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Abstract

Shape optimisation within constraint limits is a hard problem from the field of
Mechanical Engineering. The objective is to design a shape which best satisfies some
predetermined goal whilst at the same time observing some constraints. Much work
has been done on various problems within this domain [Bentley 96][Chapman et al.
94] [Smith 95a][Watabe & Okino 93], however the majority to-date has focused on
parametric and other highly restricted representations of the shapes being optimised.
This thesis describes experiments performed using a voxel based representation and
an evolutionary optimisation algorithm. As any attempt to perform shape
optimisation using an unrestricted object representation must use a highly effective
evaluation function in order to be able to deal with the varieties of design that an
evolutionary optimisation algorithm may produce, the work detailed here was
intended to first design and test suitable operators to deal with the extremely large
chromosomes required by a voxel representation, and by then extending the work to
permit evaluation from a commercial Finite Element analysis package, it was
expected that the program would be able to perform real-world shape optimisation
tasks with very few restrictions on the shapes being tested. The results obtained
indicate that it is possible to circumvent the difficulties presented by a voxel
representation [Watabe & Okino 93], and that with suitable operators, useful and

unexpected results can be gained from a real-world optimisation task.
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Chapter One.

Evolutionary Shape Optimisation Using a Voxel Based

Representation.

1.1 Introduction to the problem.

Shape optimisation is the process of attempting to discover the optimum
shape to perform some given task, frequently within some pre-determined
constraints. In some simple cases the solution may be readily apparent, even trivial,
for example; to maximise volume and minimise surface area the shape required is a
sphere. However in most cases the solution is not so easily found. Engineering
knowledge and a sound understanding of the underlying physics of a problem may
enable a well-trained person to make a good guess as to a suitable form, but this
leaves open the possibility of major improvements being totally overlooked and may
not be sufficient if the problem being addressed is very highly constrained.

This thesis examines two different shape optimisation problems and will
attempt to show that the combination of genetic algorithms with suitable operators
and a voxel based representation, forms an effective tool for solving this type of
problem.

The first optimisation addressed in this thesis is that of minimising the
amount of mass in load-bearing beams, whilst ensuring that the maximum stress they
are capable of withstanding remains above a given minimum level. This is tackled
first by means of a mathematical model which contains some simplifying
assumptions about the physics of the situation. Although this is not very realistic in
terms of a real-world analysis, it has the advantage of being very quick to run which
makes it a suitable test-bed for experimentation with the operators and the

parameters of the GA being used.
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The second optimisation is that of designing a minimum mass annulus for a
jet-turbine engine which must withstand several different forces without exceeding
the maximum stress limits in any one of several key areas. This problem does not
have any simplifying assumptions, and so is analysed in full by a commercial Finite
Element analysis package; Ansys 5 3", As the evaluation function is very time-
consuming it was necessary to design several new GA operators which increase the

rate of improvement considerably.

Previous work in this field includes:

B [Bentley 96] which has successfully evolved a wide range of shapes and structures
using geometric primitives as building blocks.

B [Chapman et al. 94] which addresses issues in structural topology design using
pixels as design primitives with a standard GA.

B [R Smith 95a] which uses a GA with a parametric representation to optimise the

same annulus problem covered in Chapter 4 of this thesis.
A more detailed description of shape optimisation and stress analysis will be
presented in Chapter Two.
1.2 Approach taken.
The representation of the problem space chosen for this work is that of

voxels™ , which are a method of partitioning the search area or volume into

rectangular regions or boxes which are then assigned a binary full/empty value.

* Ansys is a registered trade mark of SAS IP, Inc.
* N-dimensional pixels
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A Voxel Representation of a Part. The Original Part.

Figure 1.1

This approach has many advantages over the alternatives including:

B The ability to represent any shape without restriction.

W The ease with which an existing engineering solution can be converted into
voxels.

B A natural mapping to the traditional binary chromosomal representation
frequently used by GAs.

B The simplicity with which domain knowledge can be integrated into the solution.

However in [Watabe & Okino 93] the authors object that voxels suffer from
several apparently fatal weaknesses when used to represent this type of problem

including;

B The occurrence of smail holes in the final shape.
B The long length of the chromosomes.
B The expectation that cross-over would be ineffective.

B The lack of smoothness in the final shape’s outline.

It will be shown during the early experiments described in Chapter 3 that
these objections do not constitute a problem when addressed with appropriate
operators and GA optimisations.

The choice of voxels as a representational form was motivated by several key

points. The previous work which has made use of voxels has tended to either avoid
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using domain knowledge in the operator design, or has concentrated on very low
resolution voxel grids in an attempt to avoid huge chromosomes. Voxels also offer
some important advantages over other representations, including the ability to
generate unexpected designs, the ease with which the user can initialise the
population to the previous best solution and quick incorporation of domain

knowledge in the form of areas of voxels with fixed values.

Genetic Algorithms (GAs) have proven themselves to be a highly flexible
search technique, able to find good solutions to a diverse range of problems in many
different fields [Goldberg 89]. They use evolutionary computation techniques to
search large and difficult fitness landscapes in order to find near-optimal solution
vectors.

[Michalewicz 92] describes “evolution programs” as a sub-class of the range
of algorithms which rely on analogies to natural processes. In [Michalewicz 92] he
writes:

143

a population of individuals (potential solutions) ...
undergoes a sequence of unary ... and higher order ...
transformations. These individuals strive for survival: a
selection scheme biased towards fitter individuals selects the
next generation. After some number of generations, the
program converges - the best individual hopefully represents
the optimum solution.”.

In this thesis the term GA will be substituted for Michalewicz’s “evolution
programs” to reflect the fact, widely recognised in the field of evolutionary
computation, that the original definition of GA (as using only binary chromosomes,
simple crossover and bitwise mutation) is far too narrow and explicit to encompass

this rapidly growing field.

As the nature of the voxel representation leads inevitably to extremely large
search areas the use of GAs is an obvious choice. A further introduction to the
theory of GAs can be found along with a more detailed description of shape

optimisation, stress analysis and the voxel based representation in Chapter 2.
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1.3 Contributions made by this work.

During the first set of experiments a number of new and modified operators
were designed and tested, and some of them proved to be extremely effective at
reducing the amount of time taken for the GA to achieve a good solution. Several
other operators were found which directly address the issues raised by [Watabe &
Okino 93] and solve the problems described by them.

The second set of experiments extends the range of previous work in this
domain to use a commercial FE package to perform the optimisation. Two sets of
experiments were performed, firstly a simple adaptation of the GA to the new
problem was tested. Although these experiments did discover some difficulties
when using Finite Element Analysis with a voxel based representation, further work
resulted in the design of a set of solutions to those difficulties and some very
interesting results were obtained from the analysis.

The work in this thesis will show that a genetic algorithm using a voxel based
representation, whilst suffering from several difficulties, is by no means an
implausible approach to the problem of shape optimisation. The benefits obtained
by using this representation may in many cases out-weigh the disadvantages, thus
making it an appropriate technique for optimisations where the optimum is unknown

or where engineering insights are to be used to assist the process.

1.4 Qutline of this Thesis.

The task was addressed as a series of experiments, each of which built on the
results of the previous steps; the format of this thesis reflects this approach, with the
majority of the work being presented in the order of experimentation and with
appropriate comments where one set of experiments suggested the approach to be

taken next.
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Final Annulus Design from the Results Set.

Figure 1.2

The majority of Chapter 2 deals with the background explanations of GAs,
shape optimisation and stress analysis necessary to understand the rest of the thesis.
An investigation was then made into the current state of the art in shape
optimisation, with particular reference to the use of GAs to perform the search. The
results of this study are presented in Section 2.3.

Initially, a two dimensional shape optimisation problem was undertaken
using simplifying assumptions in the stress analysis model. This allowed rapid
evaluations of the shapes produced by the GA, thus permitting in-depth investigation
into the effectiveness of various modifications to the basic optimisation technique.
A description of these experiments, their results, and the optimisations made can be
found in Chapter 3.

Once the GA code was running effectively on this simplified problem, the
level of realism in the stress analysis model was increased by using a commercial
Finite Element package to perform the shape evaluation. At this point the

experiments were using a realistic representation of all stresses involved in the
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shapes generated by the GA. Chapter 4 gives details of the approach taken, the
results and the difficulties encountered during this final stage of the experimentation.
Chapter 5 contains the conclusions arrived at during this study and the
recommendations for future work.
The Appendices include details of the annulus design problem specification,

the macros uses to make Ansys perform the optimisation and some results data files.
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Chapter Two.

