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Introduction 
In the overwhelming majority of studies to date, image sequences are primarily 
analysed and processed in groups of two frames, as by differentiating one frame from 
the other, one is able to infer the dynamics occurring in an image sequence. Although 
the two frame approach has been very successful in some applications, such as the 
MPEG compression standard, it faces considerable difficulties, if used for example to 
reason about non-constant velocity motion, the detection of occlusions and 
innovations, and long-term scene dynamics. It is also inherently related to the difficult 
problem of feature correspondence. This report aims to review the developments 
made in processing an alternative image sequence structure; the spatio-temporal 
volume, which has been research as a means to alleviate the shortcomings of the 
traditional pair-wise approach. The literature concerning the analysis of spatio-
temporal volumes can generally be classed as either slice-based approaches, whereby 
two-dimensional temporal slices of the volume are processed, or volume-based, in 
which case three-dimensional structures are considered.  
 
This division is reflected in the format of this report. An overview of the traditional 
motion analysis paradigm is first presented, and its use in two important tasks; Shape 
from Motion (SfM) and video segmentation is summarised. The next section provides 
a good introduction to the notion of spatio-temporal volumes. The next two sections 
reviews the recent work achieved in both spatio-temporal slice and volume analysis 
respectively. The final section summarises these findings, identifies the major 
shortcomings of current-state capabilities, and identifies possible directions for future 
development.  

Motion for video sequence analysis 
The analysis of motion enables us to extract visual information from the spatial and 
temporal changes occurring in an image sequence, and is a fundamental task in 
computer vision and image processing. Assuming illumination conditions remain 
constant, changes in an image sequence are caused by a relative motion between the 
camera and the scene; either by the viewing camera moving relative to a static scene, 
elements of the scene being in motion, or in the general case, both camera and objects 
moving independently. The problem of motion analysis may be divided into two sub-
problems; that of feature correspondence and reconstruction. The correspondence 
problem concerns finding pairs of features in two or more perspective views of a 
scene such that each pair corresponds to the same scene point. Due to its inherent 
combinatorial complexity and ill-posed nature, feature correspondence is one of the 
hardest low-level image analysis tasks. The solubility of the correspondence problem 
is also influenced by factors such as image noise, periodic textures and object 
occlusion.  The reconstruction problem states that, given a number of corresponding 
elements, and possibly knowledge of the camera's intrinsic parameters, what may be 
inferred about the 3D motion and structure of the observed world. The extraction of 
motion information from an image sequence has many important applications, with 
two of the most significant being the inference of Shape from Motion (SFM) and 
video segmentation.  

Shape from motion 
Shape from motion concerns recovering a scene’s 3D structure from motion-induced 
spatial and temporal changes occurring in an image sequence. With the knowledge of 
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a camera’s location, various perspective projections of a particular object allow us to 
infer its depth by comparing the projection’s relative displacement in different frames. 
This is a hard problem for the similar reasons as stereoscopic vision; in particular, as 
it must solve correspondence problem. There is a vast range of approaches which 
address Shape from Motion, ranging from block matching algorithms to stochastic 
techniques, texture-based to feature based. A useful overview of such methods is 
provided by Jebera et al. [20]. 

Motion-based video segmentation 
One of the primary goals of video analysis is to build a semantic interpretation of the 
scene being captured, which in itself involves the segmentation of the scene into its 
constituent semantic entities (e.g. objects or textures.) Although semantic-based 
segmentation, in which members of a scene are labelled with their real-world 
counterparts, operates at the most desirable object description level, it is a largely 
intractable problem, and in the general case is AI complete. Consequently, the 
majority of segmentation methods use concrete and measurable segmentation criteria 
that define non-semantic entities, and is typically motion-based or colour and texture. 
Motion-based segmentation relies on the fact that pixels associated with an object 
tend to move in a coherent fashion, which makes motion a very strong cue for object 
segmentation. Video segmentation has many important applications. These include 
video compression, in which it is possible to eliminate the redundancy related to the 
repetition of the same visual patterns in successive images. It is also used for video 
description tasks, such as logging, annotation and indexing. Automatic object 
extraction can help to enrich raw video content with object-specific information, 
which may be used by search engines and interactive multimedia documents. It is also 
useful in post-production, where special effects and visual modifications are applied 
to specific objects in the scene, and more generally in scene interpretation and video 
understanding. 

