
MOTION SEGMENTATION FOR ACTIVITY
SURVEILLANCE ?

Jacinto C. Nascimento∗ Mário A. T. Figueiredo ∗∗

Jorge S. Marques∗

∗ Instituto de Sistemas e Robótica
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Abstract: This paper describes an algorithm for segmenting and classifying human
activities from video sequences of a shopping center. These activities comprise entering
or exiting a shop, passing, or browsing in front of shop windows. The proposed approach
recognizes these activities by using a priori knowledge of the layout of the shopping view.
Human actions are represented by a bank of switch dynamical models, each tailored to
describe a specific motion regime. Experimental tests illustrate the effectiveness of the
proposed approach with synthetic and real data.
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1. INTRODUCTION

The analysis of human activities is an important
computer vision research topic with applications in
surveillance, e.g. in developing automated security
applications. In this paper, we focus on recognizing
human activities in a shopping center.

In commercial spaces, it is common to have many
surveillance cameras. The monitor room is usually
equipped with a large set of monitors which are used
by a human operator to watch over the areas observed
by the cameras. This requires a considerable effort
of the human operator, who has to somehow multi-
plex his/her attention. In recent years a considerable
effort was devoted to develop automatic surveillance
systems providing information about which activities
take place in a given space. With such a system, it
would be possible to monitor the actions of individ-
uals, determining its nature and discerning common

? This work was partially supported by FCT under project LTT
and by EU project CAVIAR (IST-2001-37540). This work is also
published in HAREM BMVC 2005.

activities from inappropriate behavior (for example,
standing for a large period of time at the entrance of a
shop, fighting).

In this paper, we aim at labelling common activities
taking place in the shopping space.1

In this work, activities are recognized from motion
patterns associated to each person tracked by the sys-
tem. Motion is described by a sequence of displace-
ments of the 2D centroid (mean position) of each per-
son’s blob. The trajectory is modelled by using multi-
ple dynamical models with a switching mechanism.
Since the trajectory is described by its appearance,
we compute the statistics for the identification of the
dynamical models involved in a trajectory.

The rest of the paper is organized as follows. Section
2 deals with related work. Section 3, describes the
statistical activity model. Section 4 derives the seg-

1 This work is integrated in project CAVIAR, which has the general
goal of representing and recognizing contexts and situations.An
introduction and the main goals of the project can be found in
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/caviar.htm



mentation algorithm. Section 7 reports experimental
results with synthetic data and real video sequences.
Section 8 concludes the paper.

2. RELATED WORK

The analysis of human activities has been extensively
addressed in several ways using different types of
features and inference methods. Typically, a set of
motion features is extracted from the video signal and
an inference model is used to classify it into one ofc
possible classes.

For example in (Yacoob and Black, 1999) the human
body is approximated by a set of segments and atomic
activities are then defined as vectors of temporal mea-
surements which capture the evolution of the five body
parts. In other works the human body is simply repre-
sented by the mass center of its active region (blob)
in the image plane (Oliveret al., 2000) or the body
blob as in (Hongeng and Nevatia, 2001). The activity
is then represented by the trajectory obtained from the
blob center, or from the correspondence of body blob
regions respectively.

Other works try to characterize the human activity
directly from the video signal without segmenting the
active regions. In (Bobick and Davis, 2001) human ac-
tivities are characterized by temporal templates. These
templates try to convey information about “where”
and “how” motion is performed. Two templates are
created: a binary motion-energy-image which repre-
sents where the motion has occurred in the whole
sequence, and a scalar motion-history-image which
represents how motion occurs for each activity. Mo-
tion patterns have also been used in (Masoud and
Papanikolopoulos, 2003) based on the concept of “re-
cency”. This work integrates several frames into a sin-
gle image, assigning higher weights to the most recent
frames. In (Nagaiet al., 1996), the human motion is
characterized by the optical flow.

Several inference techniques have been used for the
recognition of human activities using static and dy-
namic techniques. In (Oliveret al., 2000) a single-
person or person-to-person interactions are modelled
by Hidden Markov Models (HMMs) and Coupled
Hidden Markov Models (CHMMs). Both techniques
are used to characterize the evolution of the person
mass center along the video sequence. In (Hongeng
and Nevatia, 2001) a Bayesian networks are used to
for making inference about the events. In (Nascimento
et al., 2005) activities are modelled using banks of
switched dynamic models each of which tailored to
a specific motion regime.

Geometric constraints have also been used e.g., using
the layout of the surveillance region (Olson and Brill,
1997; Davis and Shah, 1994). In (Ayers and Shah,
2001; Davis and Shah, 1994) Finite State Machines
(FSM) are used for gesture and activity recognition.

