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Abstract—This paper describes a task-independent controller 

that allows for an easy implementation of vision systems for 
processing video sequences.   The controller does not have a fixed 
dataflow or any fixed steps. The dataflow is constructed by the 
modules by describing themselves for the controller.  

During operation the modules and their parameters are 
selected using an independent decision module. This makes the 
system flexible and allows comparison of different learning 
techniques and decision strategies. The controller is being used by 
the CAVIAR system and its current decision module is a rule-
based system written in Clips. 
 

Index Terms—Intelligent controller, Computer Vision, Video 
sequences analysis, Image Understanding 

I. INTRODUCTION 

ver the past 2 decades there has been a great amount of 
work on the development of generic image understanding 

front-ends so they can be reused on different image 
understanding problems, what could be called an image 
understanding shell [7].  We have still to achieve that goal, but 
the characteristics of those systems are beginning to get 
clearer.  

Among the problems that prevented the achievement of such 
systems are the complexity and computational cost of low-
level and intermediate level operations necessary for image 
understanding. This problem is smaller nowadays since there 
are a great number of off-the-shelf Computer Vision libraries 
of operators available on the Internet. These libraries provide 
the necessary operators for many understanding tasks, but they 
need a method to automatically select which libraries to 
execute, over which data and with which parameters. That 
means an intelligent controller capable of reasoning and 
acquiring knowledge about the task, the operators, etc.   
Although most researchers agree on the importance of 
studying and formalizing image understanding controllers, 
there is no agreement, though, on how that should be achieved. 
Some researchers ([2] & [9]) advocate addressing the control 
problem as a separate problem from the image understanding 
task, while others ([10]) claim that vision systems can not be 
designed in isolation from the task.  The controller described 
here tries to achieve a balance between those two approaches. 
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The designed controller is independent from the task but it 
allows the acquisition of task specific knowledge and acts over 
it. It is one further step in creating a shell for image 
understanding problems. Its main characteristics are: it is 
independent of the desired task but it allows for specific 
knowledge to be added; it is independent of the learning and 
decision techniques used; it is a centralized controller but it 
allows the use of agents1 to compute useful features and 
evaluate modules; it does not execute a fixed dataflow but 
instead constructs the dataflow for each run by asking the 
modules about their descriptions; it is capable of selecting the 
best module, between equivalent modules2, for a given frame; 
it is capable of selecting the best set of parameters for a given 
module at a given frame; and it tries to maximize frame output 
rate and output quality 

II. CONTROL  FOR  IMAGE UNDERSTANDING  

Up to the 70’s most Image Understanding Systems had 
embedded controllers. The study of control techniques began 
in the 80’s. Systems from this decade began to use expert 
knowledge to control them. Most of those systems were Rule-
based systems [16], Blackboard systems [1] and Semantic 
Networks [12]. The main flaw of these systems was that they 
were too specific which made then not robust enough when 
applied to new domains, probably due to their ad-hoc 
construction [9]. In the 90’s a new breed of less ambitious IUS 
arose which tried to explicitly model the control process. 
Those systems used Bayes Nets [18] and Markov models 
([17],  [8]).  For more information see reference [7] that 
contains a good survey on image understanding systems. 
Future directions show a second generation of Bayes Nets and 
Markov model systems and High Dimensional Decision 
making. The controller presented here tries to be independent 
of the reasoning technique. This makes it a good environment 
for comparing different approaches.  

III. CONTROLLER DESCRIPTION 

A. The Architecture 
The controller described here was designed to be task 

independent, although able to use task specific knowledge, if 
such knowledge is available. It is written in Scheme and runs 

 
1 Agents here are program that act on behalf of the controller computing 

features and/or evaluating data. They are not part of the sequence of operators 
that compute the task and although we call them agents they are not currently 
autonomous programs.  This may change in the future. 

2 Modules are considered equivalent if they generate the same output. 
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on the Imalab environment [15]. The modules are written in 
C++ and use the Caviar Base System [13] to interface with the 
controller. The overall architecture of the controller is shown 
in Figure 1. To run the controller the only input needed is 
which operators to use, here called modules, which agents are 
available, and which sequences of video to use (if offline 
option). The controller then gets information dynamically from 
the modules, from the agents, and from the decision module 
and uses this information to run the system. The controller is 
independent of the decision-making module. That is achieved 
by defining a small set of functions that interfaces the 
controller and the decision module. The learning controller is 
an offline control for learning task specific knowledge. It is 
also independent of the learning technique implemented by the 
learning module. 