Background and Previous Work:

2.1 The problems to be addressed.

The first optimisation addressed in this thesis is the design of a beam cross-
section which minimises the amount of material in the beam, whilst leaving it
capable of supporting a given minimum mass. This problem will be approached
using a simplified model of the physics involved in order that the speed of evaluation
is as fast as possible. The second optimisation is the design of an annulus for the
centre of a jet-engine’s turbine propeller, which must be as light as possible but still
be able to withstand stresses in two different directions at various key positions.
This will be evaluated using a full commercial Finite Element Analysis (FEA)
package in order that all of the forces and stresses experienced by the part are
simulated as accurately as possible.

The beam optimisation was chosen as an example of a sufficiently hard
problem that, even when using a simplified model of the physics involved, the
solution surface would be extremely complex. An additional reason for the choice
of this problem is that a good solution is well-known to engineers. The ‘I’ beam
(shown in Figure 2.1), which is commonly used in sky-scraper construction, is
generally accepted as being a good form for a beam cross-section to gain maximum

strength for minimal mass.
Issues to be addressed in this optimisation were;
B How well does a standard GA perform on a complicated problem using a voxel

representation?

B Can operators be designed that overcome any perceived flaws in the standard GA?
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B What alternative operators can be designed to improve the GA performance in
regards to voxel based optimisations?
B What adjustments should be made to the balance of operators to further increase

the rate of optimisation?

An ‘P’ Beam Cross-Section.

Figure 2.1

The annulus design problem is specified in detail in a document supplied by
Rolls Royce to Richard Smith during his time with the Mechanical Engineering
department of Edinburgh University, which is included as Appendix A. As specified
by Rolls Royce, the annulus design is very tightly constrained, ie: the figures given
for maximum stress represent a reasonably good solution. This was expected to
cause some difficulties as a random population initialisation would probably create
an initial population which contains only invalid solutions.

The choice of a voxel based representation was expected to raise some
difficulties when the solutions produced were analysed by the FE package. This is
because FEA does not cope well with sharp corners and will normally not use
uniformly sized meshes. Voxels are by definition uniform in size, and though it
would in theory be possible to subdivide edge voxels into a finer grid, the FE

package used for this analysis (Ansys v5.3) could only recognise elements which
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connect at their major vertices. Thus in order to subdivide the voxels into a finer
grained mesh would involve at least one intermediate step and a lot of extra

processing, as seen in Figure 2.2.

Entirely connected Not a major vertex. Connected at major
at major vertices. vertices.

r—o—9

e —¢

r—r—9

= e
*r— ¢ —o—o Not
allowed
M *—H

Sub-division of voxels must connect only at major vertices.

Figure 2.2

One further issue was of concern at the beginning of the experimental work
described here; what would be the best way of getting Ansys 5.3, a commercial,
stand-alone, GUI driven FE package, to perform the analysis of the GA produced
voxel shape representations? This was a particularly worrying problem as all of the
work was performed on PC compatible machines, which are not noted for the
flexibility of their inter-process communications systems.

These problems and their solutions are described in detail in Chapter Three

for the beam and Chapter Four for the annulus optimisation.

10
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2.2 The genetic algorithm.

'Genetic Algorithm’ is the term which has come to cover the use of
evolutionary directed algorithms for searching complex parameter spaces to find a
near-optimal solution. This technique requires the formulation of a suitable *fitness’
function which can evaluate any solution possible within the representation chosen
and return a valid fitness score. The search is performed by maintaining a
population of potential solutions and allowing them to interbreed (crossover), mutate
and die. The selection of survivors from one generation to the next is based on each
individual’s fitness score relative to the population as a whole, thus those individuals
with better fitness scores have a higher probability of surviving and breeding in the
next generation.

The sequence of data which represents an individual member of the
population of solutions is called a chromosome, taking its name from the DNA
sequence in humans as this whole technique is based on an analogy to nature’s
evolutionary processes. Each item of data in the chromosome is called a gene
following the same naming convention. Genes in a traditional GA are single bits,
however floating point numbers and more complicated data types have also been
used [Michalewicz 92] (pages 2-9) and [Davis 91].

Crossover is the process of taking some genes from one "parent’ and
swapping them with the genes in the same position on the chromosome of the other
parent. This has the effect of propagating short gene sequences throughout the
population and as the chromosomes are more likely to reproduce if they are fit, only
sequences which make chromosomes fitter will spread through the population.
Mutation is the method whereby new genetic variations can enter the population and
generally consists of randomly changing the value of a small number of randomly
chosen genes.

A more complete description of the theory and implementation details of
conventional genetic algorithms can be found in [Holland 75], and [Michalewicz 92}
(Chapter Five) includes details of some of the possible modifications to the basic

approach which extend the power and capabilities of this optimisation technique.
11



[ ] 3

 —|

E=3




2.2.1 Other search techniques.

Exhaustive search is the procedure of iteratively supplying an evaluation
function with every single parameter setting within the scope of the problem being
studied. It is impossible to do this in a reasonable amount of time for most real-
world problems due to the range and the number of parameters which define the
problem. In a voxel based representation of a beam using a two-dimensional grid
divided into 32x64 voxels, the total problem space is 2 2**®!

Random search involves iteratively trying different randomly selected
parameter settings whilst always remembering the best solution found. For large
problem spaces this is ineffective due to the small probability of randomly choosing
good parameter settings, this is especially true when a large portion of the solution
space constitutes invalid solutions due to violations of the problem constraints.

Stochastic hill-climbing (SHC) is an optimisation technique based on the
concept of hill-climbing. In a well-behaved function optimisation problem, the
solution space may often be visualised as a smooth surface in multiple dimensions as
shown in Figure 2.3. Given a randomly selected initial parameter setting, a steepest-
ascent hill-climbing algorithm will evaluate the solution function and find a single
point on the surface. By varying the problem parameter settings and re-evaluating
the function, other points can be found which will either be worse, the same or better
than the previous solution. Repeatedly varying the parameters and keeping the best
solution from a set as the starting point for the next iteration will result in continual
progress up the hillside, when no solution is better than the current starting point the
algorithm has achieved an optimal solution.

The type of problem which can be solved by hill-climbing in this simplistic
formulation is highly limited. Most real-world problems involve far more complex
solution surfaces with many bumps and pits which represent local optima as seen in

Figure 2.4.

12
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A Smooth Two-Dimensional Solution Surface.

Figure 2.3

Uneven Solution Surfaces May Have Many Local Optima.

Figure 2.4

13






SHC attempts to address these more complicated problems by adding the
capability to randomly reinitialise the current starting point when no more
improvement is possible from the position found. The best solution found is
continually recorded, so that after a given number of iterations the SHC can report
the parameter settings which produced that solution.

A major problem with SHC is that when a solution space with a very large
number of local optima is faced, the chance of a random re-initialisation of the
parameters producing a solution which is on the same hill as the global optima is
very small. Another problem is encountered when constraints are applied to the
solution space. Figure 2.5 shows a very simple optimisation problem which has been
complicated by the addition of a constraint limitation. SHC can only find the
optimum for this problem if it starts somewhere on the line going straight up the hill
through it. From this it is apparent that the probability of SHC finding a good

solution is reduced drastically by the addition of problem constraints.

Constraint Limitations Cause Difficulties For Hill Climbers.

Figure 2.5

14
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Simulated annealing is an approach to optimisation which comes from an
analogy with the annealing process used to toughen materials such as metals or glass.
The process uses heating, followed by a long, slow cooling period to alter the
molecular structure of the materials being treated. Similarly the optimisation
technique permits acceptance of lower quality solutions with a probability dependent
on a ‘temperature’ variable which gradually decreases over the length of the run.
This technique is capable of escaping local minima in the search space and will
therefore find a good solution to many optimisation problems. Although it does not
suffer from any of the major drawbacks in the other techniques discussed previousty,
simulated annealing does require great care in the establishment of the initial and

final temperatures and the rate of cooling.