The later uses prior knowledge about the scene, where
regions of interest are defined (e.g., entrances and
exits).

When the human motion is characterized by global
features static pattern recognition methods can be used
to classify the human activities. In (Rosenblumet
al., 1996) neural networks are used for this purpose.

The previous methods have been used to deal with
single pedestrians or a very limited number of pedes-
trians (Oliveret al., 2000). To deal with the interaction
among multiple pedestrians Bayesian networks have
been proposed (Abranteset al., 2002) since they are
able to represent the dependencies among several ran-
dom variables.

3. STATISTICAL MODEL

We represent the human activity by the trajectory
of its centroid. The time evolution of this feature
is modelled by a dynamical model. Since a single
model may not suffice to describe an entire trajectory,
we use multiple dynamical models and a switching
mechanism.

In this paper, a trajectory will be represented by a
sequence of 2D locations,x = (x1, ...,xn), with
xt ∈ IR2. We assume that the trajectory is the output
of a bank of switched dynamical systems of the form

xt − xt−1 = ∆xt = µkt
+ wt, (1)

wherekt ∈ {1, . . . , c} is the label of the active model
at time instantt, µkt

is a (model-dependent) displace-
ment vector, and thewt ∼ N (0, Qkt) are independent
Gaussian random variable, with covariancesQkt .

Since the observations are{∆xt; t ∈ N}, ∆xt ∈ Rnd

(d is the dimension of the observation vector), instead
of xt, equation (1) describes an independent increment
process, givenkt.

Finally we assume that the sequence of model labels
is composed ofT constant segments:{k1, . . . , k1, k2,
. . . , k2, . . . , kT , . . . , kT }.

4. SEGMENTATION AND CLASSIFICATION
ALGORITHM

In order to segment and classify the different activities,
we first observed that all trajectories concerning a
common activity follow a typical route. Fig. 1 shows
trajectories corresponding to a person entering a shop
(left), leaving a shop (middle) or just passing in front
of a shop (right).

This work demonstrates that elementary actions such
as: “moving upwards”, “stopped”, “moving down-
wards”, “moving left” and “moving right” (i.e.,]M =
5), are representatives of the trajectories. The underly-
ing idea is:given a test trajectoryxt = (x1, . . . ,xn),



segment it into its elementary actions and classify the
activity. The number of segments will depend on the
activity being considered, as described later.

Fig. 1. Examples of three different activities (entering,
exiting, passing).

5. MODEL PARAMETER ESTIMATION

To segment and classify a given trajectory we have
to previously obtain the parameters of each dynamic
model. To accomplish this, we collect tens of trajec-
tory samples from each model.

Fromxt we can obtain∆xi
t, where∆xi

t contains the
displacements ofxt known to have been generated by
theith model. Defining∆Xi = {∆xi

1,∆xi
2, . . . , ∆xi

N}
as the vector containing all the displacements inith
model of the training set, we have, for theith model:

µ̂i =
1

]∆Xi

∑
∆Xi

t,

Q̂i =
1

]∆Xi

∑
(∆Xi − µ̂i)(∆Xi − µ̂i)

T ,
(2)

whereµ̂i andQ̂i are standard estimates of the mean
and the covariance matrix respectively.

6. SEGMENTATION AND CLASSIFICATION

Having defined the set of models and the correspond-
ing parameters, one can now classify a test trajectory
xt. One way to attain this goal is to compute the
likelihood ofxt into the model space. In this paper, the
activity depends on the number of the model switch-
ings. In Fig. 1, we see that “passing” can be described
by using just one model. The activities “entering”
and “exiting” can be described by using two dynam-
ical models. The fourth activity considered “brows-
ing”, requires three models to be described; we define
“browsing” when the person is walking, stop to see
the shop-window and restarts walking. This behavior
was observed in all the other samples of the activities
which come about in this context. This means that we
have to estimate the time instants in which the model
switching happens.

Assuming that the sequencext hasn samples and is
described byT segments (andT is known) the log-
likelihood is

L(m1, . . . ,mT , t1, . . . , tT−1) =
log p(∆x1, . . . , ∆xn | m1, . . . ,mT , t1, . . . , tT−1)

(3)

wherem1, . . . , mT is the sequence of model labels
describing the trajectory andti for i = 1, . . . , T − 1
is the time instant when switching from modelmi to
mi+1 occurs. IfT = 1, there is no switching.

