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Abstract

In this paper we propose novel methods to evaluate the pesftce of object detection algorithms in video
sequences. This procedure allows us to highlight chaiatitsr (e.g., region splitting or merging) which are specifi
of the method being used. The proposed framework compaeesutput of the algorithm with the ground truth
and measures the differences according to objective metrichis way it is possible to perform a fair comparison
among different methods, evaluating their strengths andkmnesses and allowing the user to perform a reliable
choice of the best method for a specific application. We apip/methodology to segmentation algorithms recently
proposed and describe their performance. These metho@sewaluated in order to assess how well they can detect
moving regions in an outdoor scene in fixed-camera situstion
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I. INTRODUCTION

IDEO surveillance systems rely on the ability to detect mgwbjects in the video stream which is a relevant
V information extraction step in a wide range of computeronsapplications. Each image is segmented by
automatic image analysis techniques. This should be donerdtiable and effective way in order to cope with
unconstrained environments, non stationary backgrouddidferent object motion patterns. Furthermore, different
types of objects are manually considered e.g., personglestor groups of people.

Many algorithms have been proposed for object detectiomi@ossurveillance applications. They rely on different
assumptions e.g., statistical models of the backgroung3l]minimization of Gaussian differences [4], minimum
and maximum values [5], adaptivity [6,7] or a combinationfraime differences and statistical background models
[8]. However, few information is available on the performarof these algorithms for different operating conditions.

Two approaches have been recently considered to chaescthea performance of video segmentation algorithms:
pixel-based methods, template based methods and objeettibaethods. Pixel based methods assume that we wish
to detect all the active pixels in a given image. Object dedacis therefore formulated as a set of independent
pixel detection problems. This is a classic binary detectimblem provided that we know the ground truth (ideal
segmented image). The algorithms can therefore be evalbgtsthndard measures used in Communication theory

e.g., misdetection rate, false alarm rate and receiveratipgrcharacteristic (ROC) [9].
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Several proposals have been made to improve the computdtibe ®OC in video segmentation problems e.g.,
using a perturbation detection rate analysis [10] or anliguim analysis [11]. The usefulness of pixel-based
methods for surveillance applications is questionableesiwe are not interested in the detection of point targets
but object regions instead. The computation of the ROC camlasperformed using rectangular regions selected
by the user, with and without moving objects [12]. This impswhe evaluation strategy since the statistics are
based on templates instead of isolated pixels.

A third class of methods is based on an object evaluationt ifioie works aim to characterize color, shape and
path fidelity by proposing figures of merit for each of theseess{i3]-[15] or area based performance evaluation
as in [16]. This approach is instrumental to measure the paence of image segmentation methods for video
coding and synthesis but it is not usually used in surveikaapplications.

These approaches have three major drawbacks. First objexdtidatis not a classic binary detection problem.
Several types of errors should be considered (not just n@stleh and false alarms). For exammbat should we
do if a moving object is split into several active regions ? or if two objects are merged into a single region ? Second
some methods are based on the selection of isolated pixekctangular regions with and without persons. This
is an unrealistic assumption since practical algorithm&eha segment the image into background and foreground
and do not have to classify rectangular regions selectechéyuser. Third, it is not possible to define a unique
ground truth. Many images admit several valid segmentatitinthe image analysis algorithm produces a valid
segmentation its output should be considered as correct.

In this paper we propose objective metrics to evaluate thi@peance of object detection methods by comparing
the output of the video detector with the ground truth olgdilby manual edition. Several types of errors are
considered: splits of foreground regions; merges of faregd regions; simultaneous split and merge of foreground
regions; false alarms, and detection failures. False alavotur when false objects are detected. The detection
failures are caused by missing regions which have not betattdd.

In this paper five segmentation algorithms are considerezkasiples and evaluated. We also consider multiple
interpretations in the case of ambiguous situations e.gemwit is not clear if two objects overlap and should be
considered as a group or if they are separated apart.

The first algorithm is denoted as basic background subtragii®B.S) algorithm. It computes the absolute
difference between the current image and a static backdrammage and compares each pixel to a threshold.
All the connected components are computed and they aredmyesi as active regions if their area exceeds a
given threshold. This is perhaps the simplest object deteetigorithm one can imagine. The second method is the
detection algorithm used in tH&4 system [17]. Three features are used to characterize eaghopithe background
image: minimum intensity, maximum intensity and maximunsabte difference in consecutive frames. The third
method assumes that each pixel of the background is a reatizaf a random variable with Gaussian distribution
(SGM - Single Gaussian Model) [1]. The mean and covariance of thessau distribution are independently
estimated for each pixel. The fourth algorithm represengsdiltribution of the background pixels with a mixture
of Gaussians [2]. Some modes correspond to the backgroundamne are associated with active regions M
- Multiple Gaussian Model). The last method is the one progasg18] and denoted akehigh Omnidirectional



Tracking System (LOT'S). It is tailored to detect small hon cooperative targetshsas shipers. Some of these
algorithms are described in a special issue of IEEE transecto PAMI (August 2001), which describes a state
of art methods for automatic surveillance systems.

In this work we provide segmentation results of these algors on the PETS2001 sequences, using the proposed
framework. The main features of the proposed method are thmvfog. Given the correct segmentation of the
video sequence we detect several types of erfpsplits of foreground regionsj) merges of foreground regions,
i11) simultaneously split and merge of foreground regiam$,false alarms (detection of false objects) andthe
detection failures (missing active regions). We then camptatistics for each type of error.

The structure of the paper is as follows. Section 2 briefly resigmevious work. Section 3 describes the
segmentation algorithms used in this paper. Section 4 descthe proposed framework. Experimental tests are

discussed in Section 5 and Section 6 presents the conclusions.