2.2.2 Advantages of the genetic algorithm.

Genetic Algorithms provide a good balance between exploiting the best
solutions and exploring the search space [Michalewicz 92] (page 15) which gives
themr a huge advantage over random search (all exploration) and hill climbing (all
exploitation). The cross-communication of information (via cross-over operators)
within a GA [Michalewicz 92] (page 3) implies the possibility of continual
improvement over the entire search time period. This constitutes an important
advantage over the random reseeding used in SHC. GAs are also ideally suited to
parallel computation because each member of the population can be processed
simultaneously [Michalewicz 92] (page 9). This implies the ability to gain
considerable processing speed improvements through a parallel implementation of
the algorithm, which is not possible with simulated annealing as it is an iterative
algorithm with cumulative result variables.

A major advantage of the GA is the relative ease with which new operators
can be formulated and added to the existing selection. This is primarily due to the

total separation of operators from one another. To add a new operator which directly

IS5
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addresses a perceived difficulty with the optimisation is simply a matter of designing
an algorithm which will fix the problem if it is applied in a suitable area, and will do
nothing (or act to prevent the problem occurring) if applied elsewhere. After a short
period of experimentation it is usually possible to find an appropriate probability
setting for the new operators - usually by trying settings 10 or 20 percent apart.

This ease of design for new operators permits incorporation of domain
knowledge which can greatly increase the search efficiency, in the same way that
heuristics can improve a standard depth-first or breadth-first search.

As the voxel representation selected for this thesis codes directly into a very
long sequence of binary digits, the solution space is highly uneven and the problem is
very tightly constrained; Genetic Algorithms are therefore the natural choice of

search algorithm for this problem.

2.2.3 The standard genetic algorithm.

The basic GA used as a foundation for all of the experiments outlined in this
thesis varies somewhat from the GA described by [Holland 75]. Many of the
variations were introduced to maximise the speed of operation as it was realised that
the optimisations being performed would be very time intensive and that even small
improvements in the run-time would be useful.

The GA overall logic is shown below in Figure 2.6 and at this level of detail

the algorithm is very similar to that included in [Michalewicz 92] as Figure 0.1.
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GA control logic
begin
initialise population
pass « 0
while pass < number of passes do
Evaluate population
Display population
Select survivors for next generation
Apply operators to new population
pass < pass + 1
end while
end

Control logic for the standard Genetic Algorithm.

Figure 2.6

Initialisation is performed entirely by random numbers, with every gene in
each chromosome being set to either a one or a zero. These chromosomes map
directly into the voxel grid, where a one represents the voxel is occupied and a zero
indicates an empty space. After the chromosome is initialised in this way, a
connectivity check is performed and all voxels which are not connected by a chain of
active voxels to a given ‘seed point’ are set to empty space. This eliminates all of
the loose or floating voxels and can lead to an invalid chromosome if the two ‘seed
points’ at the top and bottom centre of the grid are not connected to each other - if
this is the case then the initialisation is performed again.

Evaluation uses the stress analysis values returned from the function
described in Section 2.3.1 to calculate a “fitness’ value for each chromosome

according to the following formula (Equation 2.1).



I B2 B2 BB BE BB O EE BN == B O mm =3 B BB EE BEm




F =V + S/0,a x 1000) + k x max{(S - 6,,4),0}

where:
F = Fitness
\Y = Count of active voxels
S = Maximum stress of any voxel
k = Constraint penalty multiplier
G e = The stress constraint value

The Fitness Formula.

Equation 2.1

This formula must be minimised and can be interpreted as meaning that a
greater number of active voxels implies a higher fitness value. A larger value of
maximum stress also causes a higher fitness value (though this value will never
exceed the contribution provided by even a single extra voxel). The rest of the
formula is zero unless the stress exceeds the constraint, at which point it will
increase the fitness value by an amount proportional to the amount by which the
constraint has been broken.

The display routine is included so that the progress of the GA can be visually
monitored as the optimisation progresses, it would also be a useful feature if user-
guided analysis was added to the capabilities of the program at a later stage of
development.

Survivor selection is achieved through use of the Genitor rank selection
algorithm described in Section 3.3.3. This algorithm has several advantages over
fitness proportionate selection methods including the removal of the need to scale
the fitness values returned from the evaluation algorithm and the ease with which the
amount of selective pressure can be altered through variation of a single parameter.
A full discussion of this approach can be found in [Whitley 89]. The rank selection
procedure gives ‘fit’ individuals a better chance of surviving into the next generation
than unfit individuals by using the fitness values to create an ordered list of the
population and then returning randomly selected indices to that list with a

18
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progressively higher probability towards the “fitter’ end of the list. It is used to
generate a new population of selected chromosomes which replaces the previous
population after the selection is complete.

The operators used in the standard GA were two-point crossover and bitwise
(or uniform) mutation [Michalewicz 92] (page 21) however the algorithm was
designed to allow the addition of new operators and the replacement of the old ones
with a minimum of code alterations. Two point crossover involves randomly
choosing two ‘parent’ chromosomes, selecting any two genes at random along the
length of the chromosome and then taking the sequence of genes between those two
points and swapping it with the same gene sequence from the other ‘parent’. Bitwise
mutation simply alters the value of randomly selected genes in randomly selected

chromosomes.

Unless mentioned otherwise the GA used the standard settings described

below in the experiments that follow.

Mutation Rate =0.001 per bit
Crossover Probability = 0.3 per chromosome
Population Size =20

Ranking Pressure =15

Chromosome Length = 2048 bits

2.3 Introduction to shape optimisation.

A worthwhile problem from the area of Mechanical Engineering is that of
optimising a beam to support various loads with a minimal amount of material.
Currently these optimisations are frequently done by hand, by a person with long
experience, who will then often use a Finite Element package for stress analysis to

ensure that the resulting beam meets the various requirements.

19
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This section presents an introduction to the theory and mathematics required
for stress analysis, lists some previous work in the area of shape optimisation and

describes the differences between that work and the approach taken here.

2.3.1 The stress analysis model mathematics.

A simplified stress analysis model requires very little mathematics, is quite
easy to implement and can be used to generate some interesting results. The

mathematics for the model used in the early experiments is shown as Equation 2.2.

c=-My
1

Where:
c = total stress within a given area
M = bending moment (amount of force being applied to the beam)
y = distance of the area from the neutral axis of the shape
| = second moment of area
=[y*dA
A = size of the area being analysed

Equation 2.2.

The neutral axis of a shape is defined as a horizontal line which passes
through the centroid of mass of the shape. As a voxel representation uses areas
which are all of uniform size and density, the centroid of mass can be found by
taking the average of the positions of all occupied voxels.

The second moment of area is approximated by calculating Equation 2.3.
[ ~Z(A)

Equation 2.3.
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2.3.2 Possible approaches to shape optimisation.

There are many possible approaches to shape optimisation problems, in this

section a few of the more common techniques will be briefly described.

The parametric approach to shape optimisation involves creating a
parameterised model of an initial shape. Some of the parameters can be constants,
which allows the designer to appfy domain knowledge to reduce the size of the
search space. Other parameters will be allowed to vary due to the optimisation
process. These are normally restricted to a range, defined as the maximum and
minimum values that are permitted. Figure 2.7 shows a parameterised representation

of an aircraft wing cross-section.

Arc E
Radius B
>'féRadius
Radius C
Arc F

A Parameterised Wing Cross-Section.

Figure 2.7

The cell-growth method of shape optimisation uses an analogy with
biological cellular growth to evolve suitable shapes. The cells are given ‘growth
rules’ when they are created, and then when they develop according to those rules
the resultant shapes are evaluated for their fitness values. The growth rules are
treated as chromosomes and the search is performed using a GA to optimise the
rules. Some dynamic feed-back during the growth process is possible using a

variation on this approach which involves continually evaluating the developing
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shapes. If an area is suffering from very high stress for example, then more cells can
be encouraged to grow in that area by adjusting the local growth parameters.
Primitive building blocks have been used by [Bentley 96] to evolve complex
shapes using his Generic Evolutionary Design system. This system uses ‘clipped,
stretched cuboids’ as the spatial partitioning representation and a GA performs the
search by modifying genotypes which represent each individual design. This
technique has enjoyed some great successes and has been used to evolve designs for

tables, steps, heat sinks and many other components.

