i=1

Fi(I) (5)

with Fi(I) size of connected component in image I . ACCS
is obtained by averaging the connected regions within the
training images. Compactness is defined as the ratio of a
volume and the enclosing sphere. In order to compute the
compactness of a cluster Ck, we modify the geometrical
definition of compactness as follows. The D-dimensional
volume A of a cluster is approximated by the product of
standard deviation σi of its members in each dimension
i = 1, . . . , D. The volume of the enclosing sphere V is
computed as the maximum standard deviation to the power
of D. Cluster density is computed as average number of
points per volume unit.
The density of clusters depends on the total number of fea-
ture points. For this reason, a threshold for reliable detec-
tion of dense clusters can not be found. Compactness has
the advantage that it is independent from the number of
features, because it takes into account the cluster shape. A
generic feature with good generalisation ability produces
large connected components in the classton channels and
has therefore a large ACCS measure. Figure 3 shows an ex-
ample of compact clusters producing large connected com-
ponents that specify forehead, hair, eyes, nose, and mouth
region as significant features of faces. For this reason,
ACCS is a good measure for the generalisation ability of
a cluster.
Examples of classton channels of the different selection
criteria are shown in Figure 3. The densest classtons are
composed by many points and little variation such as the
background. This type of classtons can be useful for fig-
ure ground segmentation on uniform background. Com-

pact clusters form nearly spherical point clouds in feature
space. Typical examples are very distinct features such as
the nose and other bar-like facial features. On the other
hand, the form of the eye region cluster has a more complex
form in the feature space due to the complex appearances.
This motivates the use of an image based measure such as
ACCS. The eye region is only detected by this image-based
measure. A meaningful facial feature detector is therefore
characterised by high compactness and large ACCS. The
combination of connected and compact clusters is shown
in Figure 4.

5 Modeling spatial relations
The generic features have the property that they can be
computed at any image position. They do not contain any
notion of image position. The generic features are de-
tected robustly to intra-class variability because clustering
is a means to learn this variability from examples. They
provide the local measurements needed for a higher level
recognition process. Due to their locality, they respond
to cluttered background. By taking into account the spa-
tial relations between features, faces can be detected reli-
ably despite background clutter. In this section we propose
an automatic model generation that learns spatial relations
of generic features. This model is inspired by Belongie’s
shape context [1].

5.1 Log-polar histograms
A log-polar histogram has bins that are uniform in log-
polar space. This corresponds to a linearly increasing posi-
tional uncertainty with distance from the reference position
~p = (x0, y0)T . This means that the descriptor is more sen-
sitive to measurements at nearby positions than to measure-
ments at image positions farther away. This makes the log-
polar description appropriate for applications where the ob-
ject undergoes affine transformations. It is appropriate for
the description of face images and other non-rigid objects,
that often have small deformations.
The computation of the log-polar representation is per-
formed in two steps. First, the region around the query
position ~pi is transformed into polar and then log-polar rep-
resentation according to:

ρ =
√
x2 + y2, η = tan−1

(
x

y

)
(6)

χ = log2(ρ), γ =
Na
2π

η (7)

with (x, y) = (x0 + ∆x, y0 + ∆y) Cartesian coordinates,
(ρ, η) polar coordinates, Na angular resolution and (χ, γ)
log-polar coordinates.
The polar representation contains the pixel values of the
transformed original image. The so obtained polar image
is then sampled uniformly in log space according to Equa-
tion (7) in order to fill the histogram. Each histogram cell
contains the ratio of the surface covered by the query pixel
and the total surface of the histogram bin. The construction
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Figure 5: (a) Image in Cartesian coordinates with query
point. The range of the log-polar histogram is marked by
the large circle. (b) Image (a) transformed to polar coordi-
nates.

of the log-polar histogram is illustrated in Figure 5. A fast
implementation uses a lookup table of the direct transfor-
mation.

5.2 Learning the spatial relations
Applying a set of k high quality clusters, an image is trans-
formed to k binary images, the classton channels. This is
an enormous data reduction, but it preserves the type and
the position of the local image feature. This is exactly the
information needed for detection. The classton channels
serves as input for the log-polar histogram. The log-polar
histogram measures the relative positions of the detected
classton regions and provides a signature of the spatial re-
lations within a particular range.
For learning the spatial relations of the target object, the
user selects a reference position within a set of training im-
ages. This is the only user interaction required for train-
ing. A model histogram is constructed as the average log-
polar histogram of the training histograms extracted at the
reference position. In the face image example, we choose
the center between the eyes as reference position and com-
puted the average model histogram from 10 training im-
ages.
For measuring the similarity between any query histogram
Q and the model histogram H we use the χ2 divergence
measure.

