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Abstract—In this paper, we present a novel method to estimate curvature of iso

gray-level surfaces in gray-value images. Our method succeeds where standard

isophote curvature estimation methods fail. There is neither a segmentation of the

surface needed nor a parametric model assumed. Our estimator works on the

orientation field of the surface. This orientation field and a description of local

structure is obtained by the Gradient Structure Tensor. The estimated orientation

field has discontinuities mod �. It is mapped via the Knutsson mapping to a

continuous representation. The principal curvatures of the surface, a coordinate

invariant property, are computed in this mapped representation. From these

curvatures, locally the bending energy is computed to describe the surface shape.

An extensive evaluation shows that our curvature estimation is robust even in the

presence of noise, independent of the scale of the object and furthermore the

relative error stays small.

Index Terms—Principal curvatures, surface area, local surface measures,

gradient structure tensor, Knutsson mapping.

�

1 INTRODUCTION

CURVATURES of surfaces are the key to compute shape descriptors
and to classify different classes of surfaces. We have developed a
novel method to estimate principal curvatures of iso surfaces that
are implicitly represented by gray-level isophotes (level-sets).
Surfaces are embedded in the image by a gray-level difference with
respect to their surroundings. Our method works directly on the
gray-value information of the image. Neither a segmentation is
needed to detect the iso-level of the surface nor a parametric fit is
done at any time during the analysis. The method exploits the
differential structure of images.

The iso surface or isophote curvature ITT
krIk can successfully be

applied to edges in 3D gray-value images [1], [2], [3], [4], [5],

[6], but it fails when applied to curved plates, hollow objects,

and concentric shells [7]. This is due to the fact that, on ridges

and in valleys, the gradient magnitude krIk is (nearly) zero. In

Figs. 2c, 2d, 2e, and 2f, we show a shell of a 3D torus with a

Gaussian ridge profile and computations of the mean curvature

by our proposed algorithm and by the isophote curvature [4].

The numerator of the mean curvature by isophote curvature in

Fig. 2e is smooth, but for all pixel on the ridge the normal-

ization of the isophote curvature fails due to a vanishing

gradient magnitude, resulting in a severe overestimation. These

pixels are displayed white in Fig. 2f. The curvature computed

by our proposed method does not suffer this problem.
Our algorithm can robustly estimate curvature of any 3D pattern

hampered by noise. It is particularly useful for (concentric) shell

patterns where isophote curvature also fails, compare Figs. 3d, 3e,

and 3f. The regularization of the isophote curvature does not only

reduce noise, but also suppresses such pseudoperiodic patterns at

the same time. The aforementioned problem can be overcome if we
transform the gray-value image into an orientation map mod �

(normal vector field up to sign) from which the curvatures are
derived after solving the discontinuity problem. In 2D, the double
angle method is well-known for solving the discontinuity in
representing orientation [8], but in 3D, this problem remained an
obstacle that prevented the computation of curvature. We solve
this problem by mapping the orientation field via a quadratic form,
the Knutsson mapping [9], [10], which is suitable for further
processing and enables us to compute the curvatures.

In images that contain planar structures, the local bending
energy, �2

1 þ �2
2 [2], is a useful characteristic (local deformation

energy) and can be computed per point with subpixel precision. It
can be integrated over the object surface

EB ¼
Z

�2
1 þ �2

2 dA ð1Þ

into a scale invariant shape descriptor. A sphere minimizes
bending energy for a given closed surface. Therefore, it can be
seen as the roughness of a surface and can be used to characterize
(biological) objects [11], [12]. Another shape descriptor is the Euler
characteristic � ¼ 1

2�

R
�1�2 dA, which describes the global topology

of a closed surface by an integer number. As a function of scale, �
is closely related to the morphological granulometry [13], [14], [15].
The latter is a volume weighted distribution, whereas � counts the
number of objects minus the number of handles (or tunnels) visible
at a certain scale.

2 CURVATURES OF GRAY-VALUE SURFACES:
THEORY AND ALGORITHMS

The curvature � at a point p in a tangent direction T on a surface is
defined as the magnitude of the change of the surface normal N
(see, for example, [16], [17])

�TðpÞ ¼ krTNk: ð2Þ

There exist two mutual orthogonal tangent directions T1 and T2,
for which the curvatures are extremal. They are called principal
directions, which associated curvatures �1 and �2. Two classical
measures of curvature in a point are the Gaussian K :¼ �1�2 and
mean curvature H :¼ �1þ�2

2 . The shape index s ¼ 2
� arctan

�2þ�1

�2��1
[18]

gives a qualitative classification of 2D surfaces by only one
number.