2.3.3 The voxel based approach to shape optimisation.

Previous work on shape optimisation has primarily concentrated around
parametric representations of simple machineable shapes and has produced some
very useful results [Smith 95a]. The parametric representation, which uses a series
of parameters which are varied to alter the shape being represented, is a common
choice for shape optimisation problems due to the simplicity with which restrictions
on the shapes can be incorporated. As noted previously, unrestricted shape
optimisation representations will frequently lead to ‘breaking’ the evaluation
function and so parametric representations are often used to prevent this from
happening.

This project uses a voxel based space representation which divides the shapes
being optimised into a uniform grid of rectangles or boxes. Each subdivision is
represented by a binary value which indicates whether the voxel is empty or full.
Similar work has been done by [Chapman et a/l. 94] and [Shoenauer 95] however
[Chapman ef al. 94] used only standard GA operators and so suffered from the
problems raised by [Watabe & Okino 93], and [Schoenauer 95] became concerned
about the size of the chromosomes required to represent detailed or real-world

problems and moved into alternative forms of problem representation.
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Voxels may have any dimensionality, however representations of more than
three dimensions are not required for the approach to shape optimisation taken here.
Early experiments were performed in both one and two dimensions in order to
explore the possibilities and gain insights into the problem area and the operation of
the Genetic Algorithm.

The binary voxel representation leads naturally to very long chromosomes
and the problems concomitant with the huge search spaces that they impose.
However it also allows far more complex and varied shapes than a parametric
representation - which is limited by the user’s choice of what aspects of the
representation will be controlled through the parameters. In particular, holes in the
material are entirely possible and even probable if there is a small low-stress area in
a high-stress region - a parametric approach can only create holes where the user is
expecting them to be required and has defined some appropriate ‘hole-control’
parameters to represent them.

Vozxels are limited in that they can only form an approximation to a curve,
however as the number of subdivisions used is increased, the approximation
becomes more accurate and this can easily be controlled to suit the user’s accuracy
requirements (Figure 2.8). There is a trade-off to be made in this situation however;
the higher the number of subdivisions, the longer each individual evaluation will
take. Thus the user must attempt to set the level of accuracy to be just sufficient if

the amount of time taken by the analysis is also a consideration.
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Figure 2.8

2.4 Miscellaneous relevant work on GA based shape optimisation.

[Watabe & Okino 93] describe shape design and optimisation by use of Free-Form
Deformations (FFD) which use a matrix of control points to deform a default shape.
This work includes three criticisms of a voxel based representation method for shape

optimisation problems:

M Long chromosomes.
B Creation of small holes.

B Valid parents don’t often make valid children.

The crossover technique used in this work is to take a sub-set matrix of the
control points and swap with the other parent. Three sets of experiments are
described and the results are very good. The third set of experiments uses a Finite
Element Method package in an attempt to minimise mass for a given maximum

stress.
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The paper: [Chapman er al. 94] covers genetic algorithms for shape
optimisation under stress constraints. They use a one-point crossover claiming better
results than from uniform crossover, a result which will be confirmed by the
experiments detailed in Section 3.3.7. The work includes a simple rule for avoiding
isolated pixels in the final representation by requiring a level of connectivity (4
directional) to a given ‘seed’ pixel, a concept which was adapted to the experiments
performed here and extended to require two ‘seed’ voxels, one at each end of the
voxel grid. They also assert that balancing a penalty parameter (for beams that fail
the stress constraint) is critical for obtaining good results, as too high a penalty will
produce beams that fall too far within the constraint (with the corresponding extra
material this entails). This result is again confirmed by the experiments detailed in
Section 3.3.4.

In [Bentley 96] a description of a very powerful generic shape optimisation
tool is given. This system uses clipped, stretched cuboids as a primitive which is
used to partition space into occupied/void areas. The results are very impressive and
the system has developed designs for a large number of different parts and
components. The emphasis is very much on the generality of the method, and it
includes a technique which allows the user to easily specify the evaluation function

from a library of already developed evaluation programs.

2.5 Conclusions.

This chapter has introduced the basic theories behind genetic algorithms,
shape optimisation and stress analysis, and has described the problems to be
addressed in later chapters. Previous work in this field has tended to concentrate on
parametric representations and this has evolved good designs for aircraft wings and
other components. The voxel based approaches to this problem have also been
successful with work by both [Chapman et al. 94] and [Schoenauer 95] being done

on a side-view beam topology optimisation problem with interesting results.

25



g1 B3 BB E= EBEe BB B EE 3 EEl EI =3 EEg A i = E




The rest of this thesis will describe the investigations undertaken on two
separate problems from the field of shape optimisation using a voxel based
representation and a modified GA to perform the search.

The first investigation will deal with an artificially simple example in order
to experiment with GA operators with the intention of designing a selection of good,
new, general purpose operators that perform well in a voxel based design space. The
second investigation is intended to take those operators and the knowledge gained
about the GA, and try to apply it to a real-world optimisation problem.

The operators designed and described in Chapter Three were also intended to
be easily adaptable to a three-dimensional voxel representation, however this
intention has yet to be proved.

This work will necessarily be restricted to just these two optimisations due to
time limitations, however as the investigations have been successful, future work
could extend the discoveries to virtually any two-dimensional shape optimisation
problem which can be evaluated by a FEA package. This includes stress, loading,

heat, liquid flow and electro-magnetic field optimisations.
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Chapter Three.

Design and Testing of New Operators:

The techniques for the design of effective Genetic Algorithms are many and
varied [Holland 75][Davis 91][Michalewicz 92] and a great deal of time can be spent
adjusting parameters and trying different operators to obtain the most effective
balance between convergence on a good solution and exploration of the problem
domain. The stress analysis GA was initially used to evolve results for simplified
versions of the problem area in order that the optimisations suggested by early results
could be investigated rapidly. The simplified physics model of the beam’s stresses
uses the mathematical approximations described in Section 2.3.1 in order to permit
rapid calculation of the fitness of each individual in the population.

The work described in this chapter details early experiments with a one-
dimensional chromosome followed by the extension of the experiments to two-
dimensions and the subsequent GA optimisations. A comparison is then made
between the results gained from the naive GA and the results made possible

following the addition of new operators.

3.1 The one dimensional experiments.

The first experiments were performed on a one-dimensional chromosomal
representation of a beam cross-section. This very simple case was chosen as the
starting point for the experiments as the expected results are well understood [Gere
& Timoshenko 84] (pages 251-261) so it permits cross-checking of actual results
gained against expected results. The programming involved in the Genetic

Algorithm was not very complicated, and neither was the implementation of the
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simplified stress analysis physics model being used at this time, however it seemed

reasonable to take this opportunity to verify their operation together.

The material and force parameters used for this initial set of runs were:

Area Represented =0.75m*

Maximum Stress Allowed = 100 000 000 Pa (Steel)

Bending Moment =200 000 Nm (Force applied)
The GA used settings of:

Mutation Rate = 0.005 (per bit)

Crossover Probability = (.25 (per chromosome)

Population Size =60

Ranking Pressure =3

Chromosome Length = 64 bits

The mutation operator was the standard uniform mutation [Michalewicz 94]
which flips bits in the chromosomes with each bit having an equal probability of
being altered. The crossover operator used was also standard; the uniform crossover
[Michalewicz 94] gives every bit in one parent’s chromosome a set probability of
being swapped with the corresponding bit from the other parent. The GA used a
roulette wheel selection mechanism with standard ranking (refer to [Whitley 89] for
a good description of the most common selection mechanisms and their influence on
diversity and convergence). An elitist mechanism was also implemented whereby
the best solution found in any generation was guaranteed to survive unaltered into
the next generation.

The fitness function described in Chapter Two as Equation 2.1 was designed
to minimise the area of the beam cross-section (number of active voxels) whilst

remaining capable of withstanding the maximum allowed stress, with a penalty value
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being applied to any solution which broke that strength constraint. A small
additional factor was included in the fitness calculation based upon the maximum
stress point in the beam. This has the effect of causing the valid solutions to
continue to evolve towards the best possible solution (in this case a beam which

minimises area and minimises the maximum amount of stress present).

A valid solution for this simplified model of the physics is any shape which
does not exceed the maximum stress constraint, and the best solution would be the
shape with minimal mass and the lowest value for its’ maximum stress point. For
the purpose of this one-dimensional test virtually any shape at all will be valid. The
row labelled ‘solution’ in Table 3.1 represents the number of generations taken to

find a valid solution with the minimum required mass (mass-optimal).

The best possible
solution.

A valid A mass-optimal
solution. solution.

=

Categories of solutions.