χ2(H,Q) =
∑

i

(qi − hi)2

qi + hi
(8)

where hi is the content of bin i of model histogram H . If
the divergence is sufficiently small, the face is detected at
the current position. Such detections are marked as circles
in the Figures 6 to 10.
The sampling in log distance from the reference point pro-
vides increasing robustness in position with increasing dis-
tance from the reference point. Scale and pose changes
or facial expressions typically produce variations in posi-
tion of facial features which is compensated by log-polar
sampling. An example is shown in Figure 6. The robust
modeling is the major advantage of the log-polar histogram

approach over other direct modeling methods such as carte-
sian histograms or learning the spatial relation of a set of
facial feature points as described by Wiskott [16] that re-
quires the precise extraction of eyes, nose and mouth cor-
ners.

6 Experiments
6.1 The Databases
We use two public face databases, the AR face
database [10] and the Caltech face database1. Additional
experiments are performed on home made digital images
of our research group. The images of the AR face database
have a resolution of 256 × 192, and contain a large num-
ber of individuals, men and women from different eth-
nic groups, with and without glasses, different hairstyle
or beard. The images show different facial expressions,
lighting changes and occlusions. To demonstrate the per-
formance of our method on images with cluttered back-
ground, we use the Caltech face database that consists of
435 images of 30 individuals with various background, in-
door and outdoor illumination. Some images are under-
exposed. The images are rescaled such that the head size
approximately corresponds to the head size of the AR face
database.

6.2 Robustness of generic feature detectors
For constructing the generic facial feature detectors, we use
the first 15 neutral faces of men from the AR face database.
We use segmentation maps to focus on the object features
and speed up the learning process. The segmentation maps
are not used for testing. From the 37 k-means detectors
we select the 5 classtons that score highest according to
ACCS and compactness. Those detectors form 5 classton
channels that are combined into a single cluster map rep-
resentation according to equation 1, where each channels
is marked by a different grey value (black means that none
of the 5 classton features has been detected). Figure 7 il-
lustrates the responses of the different detectors to faces on
cluttered background. We observe only few false positive
detections due to background clutter.
Among the 5 channels, we obtain a detector for left side
of forehead, cheek and chin, a second symmetric detector
for the right side of forehead, cheek and chin. A detector
for the regions between the eyes and center part of the chin
and forehead. A detector for eyes, that responds also for
the mouth region. The last detector is sensitive to bar like
structures as the nose.
Figure 8 shows the results of robustness to significant il-
lumination changes. It can be observed, that some facial
features are stable even in images with significant illumi-
nation changes, and others are not.
Typically, classtons that mark facial features with signif-
icant local structure such as the eyes, and mouth region
are stable under changing lighting conditions. Those fea-

1available at http://www.vision.caltech.edu/html-files/archive.html
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Figure 6: Detection results for artificially scaled images. The detection approach is robust to limited scale changes due to the flexibility
introduced by the log-polar histogram.

Figure 8: Classton channels of images under significant illumination changes. The classtons are obtained from 15 frontal faces under
uniform lighting such as the image in the top row. The facial features are detected reliably. Face detection is successful in images with
various facial expressions, strong illumination, and occlusions. It fails in cases with combined strong illumination and occlusions.



Figure 7: Classton channels of individuals other than the 15 neu-
tral male training faces. All faces are reliably detected using a
log-polar histogram, insertions due to background clutter are rare.

ture that display little local structure such as the cheeks,
nose and forehead are much more sensitive to illumination
changes. In other words, complex features are sufficiently
outstanding, such that a change in illumination does less
disturb the matching.

6.3 Face detection
The classton channels of the 5 high quality clusters serve as
input for the face detection system. Faces show a consistent
spatial pattern within the face region. This spatial pattern is
modelled by the log-polar histogram. As the feature extrac-
tion by classton channels is robust to illumination changes,
head pose orientation, small changes in head size, and gen-
der, so is the modeling by log-polar histogram. In addition,
the sampling in log-polar space introduces a robustness to
position of the facial features that is required for successful
face detection robust to facial expressions.
For localisation, the query image is raster scanned with step
size 4 pixels. At each grid node the corresponding log-
polar histogram is extracted and the divergence measure of
this query histogram and the model histogram is computed.
If the divergence measure is below a threshold, a detection
is registered. Such a successful detection is visualised by a
circle in the original image. The radius of the circle corre-
sponds to the range of the log-polar histogram.
In order to show the stability of our approach to images
with cluttered background and different illumination con-
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Figure 9: Evaluation of the face detection on the Caltech face
database.

ditions, we have performed a face detection experiment on
the Caltech face database on 435 images. Examples are
shown in Figure 7. A detection system is commonly char-
acterised by two values: how many objects are detected
(recall) and how many of the detections are correct (preci-
sion).