2.1 Curvature Estimation Algorithm

In order to compute the principal curvatures and shape descriptors
of iso surfaces embedded in gray-level images we need 1) to find
the vector field normal N and the principal directions T1 and T2

and 2) solve the discontinuity problem of N and compute krTNk.

2.1.1 Normal Field and Principal Directions by the

Gradient Structure Tensor

The gradient structure tensor (GST) is a generic tool to analyze
local structure in images [19], [20], [21], [22], [7], [23]. It is defined
as G :¼ vvt with v ¼ rI, I is a gray-value image and the overhead
bar ð�Þ stands for averaging the elements over a local (Gaussian)
neighborhood. The GST obtains its descriptive power from an
analogy to a well-known quantity in physics, the inertia tensor
Jij ¼ trðGijÞ�ij �Gij.

Two scales are involved. The gradient vector rI is computed by
convolutions with Gaussian derivatives at the scale �g. The size of
the Gaussian weighted tensor smoothing �T defines the neighbor-
hood in which the image structure is computed. The latter can be
used for noise suppression without hampering the signal strength.
The tensor smoothing is usually chosen 2�g � �T � 10�g. An
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eigenvalue analysis of G is a standard approach to classify local
structure in images. In the case of planar structures, the eigenvalues
will have the following ordering: �1 � �2 > �3. The eigenvector v1
(corresponding to the largest eigenvalue �1) is aligned which the
surface normal. The remaining two eigenvectors v2; v3, lie in the
principal directions of the surface. Summarizing, we find:

v1 $ N; v2;3 $ T1;2: ð3Þ

For cylindrical surfaces and at umblic points on surfaces (e.g.,
spheres and planes), the true normal is a symmetry axis for all
sizes of the local neighborhood �T . All symmetry axes, including
the normal, coincide with the eigenvectors of the GST as is the case
with the inertia tensor. Note also that the eigenvectors of the GST
yield the “best” orientation estimate in a least-squares sense [24].

A drawback of the GST that the fvig only contain orientation
information v1 ¼ �N, (a discontinuous representation) is solved
below.

2.1.2 Solving the Discontinuity Problem in Estimating of the

Principal Curvatures

Now, we want to compute the principal curvatures by differentiat-
ing the normal with respect to the principal directions. From (2)
and (3), we obtain

j�1;2j ¼ krT1;2
Nk $ krv2;3 v1k: ð4Þ

Unfortunately, the calculated orientation field v1 contains a
discontinuity. Computation of partial derivatives of an orientation
field are not possible without some preparation. A comprehensive
review of this problem is given in [9], [10]. The idea is to transform
v1 into a continuous representation by a mapping M for which
k�MðvÞk ¼ Kk�vk holds. A suitable mapping was introduced by
Knutsson MðvÞ ¼ vvT

kvk , with K ¼
ffiffiffi
2

p
for kvk ¼ const: [8]. The norm

of the mapped derivative MðvÞ is linearly related to the norm of
the derivative of v. Therefore, we propose a new expression,
together with (3), that is suitable to compute curvature of surfaces
in images

j�1;2j ¼
1ffiffiffi
2

p krv2;3Mðv1Þk: ð5Þ

Let the elements of Mðv1Þ ¼ v1v
t
1

kv1k be Mij and xi a coordinate then (5)
reads in explicit index notation

j�1;2j ¼
1ffiffiffi
2

p k
X3
k¼1

@Mij

@xk
vk2;3k;

where the norm of M is defined as the Fröbenius norm
kMk2 :¼

P
i;j M

2
ij. See Appendix B for a formal proof that (5)

equals (2). The application of (5) to hypersurfaces in n dimensions
is straightforward. The sign of the curvature, i.e., if we deal with a
elliptic or hyperbolic Situation, is lost by the outlined algorithm.
The sign can be retrieved, even for planar structures, as described
in Appendix A.