Current approaches in motion analysis 
The fundamental goal of motion analysis is to determine a vector field describing 
changes in the image over time [18]. The most widely researched techniques for doing 
so can be broadly separated into three groups; gradient-based, correlation-based and 
feature-based approaches. Gradient-based methods make use of spatio-temporal 
partial derivatives to estimate the image flow at each point in the image. Horn and 
Schunk [18] used the spatio-temporal derivatives of the image brightness function, 
which assumes that the brightness of any part of the imaged world varies very slowly, 
so that the derivative of the brightness is zero. Gradient-based motion segmentation is 
often performed by first recovering a dense optical flow field and then fitting this field 
to a model, which is often affine [5, 19, 23, 58]. Since reliable computation of optic 
flow often requires expensive computations, these methods are mostly limited to off-
line applications. A number of methods have been developed for simultaneously 
recovering motion and performing segmentation [9, 40, 46]. In these techniques, 
segmentation is reformulated as a Markov Random Field (MRF) based relaxation 
problem. Correlation-based techniques determine the motion vectors by comparing 
the similarity in intensity patterns between two images in the sequence [32]. This 
method is generally used to aid the matching of image features or to find image 
motion once features have been determined by alternative methods.  
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Feature-based approaches aim to compute and analysing the optic flow at a small 
number of well-defined image features in a scene, such as corners, edges, blobs. In 
essence, this method operates in a feature tracking framework, where each frame in 
the sequence is first spatially segmented, and the extracted features are matched with 
those corresponding features in later frames. The simplest and most popular approach 
involves two consecutive frames, from which two sets of features are extracted; 
whose matching gives rise to a single set of motion vectors. Another feature-based 
method involves using the features in one frame as seed points, and then using other 
methods, such as gradient-based, for flow detection [52]. 

Analysis using the spatio-temporal volume 
The approaches mentioned above each share the same characteristic of typically 
determining motion based on two frames in the image sequence, and so share similar 
shortcomings as mentioned earlier. Motion estimation using frame differencing is also 
highly sensitive to noise, and results in a high false positive rate which is hard to 
surprises. Gradient and feature-based approaches also share the characteristic that 
they each favour features in either the temporal or spatial domain respectively; the 
first finds temporal features (e.g. optical flow), and then groups these spatially, and 
the second first finds spatial features, and projects these temporally.  
 
A more recent approach is to unify the analysis of spatial and temporal information, 
by constructing a volume of spatio-temporal data in which consecutive images are 
stacked to form a third, temporal dimension (figure 1). The benefits of analysing this 
volume are realised when the images are sampled sufficiently often such that there is 
continuity in both temporal and spatial domains. One of the major advantages of this 
representation is that by analysing feature structures in this volume, we may reason 
about much longer-term dynamics. Also, by conjointly providing spatial and temporal 
continuity, the complexity of feature correspondence is significantly reduced. A 
further advantage is that occlusion events are made much easier to detect, as they are 
represented explicitly in this volume as truncated paths [26, 57]. 
 

 
Figure 1 An example spatio-temporal image volume. On the left is the first image of the scene 

and on the right is the video cube constructed by zooming into the doll’s house 
 
The spatio-temporal volume was first pioneered in 1985 by Aldelson and Bergen [1], 
in which motion models were based on energy and impulse response to filters. Since 
then, the spatio-temporal volume has been predominantly studied in image 
processing, both as a means for inferring a static scene’s depth information, and for 
performing segmentation of dynamic scenes. For both of these tasks, the methods 
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developed can be grouped depending on whether the volume is processed by 
analysing 2D structures found in temporal slices, as a whole to analyse paths and 
surfaces generated in these volumes caused by relative camera/object motion. The 
following two sections summarises the work conducted for in both of these 
approaches. 

Pattern analysis of spatiotemporal slices 
One way to analyse the spatio-temporal volume is to consider it as being formed by a 
stack of two-dimensional temporal slices. For example, if the cube in figure 1 were to 
be sliced horizontally, one slice per scan line, then each slice exhibit structures related 
to the image features which pass over that scan line over time. These slices have been 
studied in for a variety of problem domains: to infer feature depth information [6, 8] , 
generating dense displacement fields [31, 51], camera work analysis [28, 42, 44],  
motion categorisation [41, 43], the detection of parked vehicles [17], ego-motion 
estimation [48], for use in advanced navigation systems [22], view synthesis [53] and 
gait recognition [45]. A selection of the key techniques for this approach is presented 
below. 

Epipolar plane image analysis 
Slices of the spatio-temporal volume were first investigated by Bolles et al. [8], which 
focused on the geometric recovery of static scene structure. The particular class of 
slices analysed were termed epipolar plane images (EPIs), and by restricting camera 
motion to linear paths, with a fixed orientation orthogonal to the direction of motion, 
depth information could be extracted from the relative angles of paths formed by 
features in the EPI. The concept of EPI analysis can be best explained 
diagrammatically, and the general framework is illustrated in (figure 2). 

 
Figure 2 The framework for Epipolar Image Analysis 

 
For any feature point P , we first define an epipole plane to be the plane passing 
through P  and any two camera positions. This plane is identical for any pair of 
collinear camera positions. We further define the epipolar line to be the intersection 
between an epipolar plane and any of the cameras’ image planes. Given the camera’s 
restriction to linear motion with a fixed, orthogonal viewing angle, each epipolar line 
passes horizontally through the image planes, and occurs with the same vertical 

Epipolar plane 
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position. With these constraints, we may define an EPI for a given epipolar plane to 
be a slice in the spatio-temporal volume which passes through each camera’s epipolar 
lines. This corresponds to a horizontal slice in the temporal domain, which is 
illustrated in figure 3. 