— —
L

Figure 3.1

The best possible solution for this simple problem has all of the mass evenly
divided with as much separation between the two areas as possible. By looking at
the stress analysis equations in Section 2.3.1 it is clear that the further apart the two
stress bearing components are, the lower the maximum stress encountered in the
beam will be.

Ten trials of this program produced the results shown in Table 3.1. In each
case a mass-optimal solution was found rapidly and then evolution continued

towards the expected best solution for this problem (though it rarely found that
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solution during the period of the trial). Each trial was allowed to continue for 1000

generations (1000 Generations x 60 Population = 60000 Evaluations).

Trial 1 2 3 4 5 6 7 8 9

Solution | 134 | 140 | 163 | 114 | 121 153 | 108 | 231 121 119

Best - - - 464 - - - 905 -

Number of generations required to find solutions.
Table 3.1

These results show a mass-optimal solution being found after an average of
8424 evaluations, followed by a highly variable amount of time spent searching for
the best possible solution. This is the type of behaviour expected from a Genetic
Algorithm with a strong selection pressure for mass reduction and a much lower
emphasis on optimality.

To confirm that the stress analysis mathematics was correctly implemented,
the result of this particular problem was calculated independently, assuming that an
‘I’ beam is the best solution. For a steel beam 0.5m high the expected value for the
second moment of area is approximately 0.001 m*. Inspection of the variables
generated by the stress analysis routine revealed a value of 0.00145m* for the fittest
member of the population when the chromosome represented a beam 0.516m high.
This result indicates that the second moment of area is being calculated correctly and
from this and Equation 2.2 it is clear that the stress calculations must also be correct.

Having determined that the GA and the mathematics involved in the stress
analysis fitness function both work as desired, the experiments progressed to a more
complex treatment of the problem; the representation of the beam cross-section was

expanded to include two dimensions, vertical and horizontal.
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3.2 A two-dimensional representation of a beam cross-section.

The one-dimensional representation was incapable of representing a
complete ‘I’ beam and so made do with representing the top and bottom surfaces,
omitting the vertical web from the calculations entirely. The two-dimensional
representation is theoretically capable of representing the web, however the
additional mathematics required to simulate the vertical and horizontal forces and
calculate the stresses which necessitate the existence of a web are sufficiently
complex that it would require the use of a finite-element method package. In order
to maintain the advantages to optimisation available from extremely fast evaluations,
it was decided to continue to use the same simplistic model of the physical forces
applied to the one-dimensional problem and to treat the consequent absence of a
properly designed web as an unavoidable side-effect.

The code modifications required to extend the beam cross-sectional
representation to two dimensions were minor because the original representation was
already dealing with the width of the beam, although as a single binary parameter
which represented a whole line. The new representation used was a two-dimensional
array of binary cells, a change that required the addition of an x component to the
calculations finding the centroid of the shape. This simple change increased the size
of the chromosomes from 64 bits to 32 x 64 = 2048 bits, creating a search space of
2%%%% which is extremely large even for a GA.

Large search spaces can prove problematical for all forms of search unless
they have an extremely simple solution space, for example: A problem with only a
single well-defined optimum can be searched easily by even a simple technique such
as hill-climbing. However most real-world problems are far more complicated than
this and consequently increasing the size of the search area decreases the probability

of the global optimum being found.
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3.3 The GA experiments.

The following experiments were intended to improve the performance of the
GA on a reasonably simple two-dimensional beam analysis problem in order that the
optimisations discovered would be available for the more complex real-world
analysis detailed in Chapter Four of this thesis. To try to ensure that the alterations
and improvements made to the GA here will also prove beneficial to the real-world
problem, it was decided not to concentrate on fine-tuning any of the various
parameters available but rather to focus on the design and operation of various new
operators. Parametric variations were restricted to an absolute minimum and were
used only to determine the approximate values required to gain reasonable

advantages from the new operators.

In the following experiments the following parameter settings remain

constant unless mentioned otherwise:

Beam Dimensions = (.05 x 0.10 metres
Bending Moment = 13000 Newton
Young’s Modulus = 2.0e8 Pascal
Voxel Grid =32 x 64 voxels

3.3.1 Experiments using the naive GA.

The first set of experiments with a 2D representation treated the chromosome
as a long one-dimensional binary string which wrapped around at the vertical edges
onto new lines to form the two-dimensional cross-section. The GA used a standard
two-point crossover operator and the uniform mutation operator described in Section

2.23.
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It used settings of:

Mutation Rate =0.001 (per bit)
Crossover Probability = 0.35 (per chromosome)
Population Size =20

Ranking Pressure =3

Chromosome Length = 2048 bits

3.3.2 Results obtained from the naive GA.

With this particular optimisation problem, the difficulty lay not in getting a
valid solution, as even a solid beam will satisfy that requirement, but in getting a
near optimal-mass solution. The first experiments were relatively unsuccessful in
this regard, despite showing a tendency to evolve towards the same known best case
found in the 1D trials, the results after 2000 generations were full of small holes and
had extremely uneven inner edges. This can be seen in the typical end-of-run results

shown in Figure 3.2 (the numbers represent the fitness value for each individual).

qasq 4q4z 963 A479

End of Run Results From Naive GA

Figure 3.2
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The stresses were concentrated at the vertical extremes of the beam, so the
material in the middle contributes less towards the total maximum stress that the
beam can withstand than the material at the top and bottom. The GA even in this
simple standard form rapidly removed material from the middle of the cross-section,
and in the later stages of the experiments was observed to be moving material from
low stress areas into high stress areas where holes were left near the extremities.
However this first naive GA approach took an extremely large number of evaluations
in order to make significant progress, and this is not acceptable as later experiments
will have a greatly increased evaluation time when the FE package is integrated. The
rate of improvement was also seen to decrease as the run continued, levelling off to
almost none at all by the end of the run. This means that the GA was not finding any
further improvements to the chromosome, and as the results are visibly poor it
indicates a general weakness in the operators being applied.

Figure 3.3 shows a graph of fitness values versus generation number for a
typical selection of three of the ten trials performed with this program. The
horizontal axis represents the generation number at which the results were found and
the vertical axis represents the fitness values. Fitness values should be minimised
for this optimisation, so the lower the fitness value, the better the quality of that
individual solution.

The steepness of the curve during the first two hundred generations indicates
that improvements were being made rapidly during this period, but as the
optimisation approached the five-hundredth generation the rate of progress had
diminished considerably. This effect was expected as the GA will rapidly find most
of the obvious optimisations available and then the search will have to work harder
to find any further worthwhile improvements. The problem with these results was
that the naive GA levelled off too early; the quality of solution at the end of the trial
indicates that there were still many improvements to be made but the rate of

improvement visible on the graph is almost zero.
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Three Fitness Curves from the Naive GA
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Further work detailed in this chapter was therefore concentrated towards
improving the operators and parameter settings for the GA, in order to achieve
greater benefits during the early search period, and to produce better quality final

results.

3.3.3 Experiments with the rank selection pressure.

This experiment was intended to discover the effect of changing the rank
selection pressure variable used in the Genitor-type ranking algorithm [Whitley 89].
The pressure variable controls the proportional selection from the population based
on the fitness ranked position within that population. A selection pressure of 1.0
results in a totally random selection (all members have equal probability of being
selected), and higher selection pressures result in increasing probability that the
fittest members of the population will be selected. The Genitor paper suggests that
1.5 is a suitable value to be used for many experiments, producing a good balance

between population diversity and the rate of fitness improvements.
Implementation of the algorithm is exactly as given in the Genitor paper‘ :

linear_selection( pressure : float )
index = Population_size *

(pressure - V (pressure” - 4 * (pressure - 1) * random(1.0) ) ) /2 / (pressure - 1)
The Genitor Linear_Selection() Function.

Figure 3.4

" incidentally, this algorithm will not operate with a selection pressure of 1.0 as this

results in a divide by zero.
36



2 = B E Il O E O O BE Em == ==




The population is sorted by its fitness values using a linked-list bubble-sort
algorithm before the Genitor selection procedure is invoked, thus the result of the
linear_selection() routine is an index to the linked-list, which in turn holds the
position of the selected individual in the population.

The survivors selection procedure is simply to invoke this procedure once for
every member of the population, each time copying the selected member of the old
population into consecutive elements of the new population array.