 
1) Control loop 

The control loop executed by the controller is shown in 
Figure 2. At the initialization step the controller asks the 
modules to auto-describe. This description is an XML string 
and contains information such as parameters and their 
domains, inputs and outputs.  Figure 4 shows an example of 
such description. With this information the controller creates 
the dataflow, which can have different paths to achieve the 
same task. This dataflow is created in a bottom-up approach. 
Alternatively, only a goal-output may be given to the 
controller. This allows the controller to create the dataflow 
using a top-down approach. This dataflow has the advantage 
that operators that do not contribute to the computation of the 
goal-output will not be included.  

An example of dataflow created by the controller is shown in 
Figure 3, which shows a graph of the CAVIAR system (see 
description on section IV). In this dataflow the squares 
represent modules and the ellipses represent data.  There are 
two modules  “sensing1” and “sensing2” that are equivalent. 
This means that the controller will select only one of them 
during execution. There are no inputs shown because the input 
is the camera stream and not a file. 

After the initialization the controller executes the loop itself. 
For each step of the loop: the controller asks the decision 
module for the necessary information concerning the step; 
executes the step; and sends the decision module the 
information necessary for it to update its knowledge. A brief 
description of each step is given below. 
 

• The selection step selects which module to execute. 
This implies not only which file to generate next, but 
also which module to generate it, if more that one is 
available. For example, if there are two versions of the 
module that tracks people the controller may select one 
or the other depending on which one is better for the 
current frame.   

• The execution step executes the module selected for a 
set of parameters. These parameters are adjusted 
depending on some simple features computed over: the 
current frame; the inputs for the module, and feedback 
given by the modules that generated the inputs.  

 

Fig. 1.  Controller architecture 
 
• The module evaluation is done based on each module’s 

auto-evaluation plus information acquired during the 
offline-learning phase.  In addition, during the learning 
phase the controller decides if it should trust the 
module’s auto-evaluation by comparing it with the 
evaluation over the ground truth. 

• In the repair step the controller may decide to rerun 
some modules with different parameters for one or 
more of the previous frames based on the evaluation 
result.  

 

B. Controller-modules interface 
Each module and agent has an interface with the controller 

provided by the Caviar Base system [13]. This base system is 
written in C++ and uses the PrimaVision library [15], which 
provides the functionality for video and image manipulation, 
and the CoreLibrary [6], a powerful multi-platform library for 
C++ and implements the CVML language (see below). This 
interface is capable of inputting files and parameters, saving 
and restoring the program state, and communicating with the 
controller. The controller is able to send commands for the 
modules and the modules can return feedback. (See [13] for a 
more in depth description of the base system). This allows for 
the modularization of modules releasing their authors to 
concentrate on the specific task of each module 

The most interesting aspect of the interface is that it provides 
mechanisms for modules to be auto-regulatory, auto-
descriptive and auto-critic, allowing the controller to use this 
information to improve the control. This follows an approach 
proposed by Crowley & Reignier ([11]). Our approach is a 
little different though, since in their case they proposed a 
hierarchy of controllers where each controller, and not the 
modules, were auto-regulatory, auto-descriptive and auto-
critic.  
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Fig. 2.  Control  loop 
 

1) Module auto-description 
Each module describes itself for the controller using an 

XML based markup language called CVML [14]. A simple 
example is given in Figure 4. This description is very powerful 
and essential for the controller. The controller uses the input 
and output description to create the dataflow; uses the 
parameters descriptions to learn strategies to set them during 
execution; uses the output variables to decide which evaluation 
agent should be called and much more. A full grammar of this 
description is given in [4]. 

 
2) Module auto-critic 

The controller expects each module to evaluate its outputs. 
This evaluation will be passed to the controller by a feedback 
mechanism with two levels. The high-level feedback contains 
the overall performance of the module and has the number of 
objects outputted, the execution duration and an estimate of 
the module’s output quality.  The low-level feed-back contains 
more detailed information like, for example, a confidence level 
for each object, the position of each object, etc. Most of the 
information provided on the feedback is straightforward to 
compute, but auto-estimating the output quality can be 
difficult, so the controller does not trust that information a-
priori.  Instead, the auto-evaluation is compared with an 
evaluation computed over the ground-truth during the offline 
learning. From this comparison the controller computes a 
confidence factor on the module’s auto-evaluation. If this 
confidence is high the module auto-evaluation can then be 
used during execution to evaluate the module’s output and to 
dynamically learn new decision strategies, if the learning 
module has this capability. 