Due to the conditional independence assumption un-
derlying (1), the log-likelihood can be written as

L(∆x1, . . . , ∆xn | m1, . . . , mT , t1, . . . , tT−1) =
T∑

j=1

tj∑

i=tj−1

log p(∆xi | mj) ∝

T∑

j=1

tj∑

i=tj−1

logN (∆xi | µj , Qj)

(4)

where we definet0 = 1. Assuming thatT is
known, we can “segment” the sequence (i.e., estimate
m1, . . . , mT and t1, . . . , tT−1) using the maximum-
likelihood approach:



m̂1, . . . , m̂T , t̂1, . . . , t̂T−1 =
arg max L(∆x1, . . . , ∆xn | m1, . . . , mT , t1, . . . , tT−1)

(5)

This maximization can be performed in a nested way,

t̂1, . . . , t̂T−1 =

arg max
t1,...,tT−1

{
max

m1,...,mT

L(∆x1, . . . , ∆xn | m1, . . . , mT ,

t1, . . . , tT−1)
}

(6)

In fact, the inner maximization can be decoupled as

max
m1,...,mT

L(∆x1, . . . , ∆xn | m1, . . . ,mT , t1, . . . , tT−1) =

T∑

j=1

max
mj

tj∑

i=tj−1

log p(∆xi | mj)

(7)

where the maximization with respect to each ofmj

is a simple maximum likelihood classifier of sub-set
of samples(∆xtj−1 , . . . , ∆xtj ) into one of a set of
Gaussian classes. Finally, the maximization with re-
spect tot1, . . . , tT−1 is done by exhaustive search
(this is never too expensive, since we consider a max-
imum of three segments).

6.1 Estimating the number of models of the activity

6.1.1. MDL Criterion In the previous section, we
derived the segmentation criterion assuming that the
number of segmentsT is known. As is well known,
the same criterion can not be used to selectT , as
this would always return the largest possible num-
ber of segments. We are thus in the presence of a
model selection problem, which we address by us-
ing the minimum description length (MDL) criterion
(Rissanen, 1989). The MDL criterion for selectingT
is

T̂ =arg min
T

{
− log p(∆x1, . . . , ∆xn | m̂1, . . . , m̂T ,

t̂1, . . . , t̂T−1) + M(m̂1, . . . , m̂T , t̂1, . . . , t̂T−1)
}

(8)

where M(m̂1, . . . , m̂T , t̂1, . . . , t̂T−1) is the number
of bits required to encode the selected model indeces
and the estimated switching times. Notice that we
do not have the usual12 log n term because the real-
valued model parameters (means and covariances) are
assumed fixed (previously estimated). Finally, it is
easy to conclude that

M(m̂1, . . . , m̂T , t̂1, . . . , t̂T−1) ≈ T log c+(T−1) log n
(9)

whereT log c is the code length for the model indeces
m1, . . . , mT , since each belongs to{1, . . . , c}, and
(T − 1) log n is the code length for̂t1, . . . , t̂T−1,
because each belongs to{1, . . . , n}; we have ignored
the fact that two switchings can not occur at the same
time, becauseT << n.

7. EXPERIMENTAL RESULTS

This section presents results with synthetic and real
data. In the synthetic case, we have performed Monte
Carlo tests. We have considered five models (c = 5)
shown in Fig. 2. The samples shown in Fig. 2 were
generated by simulating four activities of a person,
using the generation model in (1). Fig. 3 shows one
example of each type of activity herein considered.
In this figure, the thin (green) rectangles correspond
to areas where the trajectory begins. The first sample
of xt in these areas is random, because the agent
may appears at random places in the scene. The wide
(yellow) rectangle is the area in which occurs a model
switching.

We have generated activities with two segments:

“Entering”
µ1 =

[
4
0

]
Q1 =

[
4 0
0 1.5

]

µ2 =
[
0
3

]
Q2 =

[
1 0
0 3

]

“Exiting”
µ1 =

[
0
−4

]
Q1 =

[
0.5 0
0 3

]

µ2 =
[−3

0

]
Q2 =

[
4 0
0 2

]

“Passing”
µ1 =

[
5

−1.5

]
Q1 =

[
3 0
0 1.5

]

µ2 =
[
5
0

]
Q2 =

[
1 0
0 4

]

and one activity with three segments

“Browsing”
µ1 = µ3 =

[
4
0

]
Q1 = Q3 =

[
2 0
0 1

]

µ2 =
[
0.5
0.5

]
Q2 =

[
.7 0
0 .7

]

For each activity we generate 100 test samples using
(1) and classify each of them in one of the four classes.
Fig. 4 shows examples of the test sequences (one for
each class) overlapped with the five models (the black
dots are the displacements∆xt). In this experiment,
all the test sequences were correctly classified (%100
accuracy).