Il. RELATED WORK

Surveillance and monitoring systems often require on lingmestation of all moving objects in a video
sequence. Segmentation is a key step since it influences tfigrpance of the other modules, e.g., object tracking,
classification or recognition. For instance, if object dffésation is required, an accurate detection is needed to
obtain a correct classification of the object.

Background subtraction is a simple approach to detect rgowljects in video sequences. The basic idea is
to subtract the current frame from a background image andasssify each pixel as foreground or background
by comparing the difference with a threshold [19]. Morplgi@l operations followed by a connected component
analysis are used to compute all active regions in the imiagpractice, several difficulties arise: the background
image is corrupted by noise due to camera movements and ifigttebjects (e.g., trees waving), illumination
changes, clouds, shadows. To deal with these difficultiesrabmethods have been proposed (see [20]).

Some works use a deterministic background model e.g., byactaizing the admissible interval for each pixel
of the background image as well as the maximum rate of chamgensecutive images or the median of largest
inter-frames absolute difference [5,17]. Most works hogrerely on statistical models of the background, assuming
that each pixel is a random variable with a probability distiion estimated from the video stream. For example, the
Pfinder system (“Person Finder”) uses a Gaussian model to desaith pixel of the background image [1]. A more
general approach consists of using a mixture of Gaussianspresent each pixel. This allows the representation
of multi modal distributions which occur in natural scengy(gin the case of fluttering trees) [2].

Another set of algorithms is based on spatio-temporal satatien of the video signal. These methods try to
detect moving regions taking into account not only the terapevolution of the pixel intensities and color but also
their spatial properties. Segmentation is performed in a &fon of image-time space, considering the temporal
evolution of neighbor pixels. This can be done in several wags, by using spatio-temporal entropy, combined
with morphological operations [21]. This approach leadsrtanaprovement of the systems performance, compared
with traditional frame difference methods. Other appreaschre based on the 3D structure tensor defined from
the pixels spatial and temporal derivatives, in a given tinmterval [22]. In this case, detection is based on the

Mahalanobis distance, assuming a Gaussian distributioth& derivatives. This approach has been implemented



in real time and tested with PETS 2005 data set. Other alteasatiave also been considered e.g., the use of a
region growing method in 3D space-time [23].

A significant research effort has been done to cope with shadowd with nonstationary backgrounds. Two
types of changes have to be considered: show changes (gego the sun motion) and rapid changes (e.g., due to
clouds, rain or abrupt changes in static objects). Adaptieelels and thresholds have been used to deal with slow
background changes [18]. These techniques recursivelyteipitia background parameters and thresholds in order to
track the evolution of the parameters in nonstationary afpey conditions. To cope with abrupt changes, multiple
model techniques have been proposed [18] as well as pradligtibchastic models (e.g., AR, ARMA [24,25]).

Another difficulty is the presence of ghosts [26], i.e., fatg#ive regions due to statics objects belonging to
the background image (e.g., cars) which suddenly start teemdhis problem has been addressed by combining

background subtraction with frame differencing or by higkel operations [27],[28].

Ill. SEGMENTATION ALGORITHMS

This section describes object detection algorithms uselisntork: BBS, W4, SGM, MGM andLOTS. The
BBS, SGM, MGM algorithms use color whilé/4 and LOT'S use gray scale images. In teB.S algorithm,
the moving objects are detected by computing the differémmtereen the current frame and the background image.

A thresholding operation is performed to classify each Ipgseforeground region if

|It(x7y) - Nt(x,yﬂ > T> (l)

where I'(z,y) is a3 x 1 vector being the intensity of the pixel in the current framme au!(z,y) is the mean
intensity (background) of the pixel; is a constant.

Ideally, pixels associated with the same object should hHaeesame label. This can be accomplished by
performing a connected component analysis (e.g., usingdhrextivity criterion). This step is usually performed
after a morphological filtering (dilation and erosion) tongilhate isolated pixels and small regions.

The second algorithm is denoted herel&d since it is used in thél'4 system to compute moving objects
[17]. This algorithm is designed for grayscale images. Thekgwanrind model is built using a training sequence
without persons or vehicles. Three values are estimated doh @ixel using the training sequence: minimum
intensity (Min), maximum intensity (Max), and the maximumensity difference between consecutive frames (D).
Foreground objects are computed in four stefsthresholding,ii) noise cleaning by erosionji) fast binary
component analysis ana) elimination of small regions.

We have modified the thresholding step of this algorithm sioften leads to a significant level of miss

classifications. We classify a pixél(x,y) as a foreground pixel iff

1I'(z,y) < Min(z,y)| VvV [I'(z,y) > Max(z,y)]) A|l'(z,y)— 1" (z,y)] > D(z,y) )

Figs. 1, 2 show an example comparing both approaches. Fig.visshe original image with two active regions.

Figs. 2(a),(b) display the output of the thresholding stefopmed as in [17] and using (2).



Fig. 1. Two regions (in bounding boxes) of an image.

(b)

Fig. 2. Thresholding results: (a) using the approach as in [17] andsiby (2).

The third algorithm considered in this study is tH&M (Single Gaussian Model) algorithm. In this method,
the information is collected in a vectdy, U, V], which defines the intensity and color of each pixel. We assume
that the scene changes slowly. The medn, y) and covariancé&(z,y) of each pixel can be recursively updated

as follows

pl(z,y) = (1 —a)p' " (z,y) + al'(z,y), 3)
Et(xvy) = (1 - a)zt_l(x7y) + Oz(It(x,y) - Ht(x7y))(lt($vy) - “’t(ajvy))T (4)

whereI(z,y) is the pixel of the current frame iUV color space is a constant.