 
Figure 3 Illustration of Epipolar Plane Images. The spatio-temporal volume is given by the image 
on the left, which has been created by a lateral motion of a camera mounted on a moving vehicle. 
The second image shows an example EPI. 
 
The advantage of partitioning motion analysis along EPIs is that any given feature 
will reside on a single EPI throughout the spatio-temporal volume. Consequently, the 
problem of stereo correspondence has bee reduced from two dimensions to one, as it 
is only necessary to search along the corresponding epipolar line in the other image. 
Furthermore, the strictly linear camera motion causes features to trace straight paths 
through the EPIs (figure 4), which can be easily extracted (Bolles et al. used Ramer’s 
algorithm to fit line segments to the zero crossings of the slice convolved with the 
Laplacian edge detector.) The primary advantage of EPIs analysis is that it essentially 
combines the acquisition and tracking stages of conventional motion analysis into 
one.  
 

 
Figure 4 Example linear features found in EPIs.  Images (a),(b),(c) and (d) shows selected frames 
from a video sequence taken with a camera moving from left to right of a static scene. Image (e) 
shows the spatio-temporal volume. Image (f) shows an EPI, illustrating the linear path features 

and truncations caused by the coloured shape occluding features behind it. 

Extracting Depth from EPIs 
Figures 3 and 4 illustrate how lateral camera motion causes features in space to trace 
continuous straight paths in EPIs. The slope of these paths is related to the distance 
the feature is to the camera’s centre. This relationship is illustrated in figure 5, which 

(a) (b) (c) (d) 

(e) 
(f) 

(g) 
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shows the change of parallax when a camera moves between two locations, 1C and 

2C for a feature P . 

 
Figure 5 The geometric relationship between feature depth and the angle the feature is projected 

onto two camera positions. 
 
The depth and the parallax are related by the following expression: 

 
 

U∇  may be found using the corresponding points of P in the EPI, and x∇ is a 
function of camera speed. Knowing these parameters, an estimate for the depth of the 
feature can be easily obtained. 

Shortcomings of EPI analysis 
Despite the considerable advantages of EPI analysis, the method of Bolles et al. 
suffered form the major constraint of linear camera movement, which was necessary 
to ensure that each 3D feature remains on the same EPI throughout the image 
sequence. Also, features may only trace linear paths in the EPI if the camera’s 
orientation is fixed and orthogonal to the direction of motion. A further problem is 
that the approach also does not account for independently moving objects. 

Generalising EPI analysis 
In light of these limitations, a succession of developments on EPI analysis has aimed 
to alleviate these restrictions. The first was made by Baker et al. [6] and relaxed the 
constraint for orthogonal and fixed camera motion to arbitrary, known orientations. 
Arbitrary camera orientations causes hyperbolic feature trajectories in the spatio-
temporal volume, but by mapping these points in the spatio-temporal volume ( )tyx ,,  
to an epipolar cylindrical coordinate system ( )θ,, hr , whereθ  is the epipolar-plane 
angle for a particular view, the trajectories were once again made linear (figure 6.) 
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Figure 6 EPI analysis for linear camera motion in which the camera orientation may be 

arbitrary. 2V shows a camera whose orientation is orthogonal to the direction of motion. 1V  and 

2V are at arbitrarily orientated. The intersection of each epipolar plane radiates out from the 
camera path, and by mapping each frame into a cylindrical system, point P will trace a linear 

path through this new spatio-temporal volume. 
 
A more recent development to allow for non-linear camera motion was made by Li et 
al. [31], which introduced the notion of piecewise linear EPI analysis. In this 
framework, EPIs are constructed only from those images of the sequence where the 
assumption of linear equidistant camera motion is approximately fulfilled. Lie et al. 
investigated a camera rotating on a predefined circle, in which small arc segments 
may by approximated by straight lines, which are then utilised to determine depth of 
corresponding points. Unfortunately, this approach significantly reduces the amount 
of reference images available for 3D reconstruction. 
 
In 2003, Feldmann et al. [15] extended EPI analysis to accommodate other 
parameterised camera movements. Specifically, path structures in the spatio-temporal 
cube, termed Image Cube Trajectories (ICTs) resulting from concentric circular 
movement for orthographic and perspective cameras were shown to be very well 
defined. Path detection algorithms were therefore adapted to detect those paths 
expected in the volume. In contrast to standard EPI analysis, an ICT is constructed in 
reverse. Firstly, the ICT for a particular feature is determined by its image position 
and assumed depth. In a second step, the image cube is used to test such a path exists. 
If not, the depth is changed until the resulting ICT fits to the image cube. This 
approach extends to define rules only for other parameterized camera movements, 
such as parabolic camera paths. 