 
3) Module auto-regulation 

Besides controlling the modules, the controller is capable of 
sending recommendations to the modules. A module then can 
decide to auto-regulate its parameters to meet the 
recommendation or not.  An example of a recommendation can 
be: <controls recommendation=”increase threshold” />.  The 
module then would have to interpret the recommendation and 
change its behaviour to reflect it. Although this feature is 
already implemented in the Caviar Basic system it is not yet 
being used by the controller. 
 

 
 
Fig. 3.  Example of dataflow constructed by the controller using the modules 
information. This data flow shows the complete dataflow of the CAVIAR 
system.  The modules connected by    “>−−<”   are equivalent modules. 

C. Decision module 
The decision module implements the reasoning algorithm 

used to make the decisions. It is independent of the controller 
allowing the user to plug and play different reasoning and 
knowledge strategies.  The controller asks the decision module 
for suggestions and sends all information used by the decision 
module. The decision module does not compute any features, 
run modules or agents, and the controller does not do any 
reasoning. In order for that independence to work a good 
interface between the controller and the decision module is 
necessary.  The proposed interface uses very simple functions 
that can be written in any language accepted by Imalab 
(Scheme, C++, Prolog). The current functions used are shown 
in Table I. 

 

D. Learning module 
The learning module implements the learning algorithm, 

such as a rule based system, Bayes network, neural nets system 
or any other desired strategy. The learning module receives 
from the learning controller the feedback from the module 
(auto-evaluation, duration and number of objects); all the 
computed features; and an evaluation of the modules output 
for combinations of:   module, video sequence, parameters and 
frame. It can then use this information to create a knowledge 
base and learn decision strategies.  The learning module can 
select how this information will be generated by setting how 
the parameter  space will be searched and if the parameters 
should be considered independent or not. 
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<description> 
<parameters count="1"> 

<parameter name="ThetaAz" type="float" optional="no"> 
<description>Azimuth for the camera</description> 
<range from="0" to="360"/> 
<default>0</default> 

</parameter> 
</parameters> 
<dataflow> 

<inputs count="1"> 
<input frame="-1" dataset="FoveationPoint" /> 

</inputs> 
<outputs count="1"> 

<output dataset="RawImage"> 
<variable name="Time" type="Time" /> 
<variable name="Image" type="TBitmapByte" /> 

</output> 
</outputs>  

</dataflow> 
</description> 
 
Fig. 4.  An example of a module description in CVML 

IV. EXAMPLE OF USE 

A. The CAVIAR project  
The controller was implemented as part of the CAVIAR 

(Context Aware Vision using Image based Active 
Recognition) project [5].  The CAVIAR project is funded by 
EC and is a collaboration between three institutes: Instituto 
Superior Técnico in Lisbon, Portugal; Laboratorie GRAVIR-
IMAG in Grenoble, France; and Institute for Perception 
Action and Behaviour, Edinburgh.  The main objective of the 
CAVIAR project is to recognize behavior in video sequences. 
The two applications that the project addresses are: city centre 
surveillance, trying to identify fights, unusual events, etc.; and 
marketing, trying to identify customer behaviour. The 
CAVIAR project constructed a data set with about a 100 
sequences of videos with an average length of 1000 frames 
each.  Every sequence has a corresponding ground truth file, 
which is an XML description of the objects (person or group 
of persons) found in each frame. Each object is encased in a 
box and a scenario is attached to it. A scenario is a set of 4 
attributes: movement, role, situation and context. See 
CAVIAR Home page [5] for details on the ground truth 
format.  

B. The decision module implemented 
To test the controller, two decision modules have been 

implemented: a rule-based system using Clips and a back-
propagation neural net system. In this paper only the rule-
based system will be described.  

The rule-based decision  module is able to select the next 
module to execute and to suggest parameter values using both 
learned and user defined facts and rules. It allows an expert 
user to provide rules in addition to the learned ones,  covering 
cases not addressed by those. Examples of user rules are given 
in Figure 5. The rules are written in Clips, what makes it easy 
to reuse them since Clips is used as rule manager in many rule 
based systems. In addition to Clips commands the decision 
module provides a set of facts and functions to help the user.   

