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Abstract

The dense reconstruction of a scene’s 3D structure from a sequence of images has been for
many years one of the central goals of image processing and computer vision. Over the past 25
years researchers have exploited various visual cues in attempts to tackle the problem, which
have collectively been known as Structure from X. Of these Structure from Motion (SEM) is one of
the most actively pursued, in which 3D structure is inferred from 2D image motion. Two
dominant approaches have evolved in SfM, which depend on whether the scene is reconstructed
volumetrically, or reconstructed using surface properties. In this second approach, methods can
be further divided into those which are feature-based, in which only sparse reconstructions may
be possible and those which are flow-based, which lead to dense reconstructions. This
dissertation presents a novel approach for semi-dense scene reconstruction which has been
inspired by both SfM research and work on deformable models. The result has been the
development of the Disparity Deformation Model, which is used for constraining and
estimating image motion throughout video sequences. The model deforms so as to minimise an
energy function; a weighted combination of three information sources. These embody image
based evidence, assumptions about local and global smoothness and a model-based energy term
which imposes motion constraints i scene space. This third term uses a very general surface
model that assumes nearby points on a surface in the scene are at least locally planar. By
incorporating this into the energy function, much more accurate reconstructions are possible.
Furthermore, the surface models can be built up from a prior reconstruction of the scene using
deformations without the model-based energy. The model is also able to preserve disparity
discontinuities which may occur across object boundaries. This is achieved using multiple
intensity comparison windows and relaxing smoothness constraints across detected
discontinuities. At present, the method relies on known, or at least well estimated camera
parameters, which is not an unreasonable requirement in light of the recent advances in camera

auto-calibration.
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Chapter 1

Introduction

1.1 Scene Reconstruction and Structure from Motion

The extraction of dense three-dimensional scene structure from two-dimensional sequences of
images has been for many years one of the central goals of visual processing. This task is
achieved by most biological visual systems with remarkable accuracy, whereby animals
understand and operate in a 3D world whilst only able to sense 2D projections of it. Despite a
long history of research interest, the task of constructing artificial systems with similar visual
abilities remains largely unsolved. Research in this field has been continually driven by the
abundance of applications of 3D reconstruction, the dramatic increases in computing
performance and lower costing image capture devices. Although considerable advances have
been made in a very broad range of approaches, progress has been largely hindered by the
notoriously ill-posed nature of the problem. In general, many of the processes involved require
solutions to problems which may either be non-unique or non-existent given the available image
data. In the case of a single image, the information lost as the scene is projected onto the image

is irrecoverable if attempted in a purely data-driven fashion (Figure 1).
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Figure 1: An example of the loss of depth when a 3D scene is projected onto
an image plane
Structural properties can be made recoverable if a number of ancillary assumptions about the
nature of the world and of the image formation process are introduced. Using these
assumptions, visual cues present in an image can then be exploited to infer structure in the face
of very impoverished data. The approaches which use one or more of these cues have been
collectively known as Shape (or Structure) from X, where X signifies the particular type of cue.
These have ranged from shading [81], shadows [14], silhouette [70] specularities [7] to texture [8]
and focus [18] (Figure 2). An extensive number of approaches have been presented in the

literature based on all of these.

Figure 2: Various visual cues present in images for inferring structure. (Top-
left) shading, (Top-right) shadows, (Bottom-left) texture, (Bottom-right)
focus
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Motion is another very important cue which has been widely exploited in the computer vision
community. Structure from Motion (SEM) involves recovering structure using the spatial and
temporal changes occurring in an image sequence. The assumptions made here is that spatial
and temporal changes occurring in an image sequence are induced by the relative motion
between camera and scene. Motion parallax is one particular case of SEM where the depth of a
point in a scene can be inferred by the apparent change in displacement as the camera moves. In
the case when the camera is undergoing lateral motion, these displacements are proportional to
the depth of the point. The earliest and most well researched approaches for SIM have used
stereo pairs of images, which can be thought of as a special case of the more general n-frame
SEM task. These systems have been strongly influenced by biological visual systems; binocular

parallax is perhaps the most important depth cue in the human visual system.