Epipolar Plane Image analysis applications 
A recent example of the use of EPI image analysis has been for image understanding 
for street parking vehicle detection [17]. A side-facing camera is mounted on the side 
of a moving vehicle and images are captured at a constant frequency at a height that 
cut the moving cars. Feature paths were detected using the Canny edge detector, and 
the Hough transformation was used to detect any concealed lines. The strongest peak 
of this transform is selected to base the distance measure. Their method achieved a 
detection rate of 76.9%.  
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EPI analysis has also been used for automatic texture image database construction, to 
enhance navigation systems with real images [22]. Kawasaki et al.’s key concept was 
to introduce the idea of EPI-EPI matching. Through the use of models of objects such 
as buildings from digital maps, they proposed that virtual EPI models could easily be 
generated by simulating the camera motion and parameters. Given these simulated 
EPIs, their idea was to match these with the real EPIs from the video data, to relate 
the digital map with the video data. The matching algorithm used was based on DP 
matching. The major advantages of this approach are that lines themselves do not 
have to be detected on real EPIs as accurately as with usual EPI analysis, and that the 
camera track does not have to move in a straight line.   

Spatio-temporal slice processing for camera work analysis 
Another area of research which has developed the use of temporal slice analysis has 
been in automated camera work analysis. Video footage typically consists of a series 
of shots, where each shot is an uninterrupted sequence of frames from a stationary or 
moving camera, and robust scene change detection is an important component of 
content-based video browsing and video summarisation. The boundary between shots 
is typically demarcated by cuts; an instantaneous shot transition, wipes; a cross-faded 
gradual transition, and dissolves; the gradual fading between shots. The majority of 
algorithms for detecting scene change may be categorised as statistic-based, feature-
based and motion-based and predominantly operate using a frame-to-frame similarity 
measure.  
 
Ngo et al [44] first used spatio-temporal slices for the detection of cuts and wipes, 
where the task of detecting scene breaks was reformulated as the detection of 
boundaries in spatio-temporal slices. Therefore, the problem of video segmentation 
has been reduced to a problem of image segmentation. The approach used the analysis 
of two orthogonal slices, one horizontal and one vertical, taken through the centre of 
the spatio-temporal volume (figure 7 and figure 8). 
 

 
Figure 7 Boundary characteristics in horizontal and vertical spatio-temporal slices for camera 
cuts (left) and wipes (right), separating similarly textured  scenes belonging to one scene. 
 



11 

 
Figure 8 Boundary orientations for different styles of wipes 

 
The slices were analysed by first convolving with the first derivative Gaussian, and 
then processed using Gabor decomposition, in which the real components of multiple 
spatial-frequency channel envelopes are used to from a texture feature vector. A 
Markov energy-based image segmentation algorithm is then used to locate the colour-
texture and classify discontinuities at region boundaries. Evaluated on news 
sequences, documentary films and movies, their approach performed at approximately 
95% for cut detection, but only 64% for wipe detection. 
 
Ngo et al. [43] further extended their work to incorporate gradual transitions caused 
by dissolves, which usually defeat traditional statistical analysis techniques. They also 
improved the robustness of their system by incorporating a diagonal spatio-temporal 
slice, and achieved wipe detection accuracy of only 64%. 

Analysing gait using spatio-temporal slices 
Niyogi et al. [45] were the first to suggest human gait could be analysed using the 
special signatures generated by walking in space-time. Two slice regions crucial to 
their method are shown in Figure 9 and Figure 10. 
 

 
Figure 9 An XT-slice taken at the walker’s head height, indicating the head mostly only 

undergoes translational movement during walking. 
 

 
Figure 10 A slice taken at the height of the walker's ankles. The criss-crossing of the walker's legs 
as the walker moves from left to right is given as a unique braded signature for walking patterns 
 
Niyogi et al. process these patterns in a four-stage recognition architecture. Gait is 
first detected by finding translating objects in an image sequence and testing whether 
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they contain the braded pattern (figure 10) in the lower half of the translating object, 
which corresponding to ankle motion in XT. The translating objects were found using 
a simple change detection algorithm between each image and the background, and the 
test for the braded pattern was performed using a best template match over a small 
number of amplitudes, periods and skew which parameterise the braded pattern.  
 
Once gait is detected, the rough estimate of the walker’s pattern is refined using 
Snakes [21]. Snakes are active contour models using “an energy minimizing spline 
guided by external constraint forces and influenced by image forces that pull it toward 
features such as lines and edges” [21]. Given an initial list of points that define the 
snake, the snake will ‘climb’ to the local maxima in the energy function. The energy 
function used by Niyogi et al. is the slice with maximal correlation with the braded 
templates. 
 

 
Figure 11 4 snakes are used to model the braded signature, ehich are attracted to the positive and 

negative spatial derivatives of the braded pattern. 
 
The entire body is then modelled using such snakes; for each slice from head to toe. 
Near the hip, the two snakes ideally merge into one. Gate is then modelled by 
averaging the body contours to form two ‘skeletons’, and the location of the head, hip, 
knee and ankle joints are estimated using another snake operation for all XY slices of 
the image sequence (Figure 12). As there are second order discontinuities at these 
joint locations, the Snakes are set to be second order discontinuous at coarse locations 
for a simple height model of a human. The angle signals at these joints, which vary as 
a function of time, are extracted from a stick model parameterised by these joint 
locations, and are then classified using a table of previously observed gait signatures, 
using a standard k-nearest neighbour classifier.  
 