The Genetic Algorithm used to perform the searches was the same as
described in Section 2.2.3: ten trials were executed and the number of iterations per

trial was set to 2000.

Figure 3.5 is a plot of the fitness of the best individual from the population
averaged over all ten trial runs (on the vertical axis) against the generation number
(on the horizontal axis). It shows the full set of results and clearly indicates that at
selection pressures of 1.1 and even 1.3, there is insufficient differentiation between
the poor members of the population and the fit ones. This results in chromosomes
which violate the problem’s constraints being selected frequently enough to
significantly degrade the average results. The large steps visible in both of these
lines are caused by selection of individuals who are extremely unfit due to large
constraint penalties being applied.

Figure 3.6 is a more detailed examination of the 1.3, 1.5, 1.7 and 1.9
selection pressures in which we see the expected results of higher pressures
producing steeper fitness curves but ultimately resulting in similar overall fitness
levels after 40000 evaluations. The 1.5 line is very slow to converge with the 1.7
and 1.9 lines, indicating that it takes significantly longer before it produces solutions

of equivalent quality.

The very low selection values do not appear to cause enough selection
pressure to avoid repeated constraint violations, although this may be affected by

adjusting the Constraint Penalty Multiplier. The lower selection values also result in
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Effect of Rank Pressure On Fitness.
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a slightly worse result after 2000 generations. As a consequence of these trials
further experiments will be performed using a rank selection pressure of 1.7, as the
suggested 1.5 is too close to the border-line where the constraints are being violated
regularly and it also does not converge rapidly enough to the better solutions found at

higher rank pressure levels.

3.3.4 Experiments with the constraint penalty multiplier.

The purpose of these experiments was to investigate the effects of changing
the constraint penalty multiplier £ used in the fitness function (Equation 2.1), and to
find an appropriate value for this variable which maximises the search capabilities
whilst avoiding an excess of non-viable solutions. The constraint penalty multiplier
(hereafter referred to as the penalty value) is applied to the fitness value of any
chromosome which has a maximum stress value greater than the constraint level, this
will lower the relative fitness of that chromosome reducing it’s probability of

survival into the next generation.

The penalty value is multiplied by the amount of stress which exceeds the
stress constraint, so the effect on a chromosome’s fitness depends on the degree to
which it is non-viable. This approach permits chromosomes which are only slightly
over the constraint limit to survive for a while, thus increasing the population
diversity at and around the stress constraint level.

The Genetic Algorithm used was as described in Section 2.2.3 except that the
vertical web which runs through the middle of the ‘I’ beam was enforced after the
operators were applied and before the evaluation function was called. Enforcing the
web avoids the complicating issue of the amount of mass added by the web itself. A
crooked web would contain more mass than a straight one, but the simple model of
the physics being used for the evaluation stage does not contain any forces that

would encourage a straight web. Rather than try to factor out the effect that the
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different randomly evolving webs would have on the final fitness values, it was
considered to be more sensible to avoid the issue entirely in this way.

A population size of 20 and an initial run Iength of 1500 generations was
used. The optimisation was performed ten times with each of the penalty values 1E-

3, SE-4, 1E-4, SE-5 and 1E-5. Other parameters were set as follows:

Beam dimensions =0.05m x 0.10m
Bending moment = 13000 Newton

Voxel grid size =32 x 64 voxels
Crossover probability = 0.3 (per chromosome)
Mutation probability =0.001 (per gene)
Rank selection pressure =17

Stress constraint = 2.0e8 Pascal

The web was enforced.

The first results graph (Figure 3.7) for these trials shows a plot of the average
fitness of the best individual from the population over the ten trials against the
generation number. This graph is somewhat misleading as it indicates that as the
penalty value is reduced the average fitness of the population tends to improve,
unfortunately this is at the cost of increasingly poor solutions. What is not clear
from this graph alone is that most of the fittest individuals at the lower penalty
values are non-viable in that they break the constraint limit - often by a considerable
amount.

The second graph (Figure 3.8) shows the maximum stress level of the best
individual from the population averaged over the ten trials against the generation
number, the stress limit constraint is marked as a horizontal line for reference. This
graph clearly shows the difficulty with the lower penalty values - the data for 1E-5 is
almost entirely above the constraint limit meaning that the majority of the solutions

from the population were non-viable.
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Fitness (average of ten trials)

Figure 3.7
Effect of the Constraint Penalty Multiplier on Fitness Values
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To be able to see the results for the 1E-3 and 1E-4 penalty values a
considerable expansion of scale is required, Figure 3.9 shows the data from Figure
3.8 expanded about the constraint limit line (which is again included in the graph).
Here even though the Maximum Stress average is very noisy data, we can see that
the higher penalty values cause maximum stress to be further below the constraint
limit than the lower penalties. The average for the penalty value 1E-4 actually
crosses the constraint limit several times, but always returns to viable solutions after
a short while.

Higher penalty values prevent recurrent violation of the stress constraint, but
very high penalties reduce the available search space by forcing solutions to stay
further within the limits. Even in the long trials the higher penalty values have this
restrictive effect. This is in keeping with the results found by [Chapman ef al. 94].

As the standard genetic algorithm verifies the viability of the initial
population by using the fitness evaluation function (which incorporates the penalty
value), the fitness/generation curves do not start at the same place for different trials
but instead indicate that a lower average initial fitness can be achieved by using
lower penalty values. This effect can be extremely useful, as a more fit initial
population reduces the length of search required in order to achieve a given quality
of result.

An ideal constraint penalty would allow the search to utilise the possibilities
beyond the constraint limit at the beginning of the search and would cause more
solutions to be valid as the search progresses towards it’s conclusion. This would
encourage a fitter starting population, allow maximum population diversity initially
and ensure that the eventual result population contains useful solutions.

These results suggest that a dynamically varying penalty value may result in
more rapid optimisation in the early stages of the search whilst avoiding the problem
of non-viable final solutions. This possibility was investigated and the results are

included in the next section.
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Maximum Stress (average of ten trials)

Figure 3.8
Effect of the Constraint Penalty Multiplier on Maximum Stress Levels - Detail
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3.3.5 Experiments with a dynamically changing constraint penalty multiplier.

These experiments investigate the efficiency of using a dynamically changing
constraint penalty multiplier rather than the static values used in the previous set of
experiments. The rationale for this approach is that it may be good for the search if
it is allowed to break the constraints during the early stages of the optimisation, but

that the results at the end of the run must contain viable solutions.

The constraint penalty multiplier must start off low and increase as the
optimisation continues, therefore the generation number will be used as the variable

which controls the function:

f(generation) = constraint penalty multiplier

Equation 3.1

A linear function could be used to test this approach, however it is apparent
that not only should the optimisation end with viable solutions, it should spend some
time optimising the viable solutions before the end of the run. A more suitable curve

function is:

constraint penalty multiplier = constraint base * (1.0 - ¢ P ™)
where n is the generation number.

Equation 3.2

This can be seen for several values of (alpha*n) in Figure 3.10 which shows

the constraint penalty multiplier for each generation to fifteen hundred. The function
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Constraint Penaity Multipler (base=5.00E-05)
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Dynamically Changing Constraint Penalty Mulitiplier
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describes a smooth curve from zero to a maximum, which is a proportion of the
constraint base value determined by the value of alpha*n used. A higher value of
alpha*n makes the curve more pronounced and results in a higher proportion of the
constraint base value at the final generation.

The Genetic Algorithm used was as described in Section 2.2.3 with a
population size of 20 and an initial run length of 1500 generations. The optimisation

was performed ten times with each of the alpha*n values 0.5, 0.75, 1.0, 2.0 and 3.0.

The graph (Figure 3.11) shows the average fitness over ten trials for each of
the tested alpha*n values plotted against the generation number. This graph shows
the effect of very low constraint penalty multipliers in the first half of the run; the
fitness curves go up from reasonable starting values to very poor results during the
first four hundred generations, peaking at various points depending on the alpha*n
value being used. It can be seen that the higher alpha*n values result in worse early
results, but better results later on in the run, although the alpha*n = 0.75 line is
anomalous in that it leads to a better final result than the 1.0 line.

The reason for the poor fitness values early in the run from higher alpha*n
values is that the constraint penalty multiplier increases faster for the higher alpha*n
values, thus the solutions are being penalised more strongly than those with lower
values. The better final resuits appear to be due to the rapidly increasing penalty
multiplier values forcing the search into a viable search space earlier, thereby giving
the search more time to do fine-tuning on the final solution.