2.2 From Surface Area Estimation to Shape Descriptors

In order to build (local) shape descriptors for objects based on
these curvatures, we must be able to integrate the curvatures over
the whole object surface, compare (1). To do this, we introduce a
sampling-error free surface area estimator based on the sum of the
samples in a local image. The local image is transformed into an
image whose sum is proportional to the surface of the embedded
object. With this technique at hand, we can now estimate globally
the bending energy.

Assume a band-limited solid object is embedded in an image I

by an iso surface at level ‘. The surface area of the object
R
S dA

can be computed by a volume integral
R
I �½IðxÞ� dV after a

suitable transformation of the image. Here, we will focus on the
main idea, for a more comprehensive discussion see [25], [26].
The transformation � must produce an image whose integrated
volume ¼ const:� surface area. Thus, each cross section eðrÞ
perpendicular to the iso surface S should contribute an equal
amount. First, we apply erf-clipping (a form of soft-clipping) to
the image between the limits ‘� 1

2 h. The cross section is a clipped
edge, eðrÞ ¼ h�

R r
0 pð~rrÞ d~rr with profile distribution pð~rrÞ satisfyingR1

0 pð~rrÞ d~rr ¼ h. Along the iso surface krIclipk ¼ k d
dr Iclipk. Note

that the integral
R
k d
dr Iclipk dr ¼

R
k d
dr eðrÞk dr ¼ h. Finally, volume

integration of krIclipk accumulates the contribution of all cross
sections and, hence, 1

h

R
krIclipk dV yields the surface area of the

embedded object. Thus, integration over an iso-surface element
dA is accomplished by integration of the gradient magnitude after
clipping over the entire image volume

Z
S

dA ¼ 1

h

Z
V

krIclipk dV : ð6Þ

The volume integral can be replaced by a sum of the sampled
image iff krIclipk is approximately band-limited and sampled at
half the Nyquist rate [1], [25]. Since krIk � 0, noise contributions
will not compensate each other, but sum up over the entire image.
A mask image can be used to only integrate over a region of
interest. The mask can be computed from the gradient magnitude
with a larger filter and then performing an iso-data threshold
operation. Another possibility is to apply a nonlinear smoothing
operation (e.g., anisotropic diffusion along the contour dI

dt ¼ �ITT
[27]) for preprocessing followed by an erf-clipping operation [25].
The sampling-error free measurement of the surface area is only
possible if the object is solid. Filling shells can be done by a
procedure described in Appendix A.

3 EVALUATION OF THE ALGORITHM

3.1 Test Images

We created band-limited gray-value test images containing shells
of constant thickness of spheres and ellipsoids, see Fig. 3a and 3b.
A band-limited ellipsoid shell is produced by computing the
squared gradient magnitude of a band-limited filled ellipsoid.
Isophote curvature estimation ITT

krIk applied to these images will fail
as the gradient vanishes on ridges and valleys. The relative edge
localization error of the gradient in 3D is about �ð�=RÞ2 for
constant curvature [26], where R is the bending radius and � the
standard deviation of the derivative filter. Therefore, the peak
position of krIk2 will be shifted, but this is neglectable for R > 10.
We must satisfy � � 0:9

ffiffiffi
2

p
	 1:3 to ensure band-limitation [26].

3.2 Curvature

In this section, we investigate the performance of (5) on different
ellipsoids with different levels of added Gaussian noise. An
ellipsoid with half axes a; b; c (Fig. 1a) is given by the parametriza-
tion ða cosu sin v; b sin u sin v; c cos vÞ; u 2 ½0; 2��; v 2 ½0; �� : Due to
symmetry, it is sufficient to evaluate the algorithm in the first
quadrant ðu 2 ½0; �=2�Þ of the xy-plane ðv ¼ �=2Þ. The first principal
direction lies perpendicular to the xy-plane, whereas the second
lies in it. The curvatures are computed for the whole image (via (5))
and then evaluated at the mathematical surface position. We can
retrieve the values with subpixel precision as our test image is
sampled correctly. In Fig. 1b, the estimated and true principal
curvatures are plotted for three different ellipsoids with half axes
a ¼ c and b=a ¼ 1:5. The estimation is averaged over 20 subpixels
shifts. The relative estimation error is about 1 percent at the blunt
side (u ¼ 0; v ¼ �=2) and increases with increasing curvature to
about 7 percent for � ¼ 0:075 at u ¼ �=2. For curvatures smaller
than 0:04, our estimation has very little bias (� < 2 percent). The
small underestimation of the true curvature as observed in Fig. 1b
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for higher curvatures can be understood as follows: The