 
Figure 12 an example frame from the walking image sequence, with the four fitted snakes 

overlaid in white 
 
The algorithm was run on 24 different image sequences, and performed at a 
recognition rate of 79%. In their approach, the camera is fixed, the walker walks at 
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mostly a constant speed, the direction of walk is roughly lateral relative to the camera, 
and no obstacles carried by the walker are present. 

Motion as orientation in the spatio-temporal volume 
In addition to the motion analysis techniques utilising spatio-temporal slices, there 
have been several approaches to perform the same function based on analysing the 
entire spatio-temporal volume. Otsuka et al. [49] propose a new framework based on 
image motion trajectories in spatiotemporal space for a static camera recording 
dynamic scenes. Trajectory surfaces were formed by edges and contours of images in 
spatio-temporal space using Hough transforms. These trajectory surfaces were then 
used as a means to estimate the velocity components of the objects in a scene, which 
were determined by the orientation of the intersection line formed by tangent planes 
to the trajectory surfaces. One of the shortcomings of this work is that the camera 
motion must be parametric. If more complex camera motion is considered, such as 
piecewise rotation and translation, not only is the creation of parameterised motion 
models not feasible, but with a parameter space of more than two dimensions, the 
computation of the Hough transform becomes unfeasible.  
 
In contrast to the work of Otsuka et al., Rodrigues et al. [54] have recently proposed a 
SfM method which exploits curves in the spatiotemporal volume, by assuming known 
camera parameters, but accounts for arbitrary (including non-smooth) motion 
parameters. It also assumes camera parameters such as focal length, trajectory and 
orientation are well estimated. Their goal was to solve which ‘interesting’ 3D points 
generated a set of implicit curves found in the spatio-temporal volume. The 
‘interesting’ points were those which lay on contours of the image frames.  Depth 
estimates were established by finding a minimum match error between the implicit 
spatiotemporal curves with a set of candidate depth curves for a particular interesting 
feature P .These candidate depth curves were generated by reverse-projecting P with 
known camera parameters and an attributed depth estimate.  
 
The performance of this method was evaluated both on synthetic and real scenes. The 
synthetic scene comprised 20 coloured boxes, arranged in a circle (figure 13), used to 
demonstrate the method on a high number of occlusion occurrences. Promising results 
can be seen in the reconstructed seen, as shown in figure 10, and the visible artefacts 
are mostly due to the reduced number of interesting points used. 
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Figure 13 The collection of coloured boxes is shown to the right, while the small line segments 
extending from each dot represent the camera's orientation. The line connecting them is the 

camera's path 
 
 

 
Figure 14 Three views of the reconstructed scene 

 
The real scene comprised three shapes in a plane background. Three of the 40 scenes 
shot are shown in figure 15. Figure 16 shows four views of the reconstructed scene. 
 

 
Figure 15 Three examples of the real scene image sequence 
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Figure 16 The reconstructed scene taken from 4 views 

3D segmentation using the spatio-temporal volume 
The alternative approach using the spatio-temporal volume for scene segmentation 
has been to process the structures found in the entire volume, rather than by analysing 
distinct slices. A variety of techniques for doing so have been studies. Of these 
include; spatio-temporal manifolds [6, 7], the 3D structure tensor [29, 41, 43], mean 
shift analysis [13], Fourier analysis [47] and deformable shape models [17]. 
Surprisingly little work has been done on fitting spatio-temporal surfaces with active 
surfaces [59]. Very recently, level set evolution equations have been successfully used 
for spatio-temporal segmentation [24, 25, 26, 27, 55, 56], [14, 33, 34, 35, 36, 39]. A 
selected overview of these techniques is now presented. 

Motion segmentation using 3D structure tensors 
The spatio-temporal volume has been analysed using 3D structure tensor-based 
optical flow [29, 41, 43], which exploits the orientations of local grey value structures 
within the frame stack. Moving and static parts of the image plane can be determined 
by the direction of minimal grey value change in the spatio-temporal volume. The 
advantage of integrating spatial information with tensor-based optical flow is that it 
allows for more reliable motion calculation which suppresses background noise by 
considering multiple frames in the video sequence (Figure 17.) The number of such 
frames is termed the support window of the structure tensor. For example, [41, 43] 
use a support window of 33 , meaning that the motion calculation for each pixel is 
performed within a spatio-temporal area of 333 ××  pixels, while Kühne et al. [29] 
developed a coarse-to-fine hierarchy of support windows.  
 

 
Figure 17 The image on the left is frame 10 from the well known Hamburg Taxi sequence. The 

middle image shows the optical flow computed with the Lucas Kanade algorithm. The right 
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image shows the optical flow computed with the 3D structure tensor. Here, the background noise 
is eliminated without any pre-filter, and even small structures like the pedestrians have been 

identified. 
 