The classic stereo vision task involves recovering structure using a number of selected points in
the pair of images. Reconstruction is commonly achieved through triangulation [26], where for
each point two lines of sight are constructed that pass from the view point of either camera to
the position of those points in both images. Whilst triangulation is a somewhat trivial process, a
number of difficult tasks must first be performed which present considerable challenges in the
general n-frame SfM case. The first involves determining the corresponding points in each
image; a task known as the worrespondence problem. Even for a small set of easily detectable points,
this task is not simple as for each point there may be multiple, non-existent or noisy solutions.
For denser correspondences, the problem escalates both in the degree of matching ambiguity
and the computational cost. The second task which must be solved is to determine the relative
pose, or extrinsc parameters of the cameras with respect to some world coordinate frame. This
constitutes the first part of the camera calbibration problem. The second part involves determining
the relation between the coordinates in a camera’s image space with respect to the way in which
light is projected onto its sensor. Typically, this process is described by a collection of intrinsic

camera parameters .
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Figure 3: 3D reconstruction using triangulation

Whilst stereo and multiple-frame SfM techniques are similar in sharing the same three processes
of finding correspondences, estimating camera parameters, and reconstructing the scene, the
difficulty of the correspondence and reconstruction problems are complemented. When using a
stereo pair, the amount of image motion undergone by each point is on average larger than for
consecutive frame. This results in a triangulation with a wider baseline and a lower signal-to
noise-ratio than if consecutive frames in the sequence were used. By contrast, the fact that video
sequences provide many closely sampled frames is an advantage when finding correspondences.
This 1s because by assuming small image motion between frames, the correspondence search
space is smaller. Also, the appearance of a point in the scene in two consecutive frames is in
general more similar than when using a stereo approach due to occlusions and projective
distortion, which further aids the correspondence task. However, a challenging additional
problem which the multiple-frame approach must face is to cope with correspondence errors

propagating throughout the sequence.

1.2 Applications

The ability to reconstruct the 3D structure of a scene has tremendous applications in the
computer vision, image processing and computer graphics communities. The reconstruction of
a scene need not be the final goal of a system, but may be an important intermediate step for
other visual tasks. For example, higher-level processes may then reason about the scene in 3D
space, such as 3D object detection [59], object recogniton [62] and navigation [61].
Alternatively, estimates of the structure can supplement other lower-level processes and

improve their performance, such as for tracking or motion field estimation. 3D structure can
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also be used for constructing 3D virtual models, which has very wide applications including
computer graphics, gaming, virtual reality, interactive e-commerce, product design and
architectural planning. Virtual models are currently built by hand using CAD; a time consuming
and laborious process, or are scanned directly using range sensors, which can be expensive and
task-specific. In both cases photorealistic texture must then either be constructed or mapped
onto the models. Constructing models from intensity images has the major advantage of
requiring only cheap hand-held hardware in which accurate textures can be extracted and

mapped directly from the video sequence.

Reconstruction can also be used for augmenting real scenes with virtual objects, which has
applications in film post-production and animation. It can also be used for image-based
rendering [32], in which novel views of a scene can be constructed from image data rather than
geometric primitives. Scene reconstruction is also desirable for more intelligent compression,

which has benefits for low bit-rate communication and noise reduction.