After updating the background, th€GM performs a binary classification of the pixels into foregrdusr
background and tries to cluster foreground pixels into ®ldBixels in the current frame are compared with the
background by measuring the log likelihood in color spaceusThindividual pixels are assigned either to the

background region or a foreground region

U(w,) = =5 (I'(,) — B ) (S (I () - i y) — 5 1 [] = 2 In2) ©)

where I'(z,y) is a vector(Y,U, V)T defined for each pixel in the current imagé,(z,y) is the pixel vector in

the background imagé.



If a small likelihood is computed using (5), the pixel is ddi®d as active. Otherwise, it is classified as
background.
The fourth algorithm §/ G M) models each pixel(x) = I(x, y) as a mixture ofV (N = 3) Gaussians distributions,

i.e.

N
p(I(x)) =D N (1(x), (), Zi(x)), (6)
k=1
where N (I(x), pi(x), 2k (x)) is a multivariate normal distribution and is the weight ofkth normal,
1 T__
NI), 1y (), Zu(9)) = ¢ exp{ =5 (160 = () 27209 (16) = () ) |- W
with ¢ = W Note that each pixel(x) is a3 x 1 vector with three component colors (red, green and blue),

i.e., I(x) = [[(x)RI(x)¢I(x)P]T. To avoid an excessive computational cost, the covariaraixris assumed to
be diagonal [2].

The mixture model is dynamically updated. Each pixel is updi@® follows:i) The algorithm checks if each
incoming pixel valuex can be ascribed to a given mode of the mixture, this is the maperationa:) If the pixel
value occurs inside the confidence interval with.5 standard deviation, a match event is verified. The parameters

of the corresponding distributions (matched distribujofor that pixel are updated according to

(%) = (1= Ny (%) + AL (x) (8)
Zhx) = (1= ADZE () + A (%) = s () (I (x) = ()" 9)

where
N = aN (I (x), ' (%), B (x) (10)

The weights are updated by

1 matched models
wh=(1- a)w,i_l + a(M}), with M} = (11)

0 remaining models
a is the learning rate. The non match components of the mixnera@ modified. If none of the existing components
match the pixel value, the least probable distribution f@aeed by a normal distribution with mean equal to the
current value, a large covariance and small weiglij. The next step is to order the distributions in the descending
order of w/o. This criterion favours distributions which have more wei@most supporting evidence) and less
variance (less uncertaintyjv) Finally the algorithm models each pixel as the sum of the epoading updated
distributions. The firstB Gaussian modes are used to represent the background, Wwhilermaining modes are

considered as foreground distributiori$.is chosen as followsB is the smallest integer such that

B
Zwk >T (12)
k=1

whereT is a threshold that accounts for a certain quantity of daah should belong to the background.



The fifth algorithm [18] is tailored for the detection of non peoative targets (e.g., snipers) under non stationary
environments. The algorithm uses two gray level backgroorabesB;, Bs. This allows the algorithm to cope with
intensity variations due to noise or fluttering objects, mgvin the scene. The background images are initialized

using a set ofl’ consecutive frames, without active objects

Bi(z,y) = min{I'(z,y),t =1,...,T} (13)
By (z,y) = max{I'(z,y),t =1,...,T} (14)

wheret € {1,2,...,T} denotes the time instant.
In this method, targets are detected by using two thresh@ldsT ) followed by aquasi-connected components

(QCC) analysis. These thresholds are initialized using tfierdnce between the background images

Tr(z,y) = |Bi(z,y) — Ba(z,y) [+ cv (15)
TH(:E7y) = TL(:L'v y) +cs (16)

where,cy andcg € [0,255] are constants specified by the user.
We compute the difference between each pixel and the cldsesiground image. If the difference exceeds a
low thresholdT7y, i.e.,
min |1 (z,y) = Bi(z,y)| > Tw(z,y) (17)

the pixel is considered as active. A target is a set of comdeattive pixels such that a subset of them verifies
min |1*(a,y) - B(x.y)| > Tr(z,y) (18)

where T (z,y) ia a high threshold. The low and high thresholbs(z, y), T}, (z,y) as well as the background

images,B!(z,y),i = 1,2 are recursively updated in a fully automatic way (see [18]details).

IV. PROPOSEDFRAMEWORK

In order to evaluate the performance of object detectionrélgns we propose a framework which is based on
the following principles:
« A set sequences is selected for testing and all the movingctsbpre detected using an automatic procedure
and manually corrected if necessary to obtain the grounfi.tithis is performed one frame per second.
« The output of the automatic detector is compared with the rgtdruth.
o The errors are detected and classified in one of the followiagsels: correct detections, detections failures,
splits, merges, split‘merges and false alarms.
« A set of statistics (mean, standard deviation) are compittedach type of error.
To perform the first step we made a user friendly interface whitows the user to define the foreground regions
in the test sequence in a semi-automatic way. Fig. 3 showsthddce used to generate the ground truth. A set
of frames is extracted from the test sequence (one per spcAndautomatic object detection algorithm is then

used to provide a tentative segmentation of the test imdgrally, the automatic segmentation is corrected by the



user, by merging, splitting, removing or creating activgioas. Typically the boundary of the object is detected
with a two pixel accuracy. Multiple segmentations of theeddlata are generated every time there is an ambiguous
situation i.e., two close regions which are almost overilagpThis problem is discussed in section IV-D.