derivatives are implemented as convolutions with Gaussians
derivatives at scale �k. Recall that the curvatures are computed
as the derivative of the (mapped) surface normal in the direction of

the principals ((5)), then the average over a surface neighborhood

includes surface normals that are not perpendicular to the
direction of the derivation, thus have a smaller component than
the normal at the point under consideration. Therefore, the more
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Fig. 1. (a) Ellipsoid with half axes a; b; c. Principal curvatures �1;2 in xy-plane as a function of u with �g ¼ 1; �T ¼ 2; �k ¼ 1. (b) Three ellipsoid shapes for 20 random

positions. (c) Influence of �k on �1. (d) Influence of �T on �1. (e) and (f) Influence of noise on �1 and �2 averaged over 40 runs.



the local neighborhood is curved the larger the error. This
reasoning is also valid in the Knutsson representation where the
derivatives are taken, as the Knutsson mapping preserves the local
geometry.

In Fig. 1b, two points (A,B) are indicated that lie on two
different ellipsoids with the same curvature �1 ¼ 0:05. In A, the
estimation is very good (� < 1 percent), although the local
geometry is asymmetric (�1 6¼ �2), whereas, at the umblic point B
(equal curvatures in all directions), we observe a larger error
(� 	 4 percent). The reason is that, at A, �1 ¼ const: and �2 changes
slowly, whereas, at B, �1 ¼ �2 but both are changing rapidly.
Hence, the estimation error is not only dependent on the value of
the curvature, it also depends on the change of the curvatures in
the neighborhood, i.e., the local geometry.

3.2.1 Influence of the Scale of the Filters: �g; �T ; �k

There are three Gaussian kernel sizes involved in the computation:
First, the derivative kernel �g to compute the gradient rI; second,
the smoothing kernel �T of the GST; and, finally, the derivative
kernel �k applied to the mapped normal field (5). We do not
investigate the dependency on the size of �g as the smallest
reasonable size, �g 	 1, gives the best gradient [26] and �T is much
more effective in noise suppression. The influence of �k is shown in
Fig. 1c. The relative error in Fig. 1d is much smaller for the same
size of �T as for �k in Fig. 1c. This is due to the fact that curvature is
a difference of orientations, biased orientation terms (dependent
on �T and _��) cancel to a limited degree. The actual choice of the
size of �T for generic neighborhoods is a trade off between noise
suppression and accuracy of orientation estimation.

3.2.2 Performance in the Presence of Noise

We hamper the test images with different levels of Gaussian noise
to measure the robustness of the estimator. We use the definition
SNR ¼ 20 log S

�n
with �2n the variance of the Gaussian noise and S

the maximal signal strength. In Figs. 1e and 1f, the results are
shown for two different ellipsoids. The error-bars indicate the
standard deviation over 40 realizations. The estimation is
consistent as the mean stays around the true value and the error-
bars intersect the true curvature. With increasing noise level only
the error-bars become larger, the mean remains stable. For a
discussion on noise robustness for traditional methods, see, for
example, [28].

3.3 Bending Energy and Surface Area

The estimation performance is investigated for ellipsoids as a
function of scale and deformation. In all experiments, the results of
the true, the noise free, and two noise level (20, 40dB) are plotted.
The results of the noise runs are averaged over 20 realizations and
the noise free results over 20 subpixel shifts. For all computation,
we keep the following kernel sizes �g ¼ �k ¼ 1; �T ¼ 2 fixed.