Figure 4 Augmentation of a real scene with a virtual character

1.3 Approach overview

The following chapters present a new type of deformable model for multiple-frame semi-dense
scene reconstruction. The Deformable Disparity Mode/ is used to model image motion throughout a
video sequence. The state of the DDM at each frame, in combination with well estimated
camera parameters can be used to reconstruct the 3D coordinates of a semi dense set of points
in the video sequence. This model is energy-based, meaning that it deforms so as to minimise an
energy function. This function is a weighted combination of three information sources. The first
embodies image based evidence and is derived from an area-based intensity matching function.
The second is used to constrain local and global deformations of the DDM. The third is a
model-based energy term which imposes motion constraints iz scene space. This energy uses a
very general surface model that assumes nearby points on a surface in the scene are at least

locally planar. By incorporating this into the energy function, scene-space, rather than image-
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space motion constraints are imposed, which can lead to much more accurate reconstructions.
Furthermore, this surface model can be built up from a previous reconstruction of the scene
using the DDM without the model-based energy function. There model is also able to preserve
disparity discontinuities which may occur across object boundaries and to handle occluded
sections. An overview of the reconstruction process is given in Figure 5, which is followed by a

brief description of each sub-component.

S 1=0
= Model Initialisation |
[ 2]
image,
1=1+1 \ /
: le 1=0
}[ Deformation <
= Node Formation at
E Novel Regions
image, N \l/ Surface Model
- Refinement
Model
Reconnection / \
—| Node prediction |
t1=T
% vV
params, > Scene Reconstruction

\ 4

Higher-level processes

Figure 5 Processes involved in 3D scene reconstruction using the DDM. ! denotes
the number of the frame being analysed where ¢ = 1,2,..,T . params, denotes the

camera’s internal and external parameters at time

Model Initialisation (Section 3.2)

The DDM comprises a set of nodes which are distributed throughout the image. This density of
this distribution corresponds to density of the resulting motion estimation, which can vary from
very dense (e.g. 25% of pixels), to less. The choice in this depends on the processing speed and
reconstruction density requirements, since the optimisation cost is linear in the number of
nodes. A mechanism is used for selecting optimal node positions that more densely populate

regions of the image which are considered to be more interesting, and reveal more underlying
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structure. The connections between nodes reflect those nodes which are influential in another
nodes’ energy. Since a node’s energy comprises both local and global smoothness terms, each

node is connected to a local and a global set of nodes. See Section X.Y for more details

Model deformation (Section 3.3)

The DDM deforms through the minimisation of an energy function defined at each node. The
minimisation algorithm uses a hill-climbing optimisation with adaptive energy weightings and an
adaptive intensity matching window size. Disparity discontinuities are handled by severing node

connections which cross detected discontinuites.

Node formation at novel regions

As novel regions of the scene are presented to the camera, the mesh deforms topologically by

introducing nodes at these regions.
Handling of occluded nodes

Throughout the image sequence, some nodes may become occluded, and these events must be
detected and handled. Detection is achieved through a violation of node ordering; a node
occluded by one of its neighbours will lie outside of the polygon of support defined by its
neighbours. In these instances, no image data is associated with the node, and the nodes can
either simply be removed, or persist whereby deformation is determined entirely by the other

(non-evidence) energy terms.

Model reconnection

For nodes which have been introduced, removed or been marked as crossing depth
discontinuities, connections to their neighbouring nodes must be formed or severed both locally

and globally. This is achieved using similar mechanisms used in mesh initialisation.
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Node prediction

Spatiotemporal smoothness assumptions can be used to impose additional constraints on mesh
deformation in subsequent frames, or for predicting the positions of nodes in subsequent
frames. In this system, the latter approach is adopted. The positions of nodes are predicted

using splines which have been fitted to their paths tracked in spatiotemporal space.

Scene reconstruction

The state of the DDM throughout the frame sequence is used in conjunction with well
estimated camera parameters at those frames to perform reconstruction. Throughout the
development of the project, scenes have been used in which the intrinsic and extrinsic
parameters have been known. Unfortunately time restrictions prevented the integration of self-
calibration into the system, although this is a natural extension. Reconstruction is performed
using a new technique developed by Rodriguez et al. [65]. This approach is inspired by the work
on spatiotemporal video sequence analysis, in which a best-fitting scheme is used for matching

the spatiotemporal paths of nodes to spatiotemporal depth curves.