In the case depicted in the Fig. 3, there are four active regiarcar, a lorry and two groups of persons. The
segmentation algorithm also detects regions due to lightiranges, leading to a number of false alarms (four). The
user can easily edit the image by adding, removing, chedkiagperations, thus providing a correct segmentation.
In Fig. 3 we can see an example where the user progressivelgvesnthe regions which do not belong to the

object of interest. The final segmentation is shown at the bottoages.
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Fig. 3. User interface used to create the ground truth from the automgtizes¢ation of the video images.

The test images are used to evaluate the performance of ageamttion algorithms. In order to compare the
output of the algorithm with the ground truth segmentatimmegion matching procedure is adopted which allows
to establish a correspondence between the detected objattthe ground truth. Several cases are considered:

1) Correct Detection (CD) or 1-1 match: the detected region matches one and only one region.

2) False Alarm (FA): the detected region has no correspondence.

3) Detection Failure (DF): the ground truth region has no correspondence.

4) Merge Region (M): the detected region is associated to several ground tegfiors.

5) Split Region (S): the ground truth region is associated to several deteetgidns.

6) Split-Merge Region (SM): when the conditions pointed in 4, 5 are simultaneouslysgatl.

A. Region Matching

Object matching is performed by computing a binary correspace matrix’’ which defines the correspondence
between the active regions in a pair of images. Let us assuatent® have N ground truth regions; and M

detected region$?;. Under these conditiong! is a N x M matrix, defined as follows



H(Ri N R))

1 if >—22>T
L 8(R; U Rj)
C'(i,j) = (B R Vie(1,...N}.jel(l,... M} (19)
0 bl et A
f(R; U Rj)

whereT is the threshold which accounts for the overlap requiremi¢ng also useful to add the number of ones

in each line or column, defining two auxiliary vectors

M

L(i)=) C(i,j) i€{l,...,N} (20)
j=1
N

CG)=>_C6,5) je{l,....M} (21)
i=1

When we associate ground truth regions with detected regsin cases can occur: zero-to-one, one-to-zero,
one-to-one, many-to-one, one-to-many, many-to-manycéssons. These correspond to false alarm, misdetection,
correct detection, merge, split and split-merge.

Detected regiong?; are classified according to the following rules

CD 4;:L(i)=C(j)=1AC(i,5) =1
M 3,:CGH)>1AC3G,j ) =1
S FJi:L3GE)>1ACGHJ) =1 (22)
SM 3;:L(i) >1AC()>1AC>G,j) =1
FA 3,:C@{)=0
Detection failures DF) associated to the ground truth regi&) occurs if L(i) = 0.

The two last situations (FA, DF) in (22) occur whenever emptipiems or lines in matrixC are observed.

Fig. 4 illustrates the six situations considered in this wsia] by showing synthetic examples. Two images
are shown in each case, corresponding to the ground truth #led detected regions (right). It also depicts the
correspondence matri% For each case, the left imagé) contains the regions defined by the user (ground truth),
the right image {) contains the regions detected by the segmentation digariEach region is represented by an
white area containing a visual label. Fig. 4 (a) shows an id&ahtion, in which each ground truth region matches
only one detected region (correct detection). In Fig. 4 (® thquare-region” has no correspondence with the
detected regions, thus it corresponds to a detection éailar Fig. 4 (c) the algorithm detects regions which have
no correspondence to theimage, thus indicating a false alarm occurrence. In Fig. 4sfidws a merge of two
regions since two different regions (“square” and “dot”icgw in I) have the same correspondence to the “square
region” in I. The remaining examples in this figure are self explainingsifating the split (e) and split-merge (f)

situations.

B. Region Overlap

The region based measures described herein depends on &paeguirement’ (see (19)) between the region
of the ground truth and the detected region. Without thisuiregqnent, this means that a single pixel overlap is
enough for establishing a match between a detected regira argion in the ground truth segmentation, which

does not make sense.
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A match is determined to occur if the overlap is at least asabithe Overlap Requirement. The bigger the overlap
requirement, the more the boxes are required to overlapehpadformance usually declines as the requirement
reaches 10/@. In this work we use a overlap requirement®f= 10%.

Fig. 5 illustrates the association matrices in two differesdes considering an overlap requirement’cf 20%.

It can be seen that in Fig. 5(a) the region in the ground trutirdle” region) is not represented by any detected
region since the overlap is below the overlap requiremeaidlihg to a detection failure. If we increase the overlap
between these two regions (see Fig. 5(b)) we see that now veeghemrrect detection (second line, second column
of C). Finally it is illustrated a situation where two detectiaildires (in Fig. 5 (c)) become a split (in Fig. 5 (d))

if we increase the overlap among these regions.

C. Area Matching

The match between pairs of the two regions (ground truth/raatically detected) is also considered to measure
the performance of the algorithms. The higher is the pergentd the match size, the better are the active regions
produced by the algorithm. This is done for all the correctitedted regions. The match metric is defined by
M(i) = gggggﬁ where j is the index of the corresponding detected region. The mgifids the area of the
overlap normalized by the total area of the object. The awe@gM (i) in a video sequence will be used to

characterize the performance of the detector.
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D. Multiple Interpretations

Sometimes the segmentation procedure is subjective, siie a&ctive region may contain several objects and
it is not always easy to determine if it is a single connecegian or several disjoint regions. For instance, Fig.
6 (a) shows an input image and a manual segmentation. Thrige aggions were considered: person, lorry and
group of people. Fig. 6 (b) shows the segmentation resultaged by theSGM algorithm. This algorithm splits
the group into three individuals which can also be constie® a valid solution since there is very little overlap.
This segmentation should be considered as an alternativmdriouth. All these situations should not penalize the
performance of the algorithm. On the contrary, situatiamshsas the ones depicted in Fig. 7 should be considered
as errors. Fig. 7 (a) shows the ground truth and in Fig. 7 (b) dgenentation provided by thid’4 algorithm. In

this situation the algorithm makes a wrong split of the vkhic

r'________________'_— r' __________________ —

() ] (b)

(a) ] (b)

Fig. 7. Wrong split example: (a) supervised segmentation}i(d) segmentation.

