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ABSTRACT

A tracking system based on Bayesian networks was recently
proposed. This system deals with difficult situations (e.g.,
occlusions, group formation and splitting) trying to recover
the object identity provided it appears isolated again. This
requires an off line processing of the video sequence which
preventsitsusein real time applications such asvideo surveil-
lance. This paper describes a modified version of the BN
tracker, tailored for on-line tracking of moving objects. This
is achieved by gradually forgetting the influence of past in-
formation on the current decisions avoiding a combinatorial
explosion and keeping the network complexity within rea
sonable bounds.

1. INTRODUCTION

Several algorithms have been proposed for object tracking
in video sequences [11, 2, 10, 4, 7, 9]. Many of them rely
on the association of active regions detected in consecutive
frames. This is an easy task most of the time. Since the
frame rate is high, compared with the object velocity in the
image plane, region association can be performed by sim-
ple heuristic rules in most cases. An important exception
concerns the occlusion of objects by the background or by
groups of objects. In this casg, it is not possible to track the
objects of interest during the occlusion interval and higher
level techniques must be adopted to identify the object when
it becomes isolated again.

The use of Bayesian networks was recently proposed
as a tool to perform long term tracking of moving objects
[1, 6]. Object tracking is decomposed in two steps: 1) sim-
ple algorithms are used to track non occluded objects and
2) adata conflict module is used to deal with difficult situ-
ations (e.g., occlusions, group merging and splitting). The
data conflict module performs a labeling operation, i.e., it
assigns a label to each detected trajectory. Trajectories of
the same object should receive the same label. The labeling
operation is performed using a Bayesian network (BN). The
Bayesian network plays severa roles. It modelstheinterac-
tion among the trajectories of different objects and with the
background. Second it provides a consistent labeling which
accounts for known restrictions (e.g., in object oclusions,
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Fig. 1. BN tracker: a) object trgjectories b) Bayesian net-
work.

group merging and splitting). Finaly, it alows to update
the labeling decisions every time new information is avail-
able.

Thetracker proposed in [1, 6] works off-line. The object
trajectories are first detected in the whole video sequence
and they are then labeled using global Bayesian network
model. This procedure is used for off-line interpretation of
small video sequences but can not be applied for on-line
tracking of moving objects since the network complexity
grows without bound.

This paper overcomes both difficulties. An on-line ver-
sion of the Bayesian network tracker is proposed which al-
lows an adaptive interpretation of the data. Thisis achieved
by gradually forgetting the influence of past information
on the current decisions avoiding the combinatorial explo-
sion and keeping the network complexity within reasonable
bounds.

2. BAYESIAN NETWORK TRACKER

The BN tracker is based in two steps. The first step com-
putesthetrajectories s; of all the objectsin thevideo stream,
provided that they are isolated. Every time the object is
occluded by other objects or by the background the trajec-
tory is broken and new trgjectories are created (see Fig. 1a).
The second step assigns alabel x; to each trgjectory, repre-
senting the identity of the object being tracked. The label
is retrieved using the visual properties of each object (e.g.,
color, shape) as well as the physical restrictions about its



motion. All these variables are described by a probabilis-
tic model: the Bayesian network (see Fig. 1b). The BN
has three types of nodes: nodes associated with trajectory
features y; (e.g., color histogram) computed from the video
signal, label nodes x; and restriction nodes ;; which are
used to create dependencies among children in the case of
group splits. The network defines the joint probability dis-
tribution of al x;,y;,r;; variables as a product of factors
(node conditiona distributions) [5].

To specify the network, we have to define the architec-
ture (nodes / links), the set of admissible labels for each
node and the conditional distribution of each node given its
parents. All of them are automatically computed from the
detected trajectories using simple rules. Links define causal
dependencies between pairs of variables (e.g., the label of
a splitting group has a direct influence on the labels of the
sub groups). The children of each node inherit the parents
admissible labels with addtional elements corresponding to
group labels. The conditional distributions are defined us-
ing simple heuristic rules defined by the user. See[1, 6] for
details.