3.3.1 Ellipsoids, Scaled, and Deformed

The true surface area and bending energy are integrated
numerically from the analytically computed curvatures with
MATHEMATICA [29]. The results of our computations are
shown in Fig. 2a for a scaled ellipsoid and in Fig. 2b for a
deformed one. The deformation of an ellipsoid is done by slowly
deforming a sphere (r ¼ 12) into a elongated cigar-like object
(a ¼ c ¼ 12; b ¼ 38); whereas the scaled ellipsoid is blown up
from a ¼ c ¼ 12; b ¼ 18 to a ¼ c ¼ 36; b ¼ 54 with constant ratio
b=a ¼ 1:5. The area estimation is critical to all other estimations.
For the noise free case the estimation is nearly error-free. Even in
the presence of noise, the area estimation is fine. The bending
energy is a scale invariant property. In Fig. 2a, we see that the
curve for the noise free and for 40dB indeed approach a constant
value. For 20dB, the curvature estimation for larger ellipsoids
seems to be influenced by the noise in a scale variant manner
because the area estimation remains fine. As higher curvatures

are more biased (Section 3.2), we expect the estimation to
perform better for larger ellipsoids. The quality of the estimation
of the bending energy, however, decrease with increasing ratio
b=a (elongation). The curvature increases in some areas during
deformation such that the bending energy increases. These larger
values will contribute to a slightly larger negative bias as
explained in Section 3.2.

4 APPLICATION AND COMPARISON WITH

EXISTING WORK

We compare our method with the classical Hessian based isophote
curvature and a method presented by Thirion and Gourdon [4].
They compute the curvatures directly from the first and second
derivatives of the image. For further work on 3D curvature, see, for
example, [30], [31], [3], [32], [33]. In the Hessian approach, the
Hessian matrix is rotated to be aligned with the surface normal.
Then, the surface subspace Hessian is diagonalized and the
curvatures are computed as these eigenvalues divided by the
gradient magnitude [34], [2].

In Figs. 2c, 2d, 2e, and 2f, we show different vertical slices
through a synthetic 3D torus shell and the calculated mean
curvatures H ¼ 1

2 ð�2
1 þ �2

2Þ. In Fig. 2d, the estimation by our
algorithm (5) is shown; in Fig. 2e, the numerator of the mean
curvature by Thirion et al. [4]; and, in Fig. 2f, the mean curvature by
Thirion et al. [4]. Comparing Figs. 2e and 2f, we see that the
numerator is smooth, but that at the peak position of the ridge
profile the normalization fails as the gradient magnitude is (nearly)
zero. These positions display white in Fig. 2f. Note the sign change
in Fig. 2e on different sides of the ridge. In a coordinate independent
description (arbitrary choice of the origin), the sign of curvature is
not meaningful for ridges as the sign cannot be defined consistently
from local information only (Appendix A). For edges, this is trivial
as by convention the inside of objects is white.

In Figs. 3d, 3e, and 3f, we apply 3D surface curvature estimation
to a 3D CT image of a tree trunk. In Fig. 3c, the input image is
shown. Our estimator as in (5) computes a smooth curvature field.
The isophote approach via the Hessian fails on the ridges (white
rings in the input image) and valleys (dark rings). The estimation
algorithm of Thirion et al. [4] (12), (13), and (14) does not overcome
these problems either. Furthermore, in any application where
patterns of ridge-like structures are present a robust estimation is
not possible by the isophote curvature. First, on the ridges and
valleys the gradient magnitude vanishes which results in a very
high overestimation. Second, efficient noise reduction is not
possible as it requires large smoothing kernels which smooth out
the pattern of interest, such that the signal vanishes. Our algorithm
can reliably estimate curvature in these cases.

The reason for these properties is that our algorithm uses a two
step approach: First, an orientation estimation process in a local
neighborhood described by �T and then the derivative of the
orientation field yields the curvature. In our algorithm, �g; �k are the
smoothing parameters for the first and second order derivative and
correspond to the smoothing parameter of the isophote curvature.
For �T ! 0, the GST returns the input vector as only eigenvector
and our proposed method is equal to the isophote curvature. More
explicitly, the added value of our estimation algorithm is a robust
orientation estimate avoiding gradient magnitude normalization
through the use of a local neighborhood �T .