Since we do not know how the algorithm behaves in terms of mgrgr splitting, every possible combinations
within elements, belonging to a group, must be taken intmawct For instance, another ambiguous situation is
depicted in Fig. 8, where it is shown the segmentation resilthe SGM method. Here, we see that the same
algorithm provides different segmentations (both can besictered as correct) on the same group in different
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instants. This suggests the use of multiple interpretatfonshe segmentation. To accomplish this the evaluation
setup takes into account all possible merges of single msgielonging to the same group whenever multiple
interpretations should be considered in a group, i.e., vthere is a small overlap among the group members.

The number of merges depends on the relative position ofesiagjions. Fig. 9 shows two examples of different
merged regions groups with three objects ABC (each one septieg a person in the group). In the first example
(Fig. 9 (a)) four interpretations are considered: all theeoty are separated, they are all merged in a single active
region or AB (BC) are linked and the other is isolated. In teeasid example an addition interpretation is added
since A can be linked with C.

Instead of asking the user to identify all the possible meigean ambiguous situation, an algorithm is used to
generate all the valid interpretations in two steps. Firstassign all the possible labels sequences to the group
regions. If the same label is assigned to two different megjidhese regions are considered as merged. Equation
(23)(a) shows the labelling matrix/ for the example of Fig. 9 (a). Each row corresponds to a difteladelling
assignment. The element;; denotes the label of thgth region in theith labelling configuration. The second
step checks if the merged regions are close to each otherf dmeré is another region in the middle. The invalid
labelling configuration are removed from the matfiX. The output of this step for the example of Fig. 9 (a) is
in equation (23)(b). The labelling sequentdl is discarded since region 2 is between region 1 and 3. Therefor
regions 1, 3 cannot be merged. In the case of the Fig. 9 (b) altdinfigurations are possibléf(= Mpryar). A
detailed description of the labelling method is includedappendix VII-A.

Figs. 10,11 illustrate the generation of the valid interatiens. Fig. 10 (a) shows the input frame, Fig. 10 (b)
shows the hand segmented image, where the user specifies abjttts (three objects must be provided separately
in the group of persons) and Fig. 10 (c) illustrates the ougduhe SGM. Fig. 11 shows all possible merges of
individual regions. All of them are considered as corre@nfain to know which segmentation should be selected
to appraise the performance. In this paper we choose thesbgstentation, which is the one that provides the
highest number of correct detections. In the present exathgl segmentation illustrated in Fig. 11 (g) is selected.
In this way we overcome the segmentation ambiguities that apgpear without penalizing the algorithm. This is
the most complex situation which occurs in the video segeemrsed in this paper.

Fig. 8. Two different segmentations, provided B¢ M method on the same group taken at different time instants.
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l'

(@) (b)

Fig. 9. Regions linking procedure with three objects A B C (from left to righfe same number of foreground regions may have different
interpretations: three possible configurations (a), or four configuraifb). Each color represent a different region.

111 111
11 2 11 2
1 2 2 12 2 (23)
12 3 1 2 3

(@) | (b) (©)

Fig. 10. Input frame (a), segmented image by the user (b), outp&Ga¥/ (c).

V. TESTS ONPETS2001IDATASET

This section presents the evaluation of several object tietealgorithms using PETS2001 dataset. The training
and test sequences of PETS2001 were used for this study. Thegragguence has 3064 and the test sequence has
2688 frames. In both sequences, the first 100 images were agedd the background model for each algorithm.

The resolution is half-resolution PAL standai2B§ x 384 pixels, 25 frames per second). The algorithms were
evaluated using one frame per second. The ground truth wasajed by an automatic segmentation of the video
signal followed by a manual correction using a graphicaicediescribed in section IV. The outputs of the algorithms
were then compared with the ground truth. Most algorithntguire the specification of the smallest area of an
object. An area of 25 pixels was chosen since it allows toaieth objects of interest in the sequences.
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(e) ) ] @ (h)

Fig. 11. Multiple interpretations given by the application. The segmentatiorirdhes! in (g) is selected for the current frame.

A. Choice of the Model Parameters

The segmentation algorithms described herein depend onoé gatameters, which are mainly the thresholds and
the learning ratex. In this scenario, we must figure out which are the best valoethé most significant parameters
for each algorithm. This was done using ROC curves which aysfile performance of each algorithm as a function
of the parameters. The Receiver Operation CharacterisiCjFhave been extensively used in communications
[9]. It is assumed that all the parameters are constant bet bmthis case we have kept the learning rate
constant and varied the thresholds in the attempt to obtterbést threshold valug. We repeated this procedure
for several values ofv. This requires a considerable number of tests, but in this ivés/ possible to achieve a
proper configuration for the algorithm parameters. Thess teste made for a training sequence of the PETS2001
data set. Once the parameters are set, we use these valuddfarent sequence.

To ROC curves describe the evolution of the false alarms @) detection failures (DF) a8 varies. An ideal
curve would be close to the origin, and the area under thesonowld be close to zero. To obtain these two values,
we compute these measures (for each valu&)aby applying the region matching trough the sequence. The final
values are computed as the mean values of FA and DF.

