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Abstract— This paper presents an architecture for  cognitive 

analysis of streaming video, in which a new module can easily be 
plugged in, to add to or  even compete with existing functionality. 
This allows the implementers to focus on the key scientific issues 
instead of struggling with the details of the implementation. 

The architecture is distr ibuted and runs independently of the 
under lying computer  architecture and can run transparently 
across one or  many different operating systems in a larger  
distr ibuted system. This architecture focuses on several key 
Computer  Vision issues, such as multi-level global and local 
control, automatic dataflow based on auto-descr iptive self-
regulating independent modules that come together  to form a 
whole based on the character istics of the individual and the needs 
of the system rather  than a static flow diagram. 
 

Index Terms— Autocr iticism, Autodescr iption, Autoregulation, 
Cognitive Architecture, Computer  Vision, Modular  Architecture. 
 

I. INTRODUCTION 

N this paper we will present the CAVIAR architecture for 
Cognitive Computer Vision, which allows the integration of 

many disparate modules into a system which performs 
cognitive analysis of video streams. Each module has complete 
plug-and-play functionality, using a straightforward interface 
that allows the global Controller to obtain detailed information 
about its functionality, its parameters and the quality and 
quantity of its results, and allows the Controller and other 
modules to make requests to alter its performance. 

We describe the full architecture, which is based around a 
centralised Controller enforcing the global goals of the system 
of a large number of Modules. Each module functions as an 
independent unit, about which the Controller has no prior 
knowledge, but which will fully describe itself to the extent 
that the Controller knows exactly which function the Module 
performs including a full understanding of its parameters and 
its input and output. 

Our model is based on previous work on process-based 
computer architectures [1], [2] with specific focus on dividing 
a system of modules into process federations where each has 
relatively autonomous control [3],  although they participate in 
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the system where the flow of data is not fixed [3]. 
The CAVIAR architecture has the ability to configure the 

system automatically at start-up as well as dynamically 
reconfigure parts or all of the system at runtime as needed. We 
will explain how each module describes its own capabilities 
and parameters, and how the Controller uses this information 
to become more robust to changes in the visual scene or when 
the system is running low on resources. Lastly, we will 
illustrate how the CAVIAR system can be distributed to utilise 
many computers, including those running a different operating 
system or even based on a different architecture. 

 

II. COGNITIVE VISION SYSTEM ARCHITECTURES 

Cognitive processes have to be very adaptive and able to 
deal with a great number of events and situations which cannot 
be fully specified at design time. Each process or module must 
be able to both be regulated individually and as part of a 
group, either by a local control unit or a global one with 
sufficient local knowledge. 

Often a Cognitive Vision System will need access to many 
more modules than are needed at any one point in time, to 
cope with changes in the perceived environment or to its own 
internal state and goals. To perform in real-time all modules 
must be kept in an idle state waiting for a command to start 
processing data or at least be readily available when needed. A 
local or global control unit can then choose which modules 
would be most suitable for the current situation and even test 
several ones before making that determination. An advanced 
Controller could take the output from several modules, each 
performing the same task, and use all the information going 
forward. 

A. Global versus Distributed Control 

There are two main approaches to controlling a cognitive 
system [17]. Either one employs a global controller [16] which 
is aware of all parts of the system and has to know everything 
about them or one can use distributed control where sections 
of the system are controlled independently of the others [2]. 
Most systems use the global control approach as this is often 
easier and creates a more predictable application, although 
having a global controller makes scaling more difficult [2]. 

Distributed control is often hierarchical in nature, either 
divided into two levels with many local region controllers and 
a global controller interacting with these [15], or a many-level 
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hierarchical structure where every few modules are controlled 
by one unit, which is itself controlled by a master of units, and 
so forth [2]. Even in the latter case there usually is an overall 
global controller that governs the goals and purposes of the 
system as a whole. 