We also generated different test trajectories, this is
because the exiting and entering may occur in different
direction from the ones in Fig. 3. These examples
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Fig. 2. Five models are considered to describe trajec-
tory. Each color corresponds to a different model.
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Fig. 3. Several synthetic activities considered: (a) en-
tering, (b) exiting, (c) passing, (d) browsing.

are illustrated in Fig. 5 ( “passing” parameters were
also changed). In this new experiment, the same 100%
accuracy was also obtained. The following parameters
values are used

“Entering”
µ1 =

[
3
0

]
Q1 =

[
3 0
0 1

]

µ2 =
[
1
2

]
Q2 =

[
2 0
0 4

] (10)

“Exiting”
µ1 =

[
0
−3

]
Q1 =

[
1 0
0 3

]

µ2 =
[−2
−1

]
Q2 =

[
2 0
0 3

] (11)

“Passing”
µ1 =

[
5
1

]
Q1 =

[
3 0
0 1

]

µ2 =
[
5
0

]
Q2 =

[
.5 0
0 4

] (12)
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Fig. 4. Five models with the displacements (black
dots) of the four test activities: (a) entering, (b)
exiting, (c) passing, (d) browsing.
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Fig. 5. Synthetic activities with different dynamic
models (entering,exiting,passing).

The proposed algorithm was also tested with real data.
The video sequences were acquired in the context of
the EC funded project CAVIAR. All the video se-
quences comprise human activities in indoor plaza and
shopping center observations of individuals and small
groups of people. Ground truth was hand-labelled for
all sequences2 . Fig. 6 shows the bounding boxes as
well as the centroid, which is the information used for
the segmentation.

As in the synthetic case, we also generate the statistics
of the considered models. The procedure is the same
as in the previous case using training sequences. Fig.
7 shows the clusters of the models.

Fig. 8 shows several activities performed at the shop-
ping center with the time instants of the model switch-

2 The ground truth labelled video sequences is provided at
http://homepages.inf.ed.ac.uk/rbf/CAVIAR/ .



Fig. 6. Bounding boxes and centroids of the pedestri-
ans performing activities.
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Fig. 7. Five models estimated from real paths. Each
color corresponds to a different model.

ing marked with small red circle. From this experi-
ment, it can be seen that the proposed approach cor-
rectly determines the switching times between mod-
els.

Fig. 8. Samples of different activities. The large circles
are the computed times instants where the model
switches: Entering (first column); exiting (second
column); browsing (third column).

We have tested the proposed approach in more than 40
trajectories from 25 movies of about 5 minutes each.
We just present the results of some of those activities

in Tables 1 and 2. These Tables show the penalized
log-likelihood values (8) of each test sequence. The
first table refers to all activities performed in the left-
right direction, whilst the second table reports all ac-
tivities performed in the opposite direction. In the first
table the classes referring to entering, exiting, passing
and browsing areright-upwards, downwards-right,
right, right-stop-rightrespectively, whereas in the sec-
ond table the classes areleft-upwards, downwards-
left, left and left-stop-left. It can be observed that the
output classifier correctly assigns the activities into the
corresponding classes, exhibiting good results as in
the previous synthetic examples.

Test trajectories

Classes E1 E2 Ex1 Ex2 P1 P2 B

E 187.2 157.3 212.7 217.0 100.3 107.4 169.1

Ex 401.0 340.0 116.1 102.4 104.6 93.8 178.7

P 359.7 311.0 232.5 183.3 88.8 90.2 147.7

B 299.1 265.6 196.5 180.0 160.7 156.0 98.1

Table 1. Penalized Log-likelihood of sev-
eral real activities:E- entering,Ex-exiting,

P - passing,B- browsing.

Test trajectories

Classes E1 E2 Ex1 Ex2 P1 P2 B

E 116.2 115.0 337.7 358.2 89.3 90.9 211.7

Ex 277.6 284.6 151.0 127.4 98.6 96.6 297.4

P 210.0 224.4 350.1 362.0 63.4 64.7 358.4

B 207.4 197.3 343.2 286.7 188.9 179.0 170.1

Table 2. Penalized Log-likelihood of sev-
eral real activities:E- entering,Ex- exit-

ing, P - passing,B- browsing.

8. CONCLUSIONS

In this paper we have proposed and tested an algo-
rithm for modelling, segmentation, and classification
of human activities in a constrained environment. The
proposed approach uses a switched dynamical models
to represent the human trajectories. It was illustrated
that the time instants are effectively well determined,
despite of the significant random perturbations that
the trajectory may contain. It is demonstrated that the
proposed approach provides good results with syn-
thetic and real data obtained in a shopping center. The
proposed method is able to effectively recognize in-
stances of the learned activities. The activities studied
herein can be interpreted as atomic, in the sense that



they are simple events. Compound actions or complex
events can be represented as concatenations of the
activities studied in this paper. This is one of the issues
to be addressed in the future.
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