Fig. 12 shows the receiver operating curves (ROC) for all therdhms. It is observed that the performance of
BBS algorithm is independent af. We can also see that this algorithm is sensitive with resjeethe threshold,
since there is a large variation of FA and DF for small changfes, this can be viewed as a lack of smoothness
of the ROC curve[ = 0.2 is the best value). There is a large humber of false alarmseirtrétining sequence due
to the presence of a static object (car) which suddenlysstartnove. The background image should be modified
when the car starts to move. However, the image analysigitidges are not able to cope with this situation since
they only consider slow adaptations of the background. Asghegion is therefore detected in the place where the

car was (a false alarm).
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The second row of the Fig. 12 shows the ROC curves obtiéd/ method, for three values of (0.01,0.05, 0.15).
This method is more robust than tli&£BS algorithm with respect to the threshold. We see that-fd00 < 7' <
—150, anda = 0.01, « = 0.05 we get similar FA rates and a small variation of DF. We chese 0.05, T = —400.

The third row show the results of thef GM method. The best performances are obtainedofer 0.05 (first
and second column). The best value of theparameter isx = 0.008. In fact, we observe the best performances
for « < 0.01. We notice that the algorithm strongly depends on the vafu#,osince for small variations of’
there are significant changes of FA and DF. The ROC curve sugjgssit is acceptable to choogé > 0.9.

The fourth row shows the results of tHeOT'S algorithm for a variation of the sensitivity from0% to 110%.

As discussed in [29] we use a smallparameter. For the sake of computational burdef, ]S does not update
the background image in every single frame. This algorithrorebses the background update rate which takes
place in periods ofN frames. For instance an effective integration facior= 0.0003 is achieved by adding
approximately % of the current frame to the background in evexy6™ frame, or & in every 512" frame.
Remark thatB! = B!~! + aD!, with D! = I* — B*. In our case we have used intervals10R4 (Fig. 12 (j)) 256

(Fig. 12 (k)) 128 (Fig. 12 (I)), being the best results achieved in the first cabe. latter two cases Fig.(12) (k),

() present a right shift in relation to (j), meaning that hrese cases one obtains a large number of false alarms.

From this study we conclude that the best ROC curves are thesassociated with OT'S and SGM since

they have the smallest area under the curve.
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B. Performance Evaluation

Table | (a),(b) shows the results obtained in the test sempuesing the parameters selected in the previous
study. The percentage of correct detections, detectionrés) splits, merges and split-merges were obtained by
normalizing the number of each type of event by the total nemmdd moving objects in the image. Their sum is
100%. The percentage of false alarms is defined by normalizing tinebeu of false alarms by the total number of
detected objects. It is therefore a number in the rahgel00%.

Each algorithm is characterized in terms of correct detestidetection failures, number of splits, merges and
split/merges false alarms as well as matching area.

Two types of ground truth were used. They correspond to éiffemterpretations of static objects. If a moving
object stops and remains still it is considered an activeorem the first case (Table | (a)) and it is integrated in
the background after one minute in the second case (Tabl. IHtr example, if a car stops in front of the camera
it will always be an active region in the first case. In the selcoase it will be ignored after one minute.

Let us consider the first case. The results are shown in Table In(&rms of correct detections, the best results
are achieved by the OT'S (91.2%) algorithm followed bySGM (86.8%).

Concerning the detection failures, tlieOT'S (8.5%) followed by W4 (9.6%) outperforms all the others. The
worst results are obtained by GM (13.1%). This is somewhat surprising sindd GM method, based on the
use of multiple Gaussians per pixel, performs worse thanStid/ method based on a single Gaussian. We will
discuss this issue bellow. TH&4 has the highest percentage of splits and B18S, M GM methods tend to split
the regions as well. The performance of the methods in termmegddn merging is excellent: very few merges are
observed in the segmented data. However, some methodsagmdduce split/merges errors (e.§/ 4, SGM and
BBS). The LOTS and MGM algorithm have the best score in terms of split/merge errors

Let us now consider the false alarms (false positives). T&g'S (0.6%) is the best and thé/GM and BBS
are the worst. TheOT'S, W4 and SGM methods are much better than the others in terms of falsmalar

The LOT'S has the best tradeoff between CD and FA. Althoughliife produces many splits (splits can often be
overcome in tracking applications since the region matghilgorithms are able to track the active regions though
they are split). TheLOT'S algorithm has the best performance if all the errors are lggumportant.

In terms of matching area theOT'S exhibit the best value in both situations.

In this study, the performance of the/ GM method, based on mixtures of Gaussians is unexpectedly low.
During the experiments we have observed the followii)gwhen the object undergoes a slow motion and stops,
the algorithm ceases to detect the object after a small gh@fidime; ii) when an object enters the scene it is not
well detected during a few frames since the Gaussian modeasthaadapt to this case.

This situation justify the percentage of the splits in botbl&a. In fact, when a moving object stops, the>M
starts to split the region until it disappears, becoming pathe background. Objects entering into the scene will
cause some detection failures (during the first frames) atits,swhen theM GM method starts to separate the
foreground region from the background.

Comparing the results in Table | (a) and (b) we can see thapén®rmance of the\/GM is improved. The

detection failures are reduced, meaning that the stopped carrectly integrated in the background. This produces
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an increase of correct detections by the same amount. Howegestress that the percentage of false alarms also
increases. This means that the removal of the false positivest stable. In fact some frames contain, as small
active regions, the object which stops in the scene. In degmrthe other methods, it is already expected that
the false alarms percentage suffers an increase, since #hgsrithms remain with false positives throughout the
sequence.