TABLE I  
Control-Decision module interface functions 

Name Description 
initializeknowledgebase Initializes the files and defaults necessary to run the 

knowledge module 
knowledgebaseok? Returns the status of the knowledge base (if  it is 

initialized and ready to be inquired ) 
finalizeknowledgebase Finalize the knowledge base; close files, end logs 
updateknowledge Asks the decision module to make the knowledge 

base up-to-date. 
resetknowledgebase Puts the knowledge base in to the initial state  
getnextmodule Selects the next module to run 
getparametersuggestion Returns a suggestion of the value to be used for a 

module’s parameter 
getdatasuggestion Returns the module that created the file to be used 
updatedata Updates the data base for a new file 
setprogdone Tells the decision module that a module was 

executed 
setprogout Tells the decision module that a module can not be 

executed  
savefeedback Saves the module feedback on the knowledge base 
saveframeinfo Saves the frame features on the knowledge base 
getfeaturestocompute Returns the name of features to compute for this 

run of the system 
 

The facts include: the current frame; features computed over 
each frame; the module’s feedback and evaluation, etc. The 
functions include functions to: set priority between programs; 
force or deny the execution of a program; set parameter values 
or increments, etc. The rules in Figure 5 exemplify some of 
those facts and functions.  

The first rule states that if the module sensing1 is on a 
frame for which feature luminance is between 0.5 and 0.2 then 
module sensing1 has a priority over module sensing2 of 1.2.  
This means that when the comparison criterion3 is tested, 
sensing2 will only be selected over sensing1 if its criterion 
multiplied by 1.2 is still less than sensing1’s criterion. The 
second rule states that when the output rate of the system 
computed at a given frame is less than 80% of the desired 
output rate the parameter ThetaAz for module sensing1 
should be decremented by 50%. 

C. The learning module implemented 
The learning module implemented is very simple. It 

computes a function of each parameter for each feature and 
creates rules to do hill-climbing  on  them. Here the  features  
are  assumed  independent  for simplicity. We are aware that 
this assumption does not hold in many cases. A neural nets 
learning module is being finalized and more sophisticated 
versions of the learning module are planned, but that is a first 
implementation of the learning module as a proof of concept. 
The rules and facts exemplified here were computed over a 
different system from the one shown on Figure 3. Figure 6 
shows a dataflow graph of this system, which is a simplified 
version of the CAVIAR system and uses 6 modules. Module 
tracker tracks objects  and puts boxes around them;  grabber 
gets a frame from disk4; modules movement1 and movement2 
hypothesize  about the  movement of objects  (active, inactive, 

 
3 Currently the knowledge module is able to use the following features as 

comparison criterion to select modules: time they were  ready last; time they 
executed last; frame they executed last; last duration; best evaluation and no 
feature. More features will be incorporated with time 

4 In this case the controller is running offline. 



 
 

5

(defrule luminance1 
 (userrules) 
 (proginfo (prog  sensing1) (name frame) (value ?fr)) 
 (frameinfo (number ?fr) (name Luminance) (value ?v)) 
 (test (and (< ?v 0.5) (>= ?v 0.2))) 
 => 
 (setprogpriority  sensing1 sensing2  1.4) 
)  
(defrule outputrate 
 (userrules) 
 (currentframe ?fr) 
 (frameinfo (number ?fr) (name outputrate) (value ?v&:(< ?v 0.8))) 
 => 
 (setincrementrate sensing1 ThetaAz -0.5)  
) 
Fig. 5. Example of user rules.  The modules referred here relate to the 
dataflow shown on Figure 3.  
 
walking, or running) using two different approaches (logical 
and probabilistic); module role hypothesizes about the role of 
objects; and module context hypothesize about the context 
(behaviour) of objects. 

 The function computed for module movement1 and its 
parameter Base_Classify_Threshold is shown in Figure 7.  The 
quality feature is the module auto-critic, which in this case was 
fixed at 1, and the evaluation is the result of the ground truth 
comparison. From this function a set of facts and rules are 
created to be incorporated in the knowledge base of the 
decision module. Figure 8 shows two facts and one rule 
generated for module movement1, parameter Base-Classify-
Threshold, and feature evaluation. 