Surface model refinement

Once the 3D coordinates of the mesh nodes have been reconstructed using the Rodriguez
method, a model of the scene’s surfaces is build. This is then used in the model-based energy,

and a second reconstruction process commences with better results.

Figure 6
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Background

2.1 Reconstruction using Image Motion

The focus of this project involves determining the structure of a scene using an imaging sensor
in motion capturing a stationary scene. Other SEM problem statements involve a static camera
capturing a dynamic scene which can either be undergoing ridged or non-ridged [75] body
motion. In the non ridged case, reconstruction is ill-posed if arbitrary motion as allowed, so
shape motion is typically modelled as a ridged component combined with a non-ridged
deformation drawn from some fixed distribution. The most general form of SfM is when both

camera and the objects undergo motion simultaneously [58].

Because of the vast amount of algorithms available which use motion parallax as the primary
cue for reconstruction, it is useful to categorise them along a number of dimensions. A relatively
clear separation can be made based on the specific SEM task to be solved, whether it be
ridged/non-ridged, simultaneous/non-simultaneous camera and object motion. One can further
divide these methods into those which are voxel-based and those which are image-based.
Image-based methods use either sparse image features or dense pixel matchings for estimating
image motion and reconstructing objects in terms of their surface structure. By contrast, voxel-
based approaches attempt to recover the volumetric structure of the scene using a discretised

voxel representation.

Various voxel-based algorithms have been proposed, and can be mostly categorised into three
groups. The earliest attempts involved approximating the visual hull of the image objects [49],
(Figure 7), which is defined as the maximal shape that gives the same silhouette as the actual

object for all views outside of the convex hull of the object [41]. Methods which approximate
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the visual hull are known as volume-intersection methods, and operate by first segmenting the
object from its background, and then with each acquired image the visual hull is reduced
monotonically. A second approach related to the visual hull is one of voxels labelling, where
voxels are either labelled as being inside or outside the segmented object. This approach is called
voxel-occupancy, and is generally solved using an energy minimisation formulation [72]. A third
approach uses colour consistency to identify those voxels which are on the surfaces of objects in
the scene, and are generally known as voxel-colouring methods. These make use of the
assumption that if a non-occluded point belongs to the surface of the object, then its projection
onto different views should have approximately the same colour [72]. The algorithms operate by

testing voxels for colour consistency, and ‘carving out’ those voxels which are inconsistent.

Figure 7: Visual hull estimation [23]. (Left) A single frame from a real video
sequence. (Middle) Extracted silhouette. (Right) Visual hull

The primary task of image-based methods is to estimate the spatiotemporal displacements
observed throughout a video sequence as a result of relative motion between the camera and the
scene. Traditionally, approaches for this task fall into two categories; those which estimate
motion implicitly by matching points between images and, those which estimate the
displacements directly through computing image motion, or gptic flow. Typically, the division is
also marked by whether a sparse selection of image features is reconstructed, or the

reconstruction is performed densely over every pixel in the sequence

2.2 Review of Projective and Epipolar geometry

In order to understand processes involved in scene reconstruction, it is necessary to be familiar
with projective and multiple-view geometry. Although it is common to describe 3D entties
using Euclidean geometry, since it provides very natural descriptors for a scene’s geometric

properties, it is entirely stated in terms of rotations and translations about a frame of reference

10
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and is inadequate for describing the projection process which occurs during image formation.
The more general projective geometry is used to describe this process by including the
perspective transformation. This section provides an overview of projective geometry, the

camera models and multi-view geometry necessary to describe the reconstruction process.