For an image sequence ( )XI , where ( )TtyxX ,,=  and x  and y are the spatial 
components and t  is the temporal component, the 3D structure tensor is given 
by ( ) ( ) ( )TIItyxhtyxJ ∇⋅∇∗= ,,,, , where ( )tyx ∂∂∂=∇ ,,  denotes the spatial and 
temporal gradients, and ( )tyxh ,,  is the spatio-temporal filter for a given support 
window.  
 
Purely tensor-based segmentation was found not to be effective in accurately 
distinguishing the boundaries of objects in a scene alone. Firstly, areas of constant 
grey within the moving objects do not receive dense motion vector fields. Secondly, 
the tensor fails to provide the true object boundaries accurately since the calculations 
within the neighbourhood blurs motion information across spatial edges. 3D structure 
Segmentation methods based on 3D structure tensors have been developed which can 
be further classified as either contour or region based. Contour-based segmentation 
aims to refine the contour models based on the motion masks generated from the 
motion field. A tensor-based optical flow field is used by Kühne et al. as the external 
forces to converge a geodesic active contour model in addition to the boundaries of 
the moving object. Geodesic active contours were used to group neighbouring regions 
and close holes and gaps, are topological flexibility and allow the simultaneous 
detection of multiple objects. 
 
The approach of Kühne et al. so far experiences problems when considering 
sequences containing large velocities, as if the displacement exceeds the size of the 
local neighbourhood, the motion of the feature cannot be detected. To overcome this, 
a hierarchical algorithm was developed which embeds the structure tensor technique 
in a linear scale-space framework. Consequently, the calculations are performed in a 
coarse to fine manner, using a Gaussian pyramid, whereby motion vectors determined 
at coarser levels in the pyramid serve as an initial guess for subsequent refinement 
levels, until the highest resolution is reached. 
 
The segmentation algorithm was applied to two real-world sequences, the first one is 
the Hamburg Taxi sequence, and good results can be seen in Figure 18. 
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Figure 18 Results of [29] for the Hamburg taxi sequence. The first row of images are samples 
from the video sequence. The middle row is the results of the 3D structure tensor algorithm. The 
final row shows the segmentation using geodesic active contours. 
 

Categorising camera motion using 3D Structure Tensors 
3D structure tensors were also used in [41] and [43] to categorise dominant camera 
motion (static, pan, tilt, zoom, and tracking), in addition to object motion. Figure 19 
illustrates example 2D slice patterns associated with these types of motion.  
 

 
Figure 19 Temporal slice patterns for various types of camera motion. Note that for tracking 

motion, the slices exhibit both panning and static elements. 
 
By investigating the distributions of motion orientations of all temporal slices, motion 
types can be classified, as can different motion layers. In [43], this distribution is 
approximated using 3D structure tensors to form a 2D tensor histogram, ( )tM ,φ , 
who’s dimensions are a 1-dimensional orientation histogram for each temporal slice, 
and time. The value at each point in the histogram is given by a degree of confidence 
which each pixel has for a particular orientation. Dominant motion trajectories could 
then be traced by tracking the peak histogram values over time (Figure 20.)  



18 

 
Figure 20 Two example motion trajectories based on tensor histograms. On the left is the 

histogram peaks for two parallax panning shots, and on the right is a camera moving from static, 
to pan, to static again.  

 
Experiments were conducted on two standard test videos, lgerca_lisa_1,mpg and 
lgerca_lisa_2.mpg. On average, dominant motion categorisation was performed at 12 
frames per second. The algorithm was extended in [41] to account for finer-grained 
motion categorisation. This was performed by two techniques which traded off 
simplicity with effectiveness. The first partitioned the spatio-temporal volume into 
sub volumes by employing k-mean clustering to group similarly coloured temporal 
slices. Ideally, each sub-volume corresponds to the evolution of one moving object 
over time. However, this fails when the background, for example, is composed of 
various colour elements. The second exploited the motion trajectories inherently 
existing in the tensor histograms. For tensor histograms containing multiple motion 
trajectories, the idea is to simply back-project these trajectories to the spatio-temporal 
slices to form spatially-separated motion layers.  