B. Global versus Distributed Dataflow 

Dataflow regulation is of utmost importance in a Cognitive 
System as often the same data is used by several processes at 
the same time [17,18,19], and the modules downstream need 
the data in the correct order. This can either be done using a 
controller that will pass the data to the modules when 
available, or by a Blackboard-type architecture where modules 
subscribe to the data types or data stream needed and waits for 
these to become available [5]. 

Dataflow governs when which module can work on what 
dataset, and is in most cases determined by a combination of 
what specific modules need and what the overall goal of the 
system is. The dataflow can either be predetermined where the 
system designer dictates the exact path the data has to follow 
or dynamically adjusted to fulfil the system goals [15]. The 
latter can be split into two groups, namely globally versus 
locally determined flow. 

Globally controlled dataflow means that a global controller 
with knowledge of the whole system knows who needs which 
data when and based on system goals makes changes to the 
flow of data as needed. This approach is the more popular 
approach when dealing with high volume media data streams, 
both because it is easier to manage, but also due to the inherent 
resource loads these streams can create when not managed 
correctly. 

Distributed dataflow is often used with distributed control 
systems, where each module or group of modules determine 
dynamically which data they need when, and then request this 
data from the system as a whole. This is a cornerstone of the 
Blackboard-based architecture, which is excellent at handling 
discrete messages, but was found unable to scale or indeed 
handle the traffic efficiently when dealing with massive 
amounts of streaming data. Recently, a new type of 
Blackboard architecture named Psyclone was proposed [5] 
using Scheduling Whiteboards, which are Blackboards capable 
of handling both messages and media streams, and schedule 
subscriptions to both based on module and data priorities. 

Although this approach was considered for the work 
presented in this paper, it was found that a global controller 
with globally controlled dataflow was more compatible with 
earlier work by the partners, and that a single controller could 
implement a very advanced dynamic rule and learning system, 
inspired by the work on ADORE [14] and VISIONS [19]. 

C. Distributed Systems 

Most Cognitive Vision Systems require more resources than 
can be provided by one single computer, which means that 
strategic distribution of processes across a network of 
computers becomes very important. Other than the obvious 
issues of running different pieces of code on more than one 

computer and how to regulate this dynamically, one of the 
most crucial functions of such a system becomes making data 
available to the right module running on the right computer at 
the right time. Network delays can for the most part be 
predicted or at least anticipated, but the dataflow of such a 
system is vastly more complex and more resembles a chart 
organisation task than a simple flow diagram. 

 

III. THE CAVIAR ARCHITECTURE 

The CAVIAR Architecture uses one central Controller that 
knows about every module in the whole system, on both a 
global and local level. It controls the dataflow and schedules 
each module when the appropriate data is available. It 
regulates each module by either setting parameters directly or 
by requesting that the module regulate itself to achieve a 
certain goal, such as ‘ find more objects’  or ‘output less 
features’ . Each module obtains data from one or more sources 
and outputs one or more datasets plus feedback information. 
The feedback includes information on how well the module 
thought it performed and what it ideally would need the next 
time around, either for recalculating the current output or when 
the subsequent data becomes available. 

A. The CAVIAR Controller 

The CAVIAR Controller is written in a combination of 
Imalab Scheme [8], C++ and Clips, drawing on the strengths 
of all three and combining the versatility of Scheme with the 
efficiency and speed of C/C++ and the logic and efficient rule 
handling from Clips. 

On start-up the Controller reads a minimal initialisation file 
containing a list of module names which can be used. Each 
module is instantiated and questioned for functionality, 
capability and for a full description of every parameter as well 
as the required inputs and datasets produced as output. From 
this list and provided with overall goals of the system the 
initial dataflow is calculated and the modules that come into 
play are initialised. 

From then on the dataflow is auto-regulated based on the 
performance and feedback of the individual module and 
overall goals of the system. If a module produces a 
substandard response, it may be replaced by another module 
by inserting the new one in the place of the old and asking it to 
recompute the same data, or they may both continue to 
produce results and a split in the dataflow is created. A module 
with a substandard output will more frequently be asked to 
recompute with slightly different parameter values, set either 
directly by the Controller or indirectly by asking the module 
for more of one feature and less of another. 