The best labeling is obtained by the MAP method

& = argmax p(z/y,r) @

wherez = {z;} arethelabel variables, y = {y;} theob-
servationsand = {r;;} are binary restriction nodes which
aresetto 1.

Since the network represents all the traj ectories detected
during the operation, the number of nodes increases with
time without bound. As mentioned before, this approach
can only be used for off-line analysis of short video se-
quences with few tens of objects. The following section
describes the extension of this method for on-line operation.

3. ON-LINE OPERATION

A tracking system should provide labeling results in rea
time, with a small delay. Therefore it is not possible to
analise the video sequence in a batch mode i.e., perform-
ing inference after detecting the object trgjectories. Further-
more, the model complexity must be bounded sinceit is not
possible to deal with very large networksin practice.

To avoid these difficulties two strategies are proposed
in the paper: periodic inference and network simplification.
Thefirst strategy consists of incrementally building the net-
work and performing the inference every T seconds. If we
denote by =57, ykT, rkT the variables of the video signal in
theinterval [0, kT, then the inference problem is given by

a4" = argmaxp(ag” /y5" 76" ) @)
The network grows as before but the labeling delay is
reduced to less than T seconds. The solution of (2) can be
obtained by several methods e.g., by the junction tree algo-
rithm. The Bayes net toolbox was used in this paper [8].

In practice we wish to have an instantaneous labeling of
all the objectsi.e., we do not wish to wait T seconds for a
new global inference. To obtain on-line labeling a subop-
timal approach can be devised which combines the optimal
decision obtained at the instant 7" with the new informa-
tion. Let x; be a hidden node associated to a tragjectory ac-
tivein theinterval [T, t[. Using the Bayes|law

P(xi/yh,rh) = Pxi/yt" yhr 6" mhr)

= aP(Yhp, rhp/x) Pl /y§", rET)

where P(z; /y5T, ykT) isaprior, computed beforein the?ﬁ2
ferencestep at time k7 and P(yL, k., /x;) represents new
information. The choice of the best label x; is performed by
selecting the highest a posteriori probability P(x;/y§, r5).
When z; is a new variable which was created in the inter-
val [kT,t], then we assume that the prior P(x;/ykT, ykT)
isuniform: no label is preferred based on past information.

The previous strategy converts the batch agorithm into
an on-line algorithm i.e,, it solves the first problem. How-
ever, the network size increases as before. To overcomethis
difficulty, asimplification is needed. The mainideaused in
thiswork is to bound the memory of the system.

Old (hidden and visible) nodes influence the labeling
assignment of current nodes. However this influence de-
creases and tends to zero as time goes by: recent variables
are more important than old ones. So, we need to use tech-
niquesto forget the past. In this paper, we alow amaximum
of N nodes and freeze all the other nodes by assigning them
the most probable label obtained in previous inferences. In
this way, the complexity of the network remains bounded
and can be adapted to the computational resources available
for tracking. Several strategies can be used to select the
nodes to be frozen (dead nodes). A simple approach is used
in this paper: we eliminate the oldest nodes and keep the N
most recent. A comparison of this strategy with other using
synthetic and real datawill be presented elsewhere.

4. EXPERIMENTAL RESULTS

Experimental tests were performed with video surveillance
seguences using the batch algorithm and the on-line tracker
described inthispaper. Thetestswere performed with PETS
2001 sequences, used as abenchmark in video surveillance,
as well as other video sequences obtained in a university
campus [3]. Inference was performed every 15 seconds in
the on-line algorithm and a maximum number of ancestor
nodes N=4. The performance of the on-line algorithm was
always identical to the performance of the batch algorithm
in all the tests. Long sequences were only processed by the
on-line algorithm since the batch version gets stuck with the
increase of complexity after the first few minutes.

Figure 2 shows the performance of the tracker in the
PETS data set 1 (training) sampled at 25 fps during the first



Seq. NO | NG| NT|LE| L CT
PETS 8 5 | 34| 3 | 120 | 128
CAMPUS | 7 3 120 0 |229| 21

Table 1. Performance of the BN tracker: Seq. - sequence
name; NO - number of objects; NG - number of groups; NT
- number of tracks; LE - labeling errors; L - length (sec.);
CT - computational time (sec.).