The computational complexity of all methods was studied tlyg@ithe performance of the five algorithms. Details
about the number of operations in each method is providetlenAppendix VII-B.

% BBS | W4 | SGM | MGM | LOTS % BBS | W4 | SGM | MGM | LOTS
Correct Detections || 84.3 | 81.6 | 86.8 | 85.0 91.2 Correct Detections || 83.5| 84.0| 86.4 | 854 91.0
Detection Failures || 12.2 | 9.6 | 115 | 13.1 85 Detection Failures || 12.4 | 85 | 11.7 | 12.0 8.8
Splits 29 | 54 | 02 1.9 0.3 Splits 33| 43| 02 2.6 0.3
Merges 0 1.0 0 0 0 Merges 0 0.8 0 0
Split/Merges 06 | 18 15 0 0 Split/Merges 08 | 1.8 1.7 0
‘ False Alarms H 22.5‘ 8.5 ‘ 11.3‘ 24.3 ‘ 0.6 ‘ ‘ False Alarms H 27.0‘ 15.2‘ 17.0‘ 28.2 ‘ 7.2 ‘
| MatchingArea | 647 504 61.9] 613 | 788 | | MatchingArea | 613 536 61.8 | 656 | 781 |
@) (b)
TABLE |

PERFORMANCE OF FIVE OBJECT DETECTION ALGORITHMS

VI. CONCLUSIONS

This paper proposes a framework for the evaluation of objet#ation algorithms in surveillance applications.
The proposed method is based on the comparison of the detadfmut with a ground truth segmented sequence
sampled at 1 frame per second. The difference between bothesggtions is evaluated and the segmentation
errors are classified into detection failures, false alaspbts, merges and split/merges. To cope with ambiguous
situations in which we do not know if two or more objects bglda a single active region or to several regions, we
consider multiple interpretations of the ambiguous franTégese interpretations are controlled by the user through
a graphical interface.

The proposed method provides a statistical charactenzatiaghe object detection algorithm by measuring the
percentage of each type of error. The user can thus selecestealgorithm for a specific application taking into
account the influence of each type of error in the performandeeocoverall system. For example, in object tracking
detection failures are worse than splits. We should thezedelect a method with less detection failures, even if it
has more splits than another method.

Five algorithms were considered in this paper to illustritegroposed evaluation method. These algorithms are:
Basic Background SubtractiorBBS), W4, Single Gaussian ModelS(GM), Multiple Gaussian Model X/ G M),

Lehigh Omnidirectional Tracking Systen.Q7T'S). The best results were achieved by th&TS and SGM
algorithm.
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VIl. APPENDIX
A. Merge Regions Algorithm

The pseudo code of the region labelling algorithm is given igofithms 1, 2.

Algorithm 1 describes the synopsis of the first step, i.e.egaion of the labels configurations. When the same
label is assigned to two different regions, this means thasd regions are considered as merged. Algorithm 2
describes the synopsis of the second step, which checks lemihages label sequences which contain invalid
merges. Every time the same label is assigned to a pair ofrregie define a strip connecting the mass center of
the two regions and check if the strip is intersected by ahgrwotegion. If so, the labelling sequence is considered
as invalid.

In these algorithmsV denotes the number of objectapel is a labelling sequencé/ is the matrix of all label
configurations,M ;v 4z, is @ matrix which contains the information (final label confafions) needed to create

the merges.

Algorithm 1 Main
1: N «— Num;
2: M(1) « 1;
3 for t =2to N do
AUX « [];
for i =1 to size(M, 1) do
label « max(M(i,:)) + 1;
AUX «+ [AUX; [repmat(M(i, :),label, 1) (1 : label)T] J;
end for
9: M « AUX;
10: end for
11: MpinaL < FinalConfiguration(M);

@ N ahR

b b 1111

1112
1121

1122

1123
1211

1212
1213

{1 =1

1221
1222
1223
1231
1232
1233
1234

A4 ALY

Fig. 13. Generation of the label sequences for the example in the Fig. 14.

To illustrate the purposes of algorithms 1 and 2 we will cdasithe example illustrated in the figure 14, where
each rectangle in the image represents an active region.
Algorithm 1 computes the leaves of the graph shown in the Rgwith all label sequences.
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Algorithm 2 Mginar, = FinalConfiguration X1)
1 MpNaL < [ ]
2: for i =1 to lenght(M) do
3:  Compute the centroids of the objects to be linkedvif, :);
4 Link the centroids with strip lines;
5. if the strip lines do not intersect another object redioen
6
7
8:

MrNaL < [Miar MG, 0T
end if
end for

nOED

Fig. 14. Four rectangles A,B,C,D representing active regions in thgema

Algorithm 2 checks each sequence taking into account thagivel position of the objects in the image. For
example, configurations212,1213 are considered as invalid since object A cannot be mergdd@isee Fig. 14).
Equations (24)(a) and (b) show the output of the first and thergkstep respectively. All the labelling sequences
considered as valid (the content of the matkik; 4;) provides the resulting images shown in Fig. 15.

11 1 17 11 1 1
111 2 111 2
1121

112 2 112 2
1123 112 3
1211

121 2

M=1|121 3 M =

L2 09 1 FINAL (24)
122 2 122 2
122 3 1 22 3
1231

123 2

1233 1233
1 2 3 4] 1 2 3 4]

B. Computational Complexity

Computational complexity was also studied to judge thequarnce of the five algorithms. Next, we provide
comparative data on computational complexity using they*8I'" analysis.

Let us define the following variables:
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Fig. 15. Valid merges generated from the example in the Fig. 14.