A more detailed description of the CAVIAR Controller can 
be found in [7]. 

B. The CAVIAR Modules 

The CAVIAR Modules are all written in C/C++ for 
efficiency and draw on the combined resources of two 
libraries, the INRIA PrimaVision and CMLabs’  CoreLibrary, 
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described in more detail in Section V (The CAVIAR Base 
Libraries). However, the CAVIAR modules are in no way 
restricted to only using these and frequently include other 
libraries, such as Intel’s OpenCV and Clips. 

The CAVIAR Modules operate on three basic principles, 
namely auto-description, auto-criticism and auto-regulation 
[2]. 

1) Auto-description 
Each module provides a full description of its input, output 

and parameters when the Controller asks. The communication 
is handled transparently by the Base System (see Section IV) 
and the implementer describes the module in CVML [6] – an 
XML-based language extended for Computer Vision data 
streams. 

 
Fig. 1 shows a full auto-description of a module that groups 

individual low-level image features previously computed by 
other modules. As input it takes two datasets, one called 
RawImage and one called PointFeatures. These datasets are 
defined by the modules that produce them and are required for 
this module to run so the controller needs to make sure that the 
modules producing these have run successfully. 

The module produces two output datasets, one called 
Groups and one called GroupHierarchy. The Groups dataset 
has two variables; Time is a timestamp obtained from the 
RawImage and GroupList is a list of named groups of features 
found. These groups contain only the features and the next 
dataset contains information on the group hierarchy. The 
GroupHierarchy dataset contains two variables; Time which is 
the same timestamp as above and GroupPairs which is a list of 
statements Gid1 ⊂ Gid2, indicating group containment relations.  

The module description also specifies the module’s 
parameters. Each has a type field, an optional field, a textual 
description, a default value and either a range of allowed 

values with a step size or a collection of discrete values, which 
the parameter can have. 

The Controller uses these parameter specifications in two 
ways; for online control to regulate parameters by using rules 
during the normal system operation and for offline learning 
when comparing its own performance with training sets by 
exploring the whole or parts of the whole parameter space. 

When executing the module has access to the input datasets 
it specified in its description. These are provided by the Base 
System and will be kept until the module and the Controller 
agree that this dataset is no longer needed. The module has full 
access to its own most recent variables and output (a number 
of steps back in time, can be specified in the auto-description) 
as well as its parameters that may have been set or changed by 
the Controller. Based on all of these the module can now 
compute its output datasets and provide feedback informing of 
its results. 

2) Auto-criticism 
High level feedback consists mainly of a quality and 

quantity measurement and the low level feedback can contain 
as much detail about the results as it wishes to inform the 
Controller about. As part of the feedback about its inputs it 
can also make requests to the Controller, such as I need more 
of this and less of that which the Controller then knows to 
relay to the module producing the relevant input dataset. 

An example of both high and low level feedback can be 
seen in Fig. 2. The high-level feedback contains information 
about the quality and the quantity of the output, which is 98% 
and 2, respectively. Also included is information about when 
the module did its processing and how much time and CPU 
resources it took. In this case the computation lasted slightly 
over 100 milliseconds of which 50 milliseconds of CPU time 
was spent. 

The low-level feedback provides more detailed information 
about the results, such as the location of each of the tracked 
entities. 