5 CONCLUSION

We have demonstrated that our approach to estimate curvature
and (local) shape descriptors on surfaces based on the differential
structure of images works. It avoids problems associated with
classical approaches such as matched filtering and polynomial
fitting. It succeeds where isophote curvature fails. Furthermore, we
can conclude that the GST is able to estimate the principal
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directions on surfaces, as the computed curvatures in these

directions are estimated accurately. Our new curvature estimation

formula (5) is a consequence of the formulas of differential

geometry taking into account the structure of gray-level images,

e.g., circumventing the problem of nonunique orientation repre-

sentation by using the Knutsson mapping. The main advantage of

our algorithm is that the orientation estimation and the curvature

computation are done in two steps in contrary to the isophote
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Fig. 2. (a) and (b) Estimates of surface area, bending energy EB for ellipsoids at different noise levels averaged over 20 runs with �g ¼ 1; �T ¼ 2; �k ¼ 1 (a) as a function of
a, with fixed ratio b=a ¼ 1:5; c ¼ a; (b) as a function of the ration b=a, with a ¼ c ¼ 12; (c) vertical slices through a 3D torus shell with radii R ¼ 50 and r ¼ 15 and Gaussian
ridge profile; (d) mean curvature by (5); �g ¼ 1; �T ¼ 3; �k ¼ 1; (e) numerator of the mean curvature by Thirion et al. [4] � ¼ 1; (f) mean curvature by Thirion et al. [4].



approach [4]. Therefore, the local orientation estimation can be

done accurately with the GST (which includes the large regular-

ization kernel �T for noise suppression) and, from this orientation

data, the curvature is computed (small derivative kernel �k) by

differential geometry formulation using a closed-form orientation

representation. Even for shell-like objects, the sign of curvature can

be retrieved. The error of the computed curvature is dependent on

the size of the curvature and its change in the local neighborhood.
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Fig. 3. (a) Cross sections through an ellipsoid shell. (b) An ellipsoid shell where one octant is cut out. (c) Image of a tree trunk (xy and xz cross sections). (d) Estimated
principal curvatures by (5), �g ¼ 1; �T ¼ 4. (e) Principal isophote curvatures via the Hessian at scale � ¼ 4. (f) Principal curvatures at scale � ¼ 4 according to Thirion et al.
[4] (12), (13), and (14). (d), (e), and (f) Display: �1: [-.06,.06], �2: [-.004,.004].



Nevertheless, the error stays small (� < 7 percent for � < 0:08) and
the estimation is robust in the presence of noise. Surface area
estimation and integration of functions over these embedded
surfaces can be performed sampling-error free by relation (6). It
performs without bias and is independent of scale and local
geometry. From these two ideas, curvature based shape descrip-
tors, the bending energy, and Euler characterization can be
computed. The estimation of these descriptors is consistent, robust,
and independent of the scale of the objects. There is little relative
error for isotropic objects with small curvature (� < 0:5 percent for
� < 0:03) and for highly asymmetric shapes and high curvatures
the error stays small (� < 7 percent for � < 0:08).

APPENDIX A

SOLID OBJECTS FROM SHELLS AND THE

SIGN OF CURVATURE

Reconstructing a solid object from a shell is achieved by
preliminary filling the shell by the gray-weighted distance trans-
form [35], [36]. Now, we can distinguish interior from exterior
parts of the object. This yields a sign which we can add to the
estimated orientation field and obtain the normal vector field.
Together with the original object shells in the input image, we can
create a gradient vector image from which we can obtain solid
objects by an advanced integration technique [37]. The sign of the
surface principal curvatures for shell like object in gray-value
images is obtained by investigating the value of the second
derivative along the tangent direction TtHT, where H is the
Hessian matrix of the image, so a maximum/minimum corre-
sponds to a negative/positive value.

APPENDIX B

PROOF OF (5)

Equation 2 reads in index notation (with summation over same
indices) �2 ¼

P
l½Ti@iNl�2. With relations (3), a normalized normalP

l N
2
l ¼ 1 and the mapping MðNÞ ¼ NlNk, (5) reads

2�2 ¼
X
l;k

½Ti@iNlNk�2 ¼
X
l;k

N2
l ðTi@iNkÞ2

þN2
k ðT i@iNlÞ2 þ 2NlNkðTi@iNkÞðT i@iNlÞ ð7Þ

¼
X
l

N2
l

X
k

ðT i@iNkÞ2 þ
X
k

N2
k

X
l

ðT i@iNlÞ2

þ 2
X
l

NlðT i@iNlÞ
X
k

NkðTi@iNkÞ ð8Þ

¼ 2
X
l

½T i@iNl�2 þ 2½
X
l

NlðTi@iNlÞ�2

¼ 2
X
l

½T i@iNl�2 þ 2½
X
l

T i@i
1

2
N2

l �
2 ¼ 2

X
l

½T i@iNl�2: ð9Þ
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