« N, number of images in the sequence,
e L, C, number of lines and columns of the image,
« R, number of regions detected in the image,

o N4, number of Gaussians.

The BBS, W4, SGM, MGM and LOT'S methods share several common operations nanmgtporphological
operations, for noise cleaning,) computation of the areas of the regions aig labelling assignment.
The complexity of these three operations is

K=2x{xec)=1)x(LxC)+(LxC)+R+Rx (LxC) (25)

morphological op. region areas op. Labels op.

where/, ¢ are the kernel dimensiong x ¢ = 9, 8 - connectivity is used),, C are the image dimensions aftlis

the number of detected regions. The first tetnx, (¢ x ¢) — 1, is the number of products and summations required
for the convolution of each pixel in the image. The second tédnx C') + R, is the number of differences taken
to compute the areas of the regions in the image. Finally,Rhe (L x C') term is the number of operations to
label all the regions in the image.

BBS Algorithm
The complexity of theBBS is
O{(ll x (L x C)+K> X N}
N’

threshold op.

(26)

wherell x (L x C') is the number of operations required to perform the threhglstep (see (1)) which involves

3 x (L x C) differences an®& x (L x C') logical operations.

W4 Algorithm
The complexity of this method is

0{(2x 20° + (L x C) x (p+ (p— 1))] +9 x (L><C)+K+KW4> xN}

rgb2gray op. threshold op.

(27)
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where the first term is related to the conversion of the imageagdyscale levelp = 3 (RGB space). The second
one is concerned with the threshold operation (see (2)) twhequires9 x (L x C) operations (8 logical and 1
difference operations). The tertiy4 corresponds to the background subtraction and morphalbgigerations

inside the bounding boxes of the foreground regions

Kws =R X (9><(LTXCT)+(2x(Zxc)—l)x(erCr)>+(LxC)+R+Rx(LXC) (28)

Threshold op. morphological op. region areas op. Labels op.

where L,., C,. are the dimensions of the bounding boxes, assuming thatabheding boxes of the active regions
have the same length and width.

SGM Algorithm
The complexity of the SGM method is

O{(px 2px (LxC)]4+28x (LxC)+ (LxC) +K> xN}

rgb2yuv op. likelihood op. threshold op.

(29)

The first term is related to the conversion of the images to YUWrcepace (in (29 = 3). The second term

is the number of operations required to compute the likellhmeasure (see (5)). The third term is related to the
threshold operation to classify the pixel as foregroundhé likelihood is greater than a threshold, or classified as
background otherwise.

MGM Algorithm
The number of operations of the MGM method is

0{(Ng(136x(LxC))+2x(2Ng— )X(LxC)+K) XN} (30)

~~ ~~

mixture modelling norm. and mixture op.

The first term depends on the number of GaussignsThis term is related to the following operatiorgmatching
operation -70 x (L x C), i1) weight update 3 x (L x C) (see (11)),ii) background update 3 x 8 x (L x ()
(see (8)),iv) covariance update for all color componentd x 13 x (L x C) (see (9)). The second term accounts
for: i) weight normalization {2N, — 1)(L x C') andii) (2N, —1) x (L x C') computation of the Gaussian mixture
for all pixels.

LOTS Algorithm

The complexity of theLOT'S method is

(9{([2p3 +(LxC)x (p+(p—1))

~~

rgb2gray op.
+1Ix (LxC)+2x (LyxCp) = 1) xnp+2x (U xe)=1)x(L,,,..xC_ )+(L.. xC._..) (31)

zzzzzzzzzzzzzzzzzzzzzz

QCC op.
+ K) X N}
The first term is related to the conversion of the images andsiniglar with the first term in (27). The second

term is related to the QCC algorithm. A numberldf x (L x C) operations are needed to compute (17,18).
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BBS 1+30x (LxC) 3.3 x 10°

LOTS || 55+ (35+ 42) x (L x C) | 4.1 x10°

w4 760 + 40 x (L x C) 4.4 x 10°
SGM 1+66 x (L xC) 7.2 x 10°
MGM 1+437 x (L x C) 48.3 x 10°

TABLE I
THE SECOND COLUMN GIVES THE SIMPLFIED EXPRESSION FOR EQUATNS (26, 27, 29, 30, 31). IE SECOND COLUMN GIVES THE
NUMBER OF TOTAL OPERATIONS

The QCC analysis is computed in a low resolution ima&ge Pr. This is accomplished by converting each block
of L; x Cy pixels (in high resolution images) into a new element of teesmatrices Py, Pr). Each element of
Py, P, contains the active pixels of each block in the respectivegies. This task requiré8 x (L, x Cp) — 1) X ny,
operations (second term of QCC in (31)) whefg & (}) is the size of each block and, is the number of blocks
in the image. A morphological operation (4-connectivityiged) overPy is performed, taking2 x (¢ x ¢) — 1) x
x C ) is the dimension of the resized images. The targets camdidat

rsize ' T rsize size ' T rsize

are obtained by comparingy and P;,. This task takeg L x C _,..) operations (fourth term in QCC).

rsize

For example, the complexity of the five algorithms is showrtahle Il assuming the following conditions for

each frame

« the kernel dimensiong, x ¢ = 9,

« the block dimensionsl;, x C, =8 x 8, i.e., (L,,... x C.....) = ££E (for LOTS method),
« the number of Gaussiand), = 3 (for MGM method),

« a single region is detected with an area of 25 pixels =1, £, x C;, = 25),

« the image dimension i§L x C') = 288 x 384.

From the table, it is concluded that the four algorithms3(S,LOT'S,W4,SGM) have a similar computational
complexity whilstM G M is more complex requiring a higher computational cost.
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