3) Auto-regulation 
The Controller can choose to regulate the module by 

directly setting or changing the parameters described by the 
module. This is great for a system which has significant offline 

<description> 
   <parameters count="5"> 
       <parameter name="MaxGroups" type="integer" optional="no"> 
             <description>Maximum number of groups</description> 
             <range from="1" to="100" step="5" /> 
             <default>10</default> 
       </parameter> 
       <parameter name="MinGroups" type="integer" optional="no"> 
             <description>Minimum number of groups</description> 
             <range from="1" to="100" step="5" /> 
             <default>10</default> 
       </parameter> 
   ..... 
    </parameters> 
    <dataflow> 
       <inputs count="2"> 
            <input dataset="RawImage" /> 
            <input dataset="PointFeatures" /> 
       </inputs> 
       <outputs count="2"> 
            <output dataset="Groups"> 
                <variable name="Time" type="Time" /> 
                <variable name="GroupList" type="GroupList" /> 
            </output> 
            <output dataset="GroupHierarchy"> 
                <variable name="Time" type="Time" /> 
                <variable name="GroupPairs" type="GroupPairList" /> 
            </output> 
       </outputs> 
   </dataflow> 
</description> 
 

 

Fig. 1.  An example of a full module description in CVML. This module takes 
many individual point features as input and groups them based on their spatial 
proximity. 

<feedback level="high"> 
    <result quality="0.98" quantity="2" /> 
    <run starttime="1101469301.262" endtime="1101469301.363" duration="101023"  
             cpu="50140" user="30130" kernel="20010" /> 
</feedback> 
 
<feedback level="low"> 
    <entity id="1" type="object" quality="0.98"> 
        <box x="10" y="12" h="45" w="58"> 
    </entity> 
    <entity id="2" type="object" quality="0.98"> 
        <box x="10" y="12" h="45" w="58"> 
    </entity> 
    <run starttime="1101469301.262" endtime="1101469301.363" duration="101023"  
             cpu="50140" user="30130" kernel="20010" /> 
</feedback> 

Fig. 2.  An example both high and low level feedback from a module, which 
informs us that it is 98% confident about the two objects it found, along 
with information about when the module started and finished and 
microsecond details about how long and how much resources it took. The 
low-level feedback adds more detailed information about the tracked entities 
and their location using the CVML language [6]. 
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learning prior to running online, but for systems without much 
prior learning using the auto-regulation feature of a module is 
more robust. 

Auto-regulation is part of the feedback protocol, where 
other modules or the Controller itself can make fuzzy requests. 
These usually take the form of wanting more or less of a 
specific feature or more generally wanting higher quality 
output. The module implementer knows best how to tweak the 
parameter to obtain the required result. 

This is used extensively when the Controller wishes to either 
recompute one module’s output until the needed quality or 
quantity level has been reached, or in the situation where a 
whole arm of the dataflow needs to be recomputed. Often this 
is also used to select between two equivalent modules. 

 

IV. THE CAVIAR BASE SYSTEM 

The CAVIAR Base System consists of a code base which all 
the modules are based on and inherit from and which the 
Controller interfaces with. The Base System implements the 
Base Module, from which every module is derived and hence 
inherits all its functionality automatically. The Base Module 
and other support classes such as the Module Variables form 
the bulk of the Base System and are written purely in C++. 

Each CAVIAR Module needs to have only two functions, 
init() and compute(), and to have its auto-description in the 
constructor. Everything else is handled transparently by the 
CAVIAR Base System, which provides the communication to 
the Controller and the other modules, and manages parameters, 
internal variables and the input and output datasets. 

There are two sides to the Base System, the Controller 
interface and the Module Implementation interface. The 
former provides full support for everything the Controller 
needs from the module in terms of data I/O, access to 
parameters and feedback. The latter provides the modules with 
all the data and makes sure that everything is initialised. 

A. The Controller Interface 

The Controller communicates with the modules via an API 
specifically designed for this purpose. As seen in Fig. 3 the 
Base Module holds all of the data, feedback and parameters 
and merely allows the Controller and the Module 
Implementation to access these. 

The Controller can query and set the values of existing 
parameters of several different types, such as integer, floating 
points, strings, vectors and more. It can enter requests and 
obtain feedback, redirect the input and output, and save the 
current or restore previous states in preparation for 
(re)computing results using the command interface. 

The communication between the Controller and the modules 
happens either directly by calling the API functions or 
transparently via messages using the network. See the Section 
VI (The CAVIAR Communication) for more detail. 