2.2.1 The pinhole camera model

Several camera models have been used in the SfM task to describe the transformation that a
point in some 3D reference frame undergoes as it is projected onto an image. By far the most
common is the perspective projection model, also known as the pinhole camera model. This is
characterised by a Centre of Projection (COP) positioned in the scene and an image plane 7 (Figure
8). In this model 3D points are projecting onto the image plane using perspective rays
originating at the COP. The pinhole model has several other properties which are useful to

consider. The focal kngth f is defined to as the minimal distance between the COP and 7, and

the camera’s optical axis is the unit vector passing through the COP and orthogonal to 7 .The
point in /T through which the optical axis passes is known as the camera’s Princpal Point (PP).
Traditionally, a perspective camera defines its own local 3D coordinate system, which is aligned

such that the camera’s optical axis is parallel to the z-axis, with the image plane defined by the

equadonz =1.

"><

Centre of Projection (COP) Focal length f

Prncipal Point (PP)

Image plane w

Figure 8 Projection using the pinhole camera model

The projection p'ofa point p = (X Y, Z )T , defined in the camera’s local coordinate system,

onto the image plane 7 is given by:

11
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It is useful to describe the projection using homogeneous coordinates, which allows additional

Euclidean transformations to be described compactly using a single matrix:

2.2)
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Il
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—_
Il
© - o
- o o
o o o
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Where A #0is a scaling factor which has the value Z .

Intrinsic parameters

Although the focal length is the most emphasized internal, or intrinsic camera parameter in the
pinhole model, a more complex parameterization is necessary to more accurately model the

internal behaviour of real cameras. Commonly used is a larger set of intrinsic parameters which

accounts for the pixel scaling along the X and y image axes (5, and S, ), the skew factor between

these axes (§,) and the coordinates of the principal point in the image plane (it and v,). These
parameters are incorporated into the linear projection to form the intrinsic camera calibration

matrix K :

s u; 0O
sX
(2.3)
K=[0 L v, O
x,
0 0 1 0

where p’=Kp . In addition to the linear effects summarized in the K matrix, there are other
nonlinear and second order effects such as lens distortion. Typically, though, these higher-order
effects and even variables in K can be approximated and compensated for via standard

corrective warping techniques [57).
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Extrinsic parameters

In most video sequences the camera reference frames are unknown, and so a problem which
must be overcome is to determine their location and orientations with respect to a fixed world
frame. There are several ways for describing the transformation at time ¢ which relates the

camera and scene reference frames. Here we will denote this using the Euclidean

transformalionM(t), which involves a rotation R(t ) around the camera’s centre of

projection and a translation T(l‘) in scene space Figure 9).

K
L
/\ Scene Euclidean coordinate system
J
Ql(\ 1 o

z

cor

Centre of
Projection

m = (x,)) Image point

X

Figure 9: The geometry of a pinhole camera in scene space.

In homogeneous coordinates, this becomes:

R(r) T(1)

2.4
o (2.4)

M(t)=
Where the top 3X3 cells is the rotation matrix and the far right column is the translation vector.
Thus, there are 6 extrinsic camera parameters. When equations (2.3) and (2.4) are combined we

obtain the following:
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X
x| [f. s, u, O]]1 0 0 O
R{t) Tt Y
P’=y|=|0 f, v OO0 1 0 O'[O(T) E)]Z (2.5)
1 0 0 1 0fi0 01 0 3 |

where f, and f are the simplified form of the terms in (2.3). The multiplication matrices are

typically represented more compactly using a single 3X4 matrixC:

p'=C[x.,v,Z,1] (2.6)

where Cis known as the camera calibration matrix which encompasses both intrinsic and extrinsic

parameters. The pinhole model can therefore be seen as a system that performs a linear

projective transformation from a projective plane P’into the projective plane P*.

2.2.2 Epipolar geometry and calibrated stereo cortespondence

The Epipolar geometry can be used to completely describe the projective geometry between the
two views of a scene. It also has very important applications in stereo matching as it limits the

search space for correspondence from two dimensions to one. Consider the stereo arrangement

depicted in Figure 10. The point Pis observed by two cameras centred at COF, and COP, at
points P,and P, in their respective image planes. A plane can be constructed which passes
through the three points p,COF, and COP,, and this is known as the epipolar plane. The
intersections of this plane with the two image planes are called the epipolar lines (Ep,and Ep,).