Comparing the fitness graph results with the data in Figure 3.12 which shows
the maximum stress values over the same time period leads to some further insights
into the behaviour of the fitness curves. The lower values of alpha*n lead to greater
violations of the stress limit constraint, to the point where alpha*n = 0.5 doesn’t
produce any viable solutions at all during the 1500 generations. Typically the higher
values lead to viable solutions sooner, with the exception of alpha*n = 1.0 which
takes longer to descend than alpha*n = 0.75. This can be seen more clearly in Figure

3.13 which shows a detailed view of the second half of the optimisation period and

48



,[;rh:,ﬂu_”upuﬂ_ljﬁ-JM“,_Jr_IL.._]_4__h“uﬂu]ﬁi.uh.|iml4




Fitness (average of 10 trials)
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Figure 3.11
Effect of Dynamically Changing Constraint Penalty Multiplier on Fitness
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Maximum Stress (average of 10 trials)

Figure 3.12
Effect of Dynamically Changing Constraint Penalty Multiplier on Maximum Stress Level
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Maximum Stress (average of 10 trials)

Figure 3.13

Effect of Dynamically Changing Constraint Penalty Multiplier on Maximum Stress Level
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indicates that at alpha*n = 1.0 there were no viable solutions produced during the
run.

Figure 3.13 shows that once the solutions enter the viable region by
descending below the stress limit they rarely exceed that limit again, and indeed tend
to remain at a fairly constant distance from the limit. This is possibly due to the
constraint penalty multiplier value which, by continuing to increase, makes it less
and less likely that a non-viable solution will be more fit than a viable one.

The fitness values at the end of the optimisation are not very much different
than those obtained for good constant values for the constraint penalty multiplier.
Table 3.2 contains the end of run fitness values for both constant penalty multipliers
and the dynamic penalty multipliers, entries followed by a * are invalid solutions

which exceeded the constraint penalty at the end of the run.

Constant constraint penalty multiplier values:

0.001 0.0005 0.0001 0.00005 0.00001
925.999 916.599 919.843 908.123 861.650 *
Dynamic constraint penalty alpha*n values:

0.5 0.75 1.0 2.0 3.0
1004.231 * 936.266 957.609 * 932.259 924.466

End of Run Values for Average Fitness.

Table 3.2

The intention of this approach was to allow maximum population diversity

initially, but ensure that the eventual resultant population contains viable solutions,

and in this regard the concept appears to be successful. As long as the alpha*n value

is set to ensure a suitable constraint penalty multiplier value at the end of a run, the

prevalence of invalid solutions in the early stages of the optimisation is not a
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problem for the type of problem being addressed here. This technique is obviously
not suitable for optimisations of uncertain length or when the optimisation may be
stopped before convergence and a viable solution will be required.

The fitness curve graph (Figure 3.11) shows that the eventual fitness of the
best individuals varies very little, which indicates that the precise setting of the
alpha*n value is not critical. However the evidence of both the fitness curves and
the maximum stress curves is that a high value of alpha*n is better for the search,
resulting in better final solutions and avoiding the danger of non-viable populations
by a larger margin. Further experiments which use dynamically varying constraint
penalty multipliers would have used an alpha*n value of 2.0, however, as it can be
seen from the Table 3.2, the constant constraint penalty multipliers consistently
perform better than the dynamic ones, therefore constant constraint penalty

multipliers were used during the following experiments.

3.3.6 A new operator : smoothing.

The smoothing operator experiments were an attempt to directly address
some of the weaknesses of the voxel representation by devising a new specialised
operator which should aid the search by reducing the number of small holes and
ragged edges produced by the GA. The new operator was intended to be capable of
easy expansion from two-dimensions to n-dimensions in order that it would continue
to be useful in the case of three- (or more) dimensional problems using the voxel
representation. This would be an important issue for shape optimisations which are
not capable of being represented by a simple cross-section, for example if a beam
was to have a varying cross-section along its entire length then it would be necessary
to represent it using three-dimensional voxels.

The GA parameters used were the same as the standard GA described in

Section 2.2.3 and the new operator was applied in addition to the previous mutation
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and cross-over operators. The population size was set to twenty, and the number of
generations was limited to fifteen hundred.

The new operator was designed to set a region of voxels to the average value
of the previous contents of the voxels. Thus, if a region consisted primarily of ‘on’
voxels then the whole region would be set ‘on’ and similarly for ‘off’. This would
achieve the desired results by filling isolated holes in solid regions, and would also
eliminate the ragged edges where they overlap into the empty regions.

The size and location of the region to be affected was selected at random,
however the size was restricted to a minimum of 2 voxels per dimension and a
maximum of 1/4 of the dimensions of the voxel grid. These restrictions were
imposed in an attempt to ensure that the smoothing operator would always have an
effect when applied, and that the effect would not be to wipe out a huge area of the
voxel grid. Because the location of the region was selected randomly, the operator
was written in such a way that the region would ‘wrap-around’ to the opposite side
of the voxel grid if it exceeded any of the grid’s boundaries.

In order to check the efficiency of the new operator, the modified GA was
run ten times with each of the probabilities 0.0, 0.2, 0.4, 0.6, 0.8 and 1.0 of
smoothing being applied on a per chromosome basis.

The results of the smoothing operator on the population can be seen in Figure
3.14 which plots the average fitness values of the best member of the population
over the ten trial runs against the generation number, for each of the six different
smoothing probabilities applied. This graph shows that the smoothing operator
definitely increases the rate at which the fitness improves during the early part of the
runs; the increased steepness of the curves and the generally lower final values at
generation 1500 are good evidence that the operator is beneficial. There is some
‘ideal’ rate of application for this operator as witnessed by the improvement from 0.0
through to 0.6 and then the decrease in effectiveness from there to the 1.0 probability
level. The best result from these trials was gained at 0.6 and so that will be the

probability of smoothing used in further experiments.
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Fitness (average of 10 trials)
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Figure 3.14
Effect of Smoothing Operator on Fitness
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Comparing Figure 3.15 which displays some typical end-of-run population
members with the earlier results in Figure 3.2, shows just how effective this domain
specific approach to operator design has been, especially at eliminating isolated
holes and reducing ragged edges.

This set of experiments was intended to address two separate issues in
operator design; firstly, will specially designed operators function as wanted when
reducing particular undesirable effects during the optimisation process; secondly,
can such operators be designed so that they can be expanded to n-dimensions with
relative ease? The answer to both of these questions is a definitive ‘yes’. The rate of
improvement in average fitness values and the increased quality of the final results
produced using the new smoothing operator argues strongly for the first answer, and
because the design of the operator relies on the geometry of the problem
representation, the expansion to further dimensions should be extremely straight-
forwards too.

The next two sets of experiments take the concept of n-dimensional operators
further by attempting to formulate appropriate operators to replace the standard two-

point cross-over and bit-wise mutation.

3.3.7 An n-dimensional crossover operator.

The two-point crossover operator which had been used up to this point
treated the chromosome as a one-dimensional string of bits and therefore suffered
from a problem with /inkage - voxels which are adjacent in a two-dimensional grid
are not necessarily adjacent in the one-dimensional string. This separation increases
the possibility that useful building blocks (areas of the grid which contribute to a
higher overall fitness evaluation) will be disrupted during the crossover procedure.
The paper [Cartwright & Harris 93] describes the use of the UNBLOX crossover

operator which was specifically designed to overcome these limitations with
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conventional two-point crossover. This operator swaps a rectangular area of the grid
instead of the sub-string swapped by two-point crossover, if the area overlaps an
edge of the grid then it is made to ‘wrap-around’ to the opposite side. The size and
location of the area to be swapped are both selected at random, and in this
implementation the area was restricted to a minimum size of two voxels per
dimension in order that the operator would always have some effect when applied.

The crossover operators were used with the standard probability of 0.3 per
chromosome and no changes were made to the standard algorithm or to any of the
other parameter settings described in Section 2.2.3.

The graph in Figure 3.16 shows the results of ten trials using three alternative
crossover operators, including the UNBLOX operator. The other two were the
standard two-point crossover and another fairly common technique called uniform
crossover [Michalewicz 92] which swaps genes between the two parents using a fifty
percent probability for each individual gene to be swapped or left where it was. The
horizontal axis again represents the generation from which the values were obtained
and the vertical axis represents the average fitness of the best chromosomes from
each of the ten trials at the end of each generation. The fitness axis scale has been
adjusted to commence at a non-zero value in order to display greater separation
between the three lines.