 
 
 

B. The Implementation Interface 

Fig. 3 also shows that the Implementation Layer has a very 
similar access to the Base Module, in that it can read and set 
parameters, handle requests and provide feedback. 

Instead of the command interface it has a generic Data API, 
from which it can obtain any data from previous runs (usually 
limited by the Controller to between 20 and 50) and access the 
current input datasets which it requested in its description. 
Using all this information it computes the output datasets 
required of it, which it marks as output using the Data API. 

The high-level feedback is usually a few assessments of the 
quality and quantity of the results, but the low-level feedback 
can be as detailed as the module wants. For example, if the 
module is an object tracker and it found 20 objects in the 
scene, of which it is quite sure about 10, it may produce high-
level feedback with quantity = 20 and quality = 0.5 and in the 
low-level feedback provide detailed information about each 
target including how confident it is about each of them. This 
may help an intelligent controller to determine how reliable the 
result is or how closely it matches the expected result. 

C. The Base Module 

The Base Module in Fig. 3 is the main handler of all the 
data, parameters, requests, feedback and commands, which it 
will route to the appropriate destination. The Controller will 
tell the Base Module from where it should obtain its input 
data, which could be one or more files or could be a network 
source. 

Likewise, the Controller will command that the output 
datasets are either saved to a file or made available to other 
modules on request. The conversion of datasets to and from 
the common readable CVML [6] is handled transparently. 

Every individual run has a unique ID and when the 
Controller  wants to recompute either one or a whole sequence 
of runs, the module will handle the restoration of previous 
states, which it has stored in a buffer for safe keeping. 

 

Parameters Feedback Requests Commands 

Output CVML 

Parameters Feedback Requests Data I/O 

Input CVML 

Fig. 3.  A diagram of the Controller and Implementation interfaces to 
the Base Module. The input datasets (CVML) come into the Base 
Module from the left and when the Controller commands the module 
to run the module will compute the output datasets (also CVML), 
which are seen coming out on the right. The Controller can vary 
parameters, make requests and obtain feedback which the module 
implementation produces. 
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V. THE CAVIAR BASE LIBRARIES 

As mentioned earlier in this paper, the foundation of the 
CAVIAR system rests on two powerful libraries. The 
CAVIAR Base System is based on the CoreLibrary, which 
provides the independence of operating system and 
architecture needed. The PrimaVision library provides vision 
functions for the modules with full support for working with 
advanced vision. 

The PrimaVision library [8] is part of the Imalab vision 
package and contains a full set of the basic functionality 
needed by any vision or video system, such as edge detection 
and optical flow. Also included is advanced functionality 
stemming from recent research by the INRIA vision group, 
such as object identification by elastic graph matching [11] 
and Gaussian derivatives [12]. 

The CMLabs CoreLibrary [13] is a multiplatform object 
library for C++ with transparent support for UNIX, Windows, 
Mac OSX and PocketPC. It provides many of the common 
objects found in Java (Strings, Collections, Queues, Math 
objects and built-in XML parsing) and has the ability to send 
objects and data across the network using Messages and 
Streaming Media. The network communication layer supports 
and autodetects additional protocols such as HTTP and telnet. 
Additionally, the CoreLibrary supports OS independent multi-
threading including mutexes and semaphores. 

 

VI. THE CAVIAR COMMUNICATION 

The Controller chooses to run the modules in either a file- 
or network-based communication mode. The former is mainly 
used for offline testing or development, where every output is 
saved to a separate file and can be evaluated later. This mode 
also has the advantage that a single or a few modules can be 
run on the whole video set repeatedly in isolation, using a 
complete set of real inputs from previous runs. 

The content of the dataflow is pure CVML which encodes 
both textual and binary information into an architecture 
independent data stream. This is very suitable for distributed 
systems, where the data has to travel across networks, but is 
equally suited for communication with other systems, which, 
even with no knowledge of the CAVIAR architecture, can use 
the information and even participate as a module, if required. 