120 sec. This sequence is useful to illustrate the perfor-
mance of the tracker in the presence of occlusions, group
merging and splitting. Fig. 2a shows the evolution of al
active regions detected in the video stream. Thisfigure dis-
plays one of the coordinates of the mass center (column)
as a function of time. Every time there is an occlusion or
when two or more objects overlap it is no longer possible
to associate the new active regions with the ones detected in
the previous frame. The trgectories are interrupted in such
Cases.

Fig. 2b shows the labeling results obtained with the on-
line algorithm described in the paper. The algorithm man-
ages to disambiguate most of the occlusions well. Only 3
labeling errors are observed in atotal of 34 trgjectories. la-
bel 6 and the switch between labels 3 and 8 after the split
for t=110s (see Fig. 2b). The output of the on-line algorithm
was compared with the batch results during the first 113.6
s. The same labeling was obtained in both cases with im-
portant computational savings (CPU times!: 258 s (batch),
10 s(on-ling)). In this example, the computation time of the
labeling algorithm is 15% of the sequence duration while
the batch algorithm performs off-line and it is not able to
process the whol e sequence.

Figure 3 shows the evolution of the Bayesian network,
for the PETS sequence, at three instants: although the num-
ber of nodes grows quickly with time, only the most re-
cent ones are active and updated by the inference algorithm,
therefore keeping the computational burden under control.

Figures 4 and 5 show two examples which illustrate the
performance of the tracker in group merging and splitting.
A correct labeling is produced in both cases.

Table | shows the statistics which characterize the com-
plexity of the video sequence and the performance of the
tracker namely: number of objects, number of groups, num-
ber of tracks, labeling errors length and computational time.
It can be observed that most of the occlusions are well dis-
ambiguated by the proposed algorithm and the compuational
timeislow (15% of the sequence duration).

5. CONCLUSIONS

This paper describes an on-line version of the Bayesian net-
work tracker assuming as starting point the algorithm pro-
posed in [6]. Video objects are tracked using a two step

1these tests were performed with Murphy toolbox for Matlab [8], run-
ningonaP4 at 2.8 GHz

20+

40t

time (seg.)
%
%
i
op/ N’

100~

-
—_— B
1200
X
© 50 100 150 200 250 a00 350 400
b 2
20
1
,\S\ 138

* ___‘b :
— - —
g .
; * 7/5// % 4

4
80 &
7
100
3
s
9 -8 9

120~

Fig. 2. Example (PETS: test sequence 1): a) detected
strokes; b) most probable labeling obtained with the on-line
algorithm.

approach: object trgjectory detection and trajectory label-
ing. Object trajectories are detected by simple low level
operations and trajectory labeling is performed by statisti-
cal inference using a Bayesian network model to represent
the interactions among trajectory labels.

To alow an on line operation of the tracker, inferenceis
periodically performed every 15 s and pruning techniques
are used to bound the size of the Bayesian network avoiding
an exponential increase of computational complexity. Com-
plexity reduction is achieved asfollows. Instead of trying to
represent the joint probability distribution of al the trajec-
tories detected by the system, we only try to model the joint
probability distribution of the most recent trajectories, for-
getting the influence of past uncertainty on current labels.

The performance of the system was evaluated using PETS
2001 sequences. It is shown that no degradation of quality
is observed in these sequences while the computation time
was reduced by an order of magnitude. The computation
time associated with the labeling operation is about 15% of



@ @
“o e o e
©°° © ‘poo
2 e _®
ORONNO) @
, e
2| &
© o o
() ©

Fig. 3. Network evolution: Bayesian network at three time
instants (gray nodes are frozen, white nodes are active).

the duration of the sequence. Furthermore, it is now possi-
ble to process sequences of unlimited length with the pro-
posed a gorithm.
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Fig. 4. Labeling examples (PETS sequence) after @) group
formation and b) splitting.

Fig. 5. Labeling examples (CAMPUS sequence): after a)
group formation and b) splitting.