The results confirm that the UNBLOX operator does indeed perform better
than either the two-point crossover or the uniform crossover techniques on this
problem. The rate of descent of the UNBLOX line is quicker, indicating that the
population converged to good solutions faster with this approach than with the other
two, and the eventual end result after the fifteen hundred generations has a slightly
better fitness value than those produced by the other techniques. The improvement
was not as large as had been expected and after further thought it was realised that
for this particular problem the optimal solution would be represented by a binary
string consisting of a series of ones followed by a series of zeros, followed by
another series of ones. This solution does not contain any inherently two

dimensional features which would be destroyed by the two-point crossover, and so
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the UNBLOX operator only significantly improved the early stages of the search
while the chromosomes were still converging towards the optimum.

The uniform crossover operator performed badly due its poor schema
preservation qualities [Michalewicz 92][Holland 75], so it will not generally perform
well on problems which rely heavily on solution sub-structures propagating through
the population as the optimisation progresses.

UNBLOX is a useful crossover operator which consistently out-performs
either two-point or uniform crossover on this problem, the work described by
[Cartwright & Harris 93] seems to indicate that it can be used on other problems
with similar results. Extension of the algorithm to further dimensions would be a
simple matter and the arguments supporting its use on this two-dimensional problem

also apply to voxel based representations of problems with more dimensions.

3.3.8 An n-dimensional mutation operator.

The standard mutation operator being applied to this problem relies on
randomly flipping bits in order to permit the search to enter new areas of the solution
surface. This approach does not apply any domain knowledge to the issues of
mutation, and so it should be possible to get improved performance from the GA by
designing mutation operators which directly address some of the perceived problems
with the optimisation. These problems have been mentioned previously in Section
3.3.6 which discussed the smoothing operator.

A new mutation operator was designed which alters the contents of a
randomly selected rectangular area of the voxel grid, it is referred to here as the ‘two
dimensional’ operator. This operator can easily be modified to work in n-
dimensions and works by affecting a relatively small area of the chromosome very
intensively.

A second, somewhat altered version of this mutation operator was also
designed and tested in these experiments called the ‘two by two’ area mutation

operator. This operator uses a fixed mutation square of two by two voxels and was

60



i n_,unuwﬂ_.;ﬁ_.TJ_.];__.nJﬁJHJﬁ__.__q_d_HWJ_“..._W-.M

A =N B



designed to be applied only if at least one voxel in the mutation area is already
active. The theory behind this operator is that most of the modifications need to be
made to the surface or interior of the evolving shape and that very little benefit will
result from flipping isolated voxels in the middle of the void areas. The choice of a
fixed two by two area was motivated by the observation that most of the
irregularities on the surfaces would fit into such an area and that with only sixteen
permutations possible (four binary bits), the probability of mutating a poor quality
area into a more fit variation would be reasonably high.

The new operators were applied in addition to the original bitwise mutation
operator, with a probability of 0.25 per chromosome of being applied. After each
application there is a decreased probability of the same operator being applied again,
with the probability of a further application being decreased to one half of its
previous value each time. The experiments were performed ten times for each of the
three alternative mutation combinations, over a period of fifteen hundred
generations.

The graph in Figure 3.17 shows the effect of the two new mutation operators
alongside the results obtained when neither of them was applied. The generation
number is plotted along the horizontal axis and the average fitness of the best
individual from the population at each generation is plotted vertically.

The addition of the two dimensional operator generally results in better
performance than the bitwise operator alone, though the two lines do meet between
generations 300 to 400. The steeper descent of the two dimensional operator line
indicates that early performance was especially improved, and the final result after
fifteen hundred generations is significantly better than previously. The two by two
operator offers a similar rate of improvement during the early stages of the trial, a
slightly better performance between generations 100 to 600 and finally converges
with the two dimensional operator’s line at about generation 1000. This seems to
indicate that although offering early benefits to the optimisation, it is not

significantly better than the two dimensional operator in the long run.
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In conclusion, two new mutation operators were designed with the particular
intention of directly addressing the perceived problems with the prior optimisations.
Both of the new operators were found to be more effective than the previous
uninformed bitwise mutation, producing benefits to both the rate of early
improvement and the final quality of solution generated.

In the absence of any other clearly distinguishing features, the two by two
operator will be used during the further experiments as it offers a slight code speed

advantage over the two dimensional mutation operator outlined above.

3.3.9 Dynamic mutation operator probabilities.

Dynamically varying operators have been used in many different studies of
the GA, most relevantly [Tucson & Ross 96] who concluded that the applicability of
this approach depends very much on the problem under consideration. The theory
behind this approach is that some operators are more effective during a particular
phase of the optimisation. For example, the smoothing operator described in Section
3.3.6 generally performs large scale changes to the chromosomes, and this makes it
ideal for chopping away all of the excess material during the early stages of the
optimisation. However towards the end of the optimisation, most of the changes
which will improve the chromosomes are very small. This is due to the fact that the
optimisation generally moves closer towards the problem constraints as it progresses
and hence almost any large scale alteration is likely to cause a constraint violation.

Similarly the two by two mutation operator makes small changes in the
chromosome, and while these are certainly very important during the early stages,
they become the major source of progress when the population is close to

convergence.
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This experiment will use a dynamically varying mutation probability factor in
the otherwise standard GA” to test this theory and see if any significant benefits can
be achieved by this approach. The mutation probability will start at 0.5 and increase
by 0.00025 per generation until it reaches a maximum of 0.8, which will occur after
1200 generations. The probability will stay at that level for the remaining 300
generations of the 1500 generation trial period. The starting value of 0.5 was chosen
as it had been used in a previous experiment with the two by two mutation operator
and had produced some good results. The ending value was set to 0.8 because it is
sufficiently larger than 0.5 that the dynamic probability effects should be visible.
The speed of 0.00025 was calculated after deciding that the mutation probability
should stop changing before the end of the trial run.

The graph in Figure 3.18 shows the fitness curves for the static two by two
mutation at a probability of 0.25 and the dynamic mutation probability. The vertical
axis represents the fitness value versus the generation which is numbered
horizontally. The two curves represent the average values of the best individual at
each generation over the ten trial runs.

Figure 3.18 show that the static mutation operator starts off achieving better
results and continues to do well right through the first 400 generations. It has the
most significant advantage (over the dynamic probability) at approximately
generation 310 where the two curves have their greatest vertical separation. From
this point on the dynamic probability starts to catch up, and it achieves equal results
near generation 800 when the dynamic probability value would have been:

0.5+ 0.00025 * 800=0.7.

The two curves cross and the dynamic probability continues to perform
increasingly better until at the end of the trial run the dynamic probability average
fitness was 861.399 compared with the static mutation’s average fitness value of
906.699.

On the basis of this experiment it appears that dynamic mutation

probabilities have a positive effect on the efficiency of the optimisation. However

* described in Section 2.2.3.
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Figure 3.18
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the poor early results suggest that it may not work very well for short analyses or
when the rate of early improvements is particularly critical. Following this result it
was decided that the dynamic mutation probabilities would only be enabled when the

experiments seem to need very high mutation rates towards the end of a run.

3.3.10 Comparison of modified GA with naive GA.

After incorporating all of the most beneficial alterations and new operators
discovered during the previous set of experiments the modified GA was run for ten
trials of two-thousand generations in order to compare it’s results with those gained
for the naive GA earlier. The comparison can be seen in the graph Figure 3.19 which
shows the fitness curve generated for the original GA and the same curve for the

final modified GA.

The settings used to achieve these results were:

Population Size =20

Ranking Pressure =17

Crossover Probability =0.35 (per chromosome)
Bitwise Mutation =0.001 (per bit)

Two By Two Mutation Starting =0.25 (per chromosome)
Two By Two Mutation Maximum = 0.75 (per chromosome)
Two By Two Mutation Speed =0.00025 (per generation)
Smoothing Mutation Starting =0.5 (per chromosome)
Smoothing Mutation Ending = (.25 (per chromosome)
Smoothing Mutation Speed =-0.000125 (per generation)

The modified GA performs better than the original one throughout the

optimisation period, with considerably better optimisations being found during the
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