Network-based communication is used for online running or 
offline training. Each module auto-detects whether the 
intended recipient is in the same executable and can receive a 
direct in-memory transmission or it is located in a separate 
executable on the same or a different computer. If so, the data 
is automatically converted to CVML [6] and transmitted using 
TCP/IP communication. By converting to CVML it is ensured 
that even if the receiver is running on a completely different 
operating system or architecture that the data is still valid and 
understood. 

 

VII. THE CAVIAR COMPUTER VISION SYSTEM 

The first implementation of the CAVIAR architecture was 
used for the CAVIAR project, funded by the EC as a 
collaboration between three institutes; Instituto Superior 
Tecnico in Lisbon, Portugal, Laboratoire GRAVIR-IMAG in 
Grenoble, France and Institute for Perception, Action and 
Behaviour in Edinburgh. The goal was to design a Computer 
Vision architecture which could observe human beings and 
analyse and predict their behaviour in common scenarios such 
as street scenes and shopping centres. 

The CAVIAR architecture has been useful for the 
independent development of modules and controller for 
incremental construction of a combined system. Most modules 
were created and tested independently and when ready 
seamlessly integrated into the whole, either adding to the 
functionality or augmenting existing functionality. The 
Controller was also developed separately, initially working on 
mocked up modules and gradually integrating the real modules 
as well as increasing its own abilities to govern the system, 
first mostly based on rules, but later based on learning from 
training sets. 

It took less than a week to set up the first version of the 
system, once the architecture was in place, and additional 
modules could be implemented in a few minutes, as they 
became available from the other teams. 

When the Controller starts it creates an initial version of the 
dataflow from the auto-description of the modules. From this it 
decides which module needs to run when with which input. An 
example of an automatically constructed partial dataflow is 
shown if Fig. 4. 

 

The square boxes denote modules and the round objects are 
datasets. In this example, the Grabber retrieves the next image 
from the source (a camera or an offline file) and produces a 
RawImage dataset, which includes the image data and a 
timestamp. This dataset is requested by the Tracker which in 
turn produces a TrackedObjects dataset to be used by any 
modules who requests this dataset. 

In the event that two modules produce the same dataset the 
Controller will consider these competitors and will see which 
produces the best output, either simply based on the feedback 

Fig. 4.  Initial (partial) dataflow example, created by the Controller from the 
auto-description provided by the modules themselves. Example of dataflow 
for two equivalent modules which both take the same dataset RawImage as 
input and both produce the same dataset TrackedObjects as output. The 
equivalence is shown by the crossover lines connecting them. 
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of the module itself, based on predetermined or learned rules 
or will even retry the computation of both until one wins or 
they both agree. A visual graph example of this is seen in Fig. 
4, where two modules produce the TrackedObjects dataset and 
the Controller displays them as equivalent by the crossover 
lines connecting them. 

Often, some parts of a dataset are used by some modules 
and other parts by others modules. To optimise performance 
and efficiency a dataset can then be split into two or more 
streams and modules can request one or more of these. An 
example of this is seen in Fig. 5. 

 

VIII. CONCLUSION 

We have presented a plug-and-play Cognitive Vision 
Architecture called CAVIAR for analysing video streams. It 
has a global controller with full knowledge of the system as a 
whole as well as of the individual modules. Each of these are 
auto-descriptive and the system dataflow is automatically 
computed based on these and adjusted based on feedback from 
the modules and on the overall goals and performance required 
from the system. The modules are auto-regulative in that the 
Controller or other modules can request that it modifies its 
own parameters to achieve a desired output. And each module 
is auto-critical as they continuously evaluate their own 
performance and report this back to the Controller. Finally, we 
presented the CAVIAR Computer Vision System which based 
on this architecture allowed us to implement a fully working 
cognitive vision system in less than a week, and add new 
modules in only a few minutes. 
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Fig. 5.  Example of dataflow where one module outputs several 
different datasets, each needed by one or more other modules. 