Recall =
# correct positives

Total # positives in dataset
(9)

Precision =
# correct positives

# correct positives + # false positives
(10)

The detection results can be displayed as a precision recall
curve where a parameter, in this case the maximum cost, is
varied to obtain several values on the curve. A good detec-
tor has high recall and high precision. Figure 9 shows the
precision recall curve for the Caltech face database. We ob-
tain a recall of 97.7% (425 out of 435 images are detected).
Figure 6 shows the robustness to scale variations without
explicitly compensating for scale changes. Our approach
can be made scale invariant by a small number of modifi-
cations (extraction of the raw Gaussian derivative features
and adaption of the histogram range). These modifications
are not yet implemented, the robustness is achieved only
by the flexibility of the log-polar representation.
We perform a face detection experiment for images from
the AR face database showing other individuals than those
used for training. We obtained following detection rates
for a set of 444 images (Table 1). We provide only re-
call rates because the precision is not interesting for im-
ages with uniform background. The first column shows the
detection rate for Cartesian histograms that are inferior to
the detection rates of the log-polar histograms. In all cases
the divergence measure of Cartesian histograms is higher
than the divergence measure of log-polar histograms. Both
facts motivate the modeling of spatial relations in log-polar
space. We have very good detection results for different fa-
cial expressions, different illumination or occlusions. The
most detection errors occur for combined occlusion and il-
lumination changes.
Figure 8 shows the robustness to illumination changes and
occlusions. Detection fails in cases where significant fea-
tures such as the nose or the mouth region are not detected



Detection rate Cartesian Log-polar
using histograms histograms
Expressions 98.8% 99.3%
Illumination 91.4% 97.8%
OR occlusion
Illumination 54.0% 69.4%
AND occlusion
Total 84.5% 91.2%

Table 1: Face detection rate for AR face images under dif-
ferent conditions. We have very good detection results for
different facial expressions, different illumination or occlu-
sions. The most detection errors occur for combined oc-
clusion and illumination changes. The precision is high,
because the images have uniform background.

by the corresponding classton. This is the case in occluded
images or in images with extreme lighting conditions. In
cases where a high number or the facial features are de-
tected, the divergence measure allows a successful detec-
tion.
The log-polar implementation allows the modelling of spa-
tial relations that is sufficiently discriminant to avoid false
detections and is general enough to avoid over-fitting. In
the example of unconstrained images in Figure 10 all faces
are correctly detected. The large amount of false detec-
tions by the generic detectors all over the background are
successfully discarded by the spatial relation constraint im-
posed by the log-polar histogram. This is a convincing re-
sult considering the variations in scale, head pose and light-
ing.

7 Conclusions
In this article, we propose an approach for learning of local
coefficients for the construction of detectors for common
features of a visual class. In order to obtain robustness to
illumination changes, the feature detectors are computed
from luminance images, since the luminance channel is
less affected by illumination changes than the chrominance
channels. In order to obtain automatically those clusters
that correspond to meaningful features, we develop a mea-
sure to judge the quality of each cluster. For our training
images of the AR face database, the application of the qual-
ity measure selects facial feature detectors that correspond
to those features that are preferred by humans, as observed
in psychophysical experiments.
The local facial features are detected robustly to intra-class
variability and serve as input to a module that measures the
spatial relations. Using a log-polar histogram, the obtained
model is sufficiently discriminant to provide reliable face
detection. Face detection fails only in cases where impor-
tant features are missed by the detectors.
In the experiments we demonstrate the stability of the fa-
cial feature detectors with respect to person identity, light-
ing changes, different facial expressions, occlusions and

Figure 10: Classton channels of unconstrained image. The train-
ing is performed on frontal faces from the AR database. Detected
faces marked by circles are characterised by the combined occur-
rence of facial features. No false detections are observed.



cluttered background. The detectors generalise well to un-
known faces, and are robust to gender and facial expres-
sions. The combination of strong side illumination and oc-
clusion disturbs the characteristic face pattern which make
detection more difficult. Reliable face detection is possible
on images with cluttered background and small changes in
head size because the log-polar histogram representation
allows to be insensitive to facial feature detections in the
background by taking into account the spatial relations.
These results are a step towards the construction of a ro-
bust recognition system that can learn and model any vi-
sual image class. The log-polar histogram approach is one
possibility among others to learn spatial relations. The ad-
vantages are clear. The modeling avoids one to one match-
ing, provides sufficient discriminance for reliable recogni-
tion and at the same time is robust to position changes of
distant feature points. Furthermore, it is a straight forward
approach that requires little supervision.
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