D. Running the controller  
We tested the controller over the simplified version of the 

CAVIAR system (see Figure 6). The system is able to control 
the system, selecting between movement1 and movement2 
depending on features computed over the output of modules 
and selecting the best values for parameters. Figure 9 shows a 
graph where modules are selected depending on the average 
distance of the boxes from the plane of the camera.  Each point 
represents a module. Points with y coordinate greater than zero 
represent the module selected by the control for the frame. The 
module’s y coordinate represents the value of the feature when 
the module was executed. The module that was not executed is 
plotted with y = 0. 

From the graph is easy to see that when the feature goes 
below a threshold of 215 the control switch modules.  This 
rule is user defined5.  Figure 10 shows the evaluation of the 
results of module1 when the system is executed over 30 
frames.  The graph is cumulative in the sense that at each 
frame a file containing all previous frames is evaluated. 

Nevertheless, at each time the module computes the 
movement for all boxes of all frames what means that values 
for previous frames may be changed.  

 

 
5 A learned rule was not used because module movement1 was always the 

best module independent of the feature used consequently module 
movement2 would never have been selected. It is important to note that we 
are not claiming that the technique used on module movement1 is better or 
worst than the used on module movement2. Those modules are still in 
development and they are used here only as tools to show the execution of the 
controller  

 
 
Fig. 6.  Simplified version of the CAVIAR system used to learn rules for the 
decision module. Here are two equivalent modules movement1 and 
movement2. 
 
The graph shows that the controller was able to maintain a 
high level of quality while changing the module’s parameters. 

V. FUTURE WORK 

The proposed controller is being used on the CAVIAR system 
to control the execution of modules, although, to show the full 
potential of it some work must still be done. The repair phase 
of the control loop is not implemented yet; more features must 
be incorporated to the controller so decisions can be made 
more accurately; more modules must be incorporated; etc.   

Nevertheless, the more important future step is the 
construction of alternative decision and learning modules. An 
learning module using neural-nets similar to the ADORE 
system [8] is been finalized and others as a Bayes network 
module or adjusting the parameters by constructing a function 
by least square approximation [3] are being considered. 

VI. CONCLUSION 

We presented a task-independent controller for video 
sequence analysis, which is a new step in the search for a shell 
for image understanding system. This controller is independent 
of the reasoning and learning techniques, which makes it very 
useful for testing and comparing those techniques. 
Incorporating a new learning technique to the system is very 
easy and is done by a simple set of interface functions that can 
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Fig. 7. Auto-critic (quality) and output evaluation for module movement1. 
 
be implemented in three different computer languages. The 
Caviar Base system provides easy to use functions that allow 
the modules to be auto-descriptive, auto-critic and auto-
regulatory.   

In order to show the potential of such controller we 
developed a decision module in Clips that accepts learned and 
user defined rules and facts. The current controller is being 
used by the CAVIAR project to run a simpler version of its 
modules.  

A lot of work still needs to be done to show the full 
potential of the system, especially the construction of better 
decision modules. 
 
  (of searchrate (module (symbol-to-instance-name 
movement1)) (parameter (parametername movement1 
BASE_CLASSIFY_THRESH)) (feat evaluation) (begin 
1.00000) (end 3.66667) (rate 0.001062)) )) 
 (of searchrate (module (symbol-to-instance-name 
movement1)) (parameter (parametername movement1 
BASE_CLASSIFY_THRESH)) (feat evaluation) (begin 
3.66667) (end 6.33333) (rate –0.005716)) 
 
 (defrule 
learned_movement1_BASE_CLASSIFY_THRESH_evaluation 
 (userrules) 
 (proginfo (prog movement1)(name frame)(value ?fr)) 

(proginfo (prog movement1)(name evaluation) 
(value ?gl&:(< ?ql 0.900000))))) 

(object (is-a floatpar) (name 
[movement1BASE_CLASSIFY_THRESH]) (value ?v)) 

=> 
(bind ?inc (computeincrementrate movement1 

BASE_CLASSIFY_THRESH evaluation upper ?v ?gl)) 
 (setincrementrate movement1 BASE_CLASSIFY_THRESH 
   ?inc) 
) 
Fig. 8. Examples of facts and rules learned by the learning module for the 
module movement1. 

 
 

Fig. 9. Module selection. The module selected is represented by a point with 
the feature value and the one not selected with a point over the abscissa. 

 
 
Fig. 10. Evaluation of the output of module movement1 by comparing it with 
ground truth. 
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