Fitting deformable models to spatio-temporal surfaces 

Deformable models 
Although, much work has been done on the tracking of rigid objects in 2D sequences, 
the structures formed in the spatio-temporal volume are inherently non-rigid. One 
popular approach for modelling non-rigid, time varying objects is through the use of 
deformable models. One such example is the use of Snakes [21] and their variants 
[11], [37], and are used widely for segmenting non-ridid objects in 2D and 3D 
(volume) images. However, there are several well-known problems with Snakes. 
They were originally designed as interactive models, and so rely upon a user 
overcoming initialisation sensitivity. They were also designed to be a general model 
showing no preference for a particular object shape other than those that are smooth. 
Consequently, Snakes do not perform well in the face of shape abnormalities caused 
by occlusion, irrelevant structures or noise. In response to these deficiencies, 
techniques were developed which incorporated a priori knowledge of object shape, 
the most predominant being Active Shape Models [12], whereby the statistical 
variation of shapes is modelled using a set of training examples to fit an example of 
the object in a new image. The shapes are constrained by a Statistical Shape Model to 
vary only in ways seen in a training set of labelled examples. Dynamic deformable 
models [30] were later developed which described the shape changes over time in a 
single model which evolves to reach a state of equilibrium where internal forces, 
representing constraints on shape smoothness, balances the external image forces. 
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Recently, Hamameh et al. [16] have extended 2D Active Shape Models to deformable 
spatio-temporal shape models. Similar to 2D ASMs, a single static shape is 
represented by a set of labels or landmarks, ( ) ( ){ }tytx ii , ,where x  and y  are landmark 
coordinates, i  is the landmark number and t denotes time. The segmentation 
technique they developed is based on deforming a spatio-temporal shape to better fit 
the image sequence data only in ways that is consistent with the training set. To 
segment a similar time-varying object in a new image sequence, we start with an 
initial ST shape model (e.g. the mean ST shape) and an initial pose estimate. This ST 
shape model is then deformed by minimising an energy function using dynamic 
programming, and repeated until the energy function converges.  

The method was tested using only synthetically generated data, with added synthetic 
noise and mild occlusions. Both the x and y coordinated for the generated ST shape 
moved in accordance with a sinusoidal function with certain amplitudes and 
frequencies (Figure 21.) An example of the model fitting to a sequence of test images 
is shown in Figure 22. 

 

Figure 21 Examples of synthetic spatio-temporal shapes. (a) shows a circle with translational 
motion, expanding and shrinking in time, (b) is a ‘random star’ with translational motion. (c) is a 

‘Sinusoidal star’ with translational motion, whilst both expanding and shrinking in time. 
 

 
Figure 22 Spatio-temporal segmentation results, with strong local noise and moderate global 

noise in all frames. Frames 1-18 are presented on the left, and frames 19-32 are on the right. The 
deformable spatio-temporal model for each frame is shown in white, and after 32 iterations, fits 

the test data extremely well 
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Hamameh et al.’s work concluded by remarking they are considering a multi-
resolution extension and a time-scaling and time-translation feature. 

Level set methodologies 
A very recent and active development in spatio-temporal segmentation has been the 
parameterising of surfaces in the spatio-temporal volume using level set 
methodologies. Similar for the active surface approach, the unknown surface to be 
estimated is parameterised as an active surface, but rather than solving using an active 
surface approach, the resulting cost functional is minimised using the level set 
methodology. By embedding the surface into this higher-dimensional function, the 
problems of the original active-contour formulation concerning stability and fixed 
topology are alleviated. The methods do not require a known background or require 
estimation of the image motion field. Furthermore, optical velocities can be estimated 
along motion boundaries from geometrical properties of the spatio-temporal surface 
[14].  Since 2002, there have been two independent research groups involved in 
developing this approach; the first at Boston University, and the second at the INRS-
Tellicommunications in Quebec, Canada. Both groups formulate this problem in the 
framework of maximum a posteriori probability (MAP) estimation. 
 
Konrad et al. [24] at Boston University first studied this approach in a ‘volume 
completion’ framework. Their models were relatively simple, and did not permit 
moving backgrounds due to camera motion, or multiple objects. Also, the 
computational complexity of this approach was reported to be significant. However, 
their approach showed excellent object shape recovery and tracking between frames 
(Figure 23.) 
 

 
Figure 23 Object shape recognition and tracking performed in [24] computed jointly over 30 

frames. In the case of the bean (left), the algorithm performs admirably in the face of significant 
motion, and zoom-in. 

 
Konrad et al. further extended their work by demonstrating that the ‘object tunnels’ 
formend in the spatio-temporal volume could be effectively used for the detection and 
characterisation of occlusion events [27]. The insight comes from the fact that 
depending on whether an object is fully visible throughout the sequence, or is being 
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occluded during some time interval, walls of the object tunnel exhibit different 
properties. Given that the general problem of occlusion detection, involving multiple, 
complex, non-rigid moving objects is a very difficult problem to solve, Konrad et al. 
constrain the problem to be the case of one moving object and a static background. In 
January 2004, Shi et al. [55] extended their work by developing a technique based on 
multiphase level set method. This allowed for an arbitrary number of general motions 
to be easily incorporated into the framework.  
 
In September 2004, Konrad et al. strengthened the notion of explicit occlusion event 
detection by proposing a framework for the joint object/background segmentation and 
the detection and modelling of background occlusion and exposed volumes [26]. 
These novel occlusion and exposure volumes generalise the single-time occlusion 
field between two images to a continuous event across space and time (Figure 24.) 
Their motivation to model these events was their potential applications in video 
compression (occlusion and exposed areas can be thought of as an innovation process, 
and as such are difficult to predict and expensive to code), and video games (to 
optimise pixel rendering based on occlusion information.) 
 

 
Figure 24 (a) and (b) are frames 1 and 30 from a synthetic test sequence, (c) is the object volume, 

(d) is the background tunnel, (e) is the occlusion tunnel and (f) is the exposure tunnel. 
 
Also in 2002, the second group at INRS Telecommunications formulated the problem 
as a Bayesian estimation task, and used the Euler-Lagrange descent equation to 
minimise a particular energy functional of the segmentation, expressed as a level set 
partial differential equation [36]. This level set equation was also generalised to the 
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case of multiple motion regions. Some of the results of this work can be seen in 
Figure 25. 
 

 
Figure 25 Results of the work of [36] for two image sequences. The top row shows four frames 

from each sequence, taken with a static camera, the middle row shows the spatio-temporal 
surfaces being refined iteratively, and the bottom row shows these surfaces projected onto the 

original frames. 
 
Recently, Feghali et al. [14] developed their system to allow for simultaneous camera 
motion subtraction. Representing the background motion by a parametric model, the 
estimation of these parameters is not performed as a separate step, but estimated 
simultaneously using the level set equations. The method performed well for synthetic 
scenes experiencing modest camera motion. 
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Conclusion 
This report has aimed to outline the most recent techniques used in computer 
graphics, image processing and computer vision to process image sequences in terms 
of a 3D spatio-temporal volume. Since the founding work of Aldelson et al., this 
volume has been analysed by either considering spatio-temporal slices independently, 
or by considering the spatio-temporal volume in its entirety. Both approaches have 
their relative advantages and shortcomings. Most notable, slice processing involves 
exclusively 2D image processing such as curve fitting and 2D Gabor decomposition, 
which are far cheaper operations than their 3D counterparts. However, by analysing 
only spatio-temporal slices, the 3D structural information, continuous across all 
dimensions is lost. If we compare each system with the ultimate goal of image 
sequence understanding; to spatially segment objects and their motions in the scene at 
the object description semantic level, each of the approaches fall short of this target. 
However, what they have achieved are varying degrees of success for a more 
constrained version of the problem. Nearly all approaches assume constant 
illumination across a video sequence, since motion is typically detected on the basis 
of intensity differentials. Also, object motion is commonly constrained either by 
analysing static scenes with a moving, parameterised camera motion, or by using a 
static camera photographing a dynamic scene. In both instances, the scenes are 
usually uncluttered, in which only up to a few objects are considered. In every system 
reviewed, the objects considered have been assumed to undergo only rigid 
translations. Furthermore, the majority of techniques do not attempt to solve the joint 
problem of spatial segmentation and dense motion field estimation.  
 
An intrinsic difficulty in evaluating segmentation algorithms is that the results may 
currently only be judged through visual examination. These results may well be 
subjective and inconsistent among different people, and are necessarily qualitative. 
Unfortunately, the visual performance of each group’s systems is presented only as a 
small series of very similar source texture/synthesised texture pairs. In the past 3D 
segmentation literature, there appears to be no mention of a standard set of evaluation 
sequences from which to draw direct comparisons. Also, because the performance of 
3D segmentation algorithms typically varies between different types of scenes, 
allowing the researchers to select their own examples may tempt them to use scenes 
for which their approach works particularly well. 
 
The major exception to these limitations of the systems, caused by constraining the 
problem domain, has been through the development of level set techniques. In their 
latest paper, Feghali et al. were able to successfully analyse multiple, rigid moving 
objects in a cluttered scene with an integrated camera motion subtraction mechanism. 
A very interesting area of research might be to integrate the modelling of 3D spatio-
temporal surfaces (for object segmentation) using the level set methodology with the 
Shape from Motion  mechanism developed by Rodrigues et al., by defining suitable 
‘interesting points’ on the generated surfaces. 



24 

Appendix A 

Overview of camera motion compensation techniques 
It is often necessary to estimate and compensate the motion of a moving camera when 
analysing an image sequence. When a camera moves, it generates motion over the 
entire image, and consequently tracking and segmentation problems cannot be solved 
simply by motion detection. Methods of tracking with a moving camera fall into one 
of two categories. In the first instance, camera motion parameters are given as input, 
or that the background scenes have distinctive features or textual properties from 
which to infer these parameters [Ronsfeld 1998]. Once known, the camera’s view 
coordinates may be translated into world coordinates for affine transformation-
invariant segmentation. However, this method clearly restricts the applicability of the 
segmentation algorithms to arbitrary scenes with unknown camera motion. The 
second category assumes that background motion is represented by a parametric 
model, and once an estimate for this is computed, object motion is detected based on 
motion after compensation for camera motion [Mech 1998, Farin 2001.] Optical flow 
is commonly used for this purpose, which computes the motion vector of each pixel in 
an image. For the case of motion through a cluttered 3D scene however, measuring 
optical flow is problematic because of the high density of depth discontinuities. 
Rather than measuring velocities at individual points. Mann et al. [Mann 2004] 
recently developed a method which measures a distribution of velocities over local 
image regions, based on optical snow. 
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