E,and E, are the points at which the line passing through the two cameras’ COPs5 intersect

the two image planes , and are known as the gpipos.

14
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Pooy,sd

£
.

COP, 10 COP,

Figure 10: Epipolar Geometry of a stereo pair of cameras

Epipolar constraint for calibrated stereo cameras

Calibrated stereo correspondence refers to the case in which both extrinsic and extrinsic camera

parameters are known in either image. Epipolar geometry can immediately help with establishing

the correspondence of P, in the second image because P, must lie somewhere along its epipolar
line Ep,. Since COF, pandp,are collinear, Ep,can be equivalently determined as the
projection of the line passing through COF and p, with its image plane, both of which are

known quantities. Consequently, the task of findingp, is reduced to a one-dimensional search.

The Fundamental Matrix

Epipolar geometry can be represented in a very compact linear system using what is known as
the fundamental matrix I, which maps a point in one image to the epipolar line that contains

its correspondence in the second image:

X"F=X 2.7

The derivation of this result can be found in [17].

15
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2.3 Computing image motion

Image motion is formally defined as the projection of the three-dimensional motion of an
object, relative to a local camera reference frame, onto an image plane. The primary goal of

image motion analysis is to accurately determine the field of local image motion vectors

v(x, y,t) from a sequence of images | (x, y,t) . The sequence is assumed to be a series of n
images acquired at fixed, discrete time intervals. Thus, for an image I, acquired at time 7, ,

1, =t,+k X Ot , where Ot is the time interval and t, is the time at which the first image was

acquired. In addition to the ridged body motion assumption, the SEM task assumes that the
intensity differences observed between frames are induced only through motion, and not
through varying illumination conditions or non-lambertian surface reflectance. In order to
compute optic flow, nearly all SfM algorithms make use of what is known as the Brightness
Consistency Constraint Assumption (BCCA), which hypothesises that the intensity structures of

two or possibly more frames can be made locally identical by a small displacement in time Ot :

I(x,y,t)=1(x+6x,y+68y,t+5t) (2.8)

Optic flow [6] is directly related to the BCCA , and is the name given to an estimate of image
motion based on the apparent motion of intensity between frames in an image. Provided that
motion vectors are reliably approximated, they may be used to recover the three-dimensional
structure of the scene. However, reliable optic flow is not only difficult to achieve in practice,
there are cases in which even a theoretical solution is impossible. Horn and Schunk [30] gave an
example of a rotating sphere with no surface texture. Under constant illumination, the 3D
motion causes no change in the image intensity over time; thus the SfM task as defined using
the BCCE has no solutions for regions within the ball; SfM itself is an ill-posed problem.
Despite this theoretical limitation, SEM has successfully progressed either by attempting to select
only those regions in the image for which the BCCE is mostly reliable, or by estimating dense
flow whilst including assumptions about the structure of objects in the world. The first
approach is termed feature-based SfM, and the second is dense SfM, and the next two sections

provide brief reviews of research in both approaches.
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2.3.1 Feature-based methods

Feature-based methods aim to compute disparity at a small number of well-defined image
features in a scene. The definition of an image feature is rather arbitrary and the only real
generalisation is that a feature must be in some sense a useful parameterisation of the image. For
features to be useful in the matching process and ultimately the reconstruction process, they
should ideally exhibit the following characteristics; uniqueness, repeatability and physical
meaning and stable under the change of viewpoint. A variety of methods have been used for
detecting such features in an image. Edges have been widely used in feature-based methods, and
found either through maxima in the first order image derivatives [12], or at the zero-crossings in
the Laplacian of a Gaussian of the image [48]. One disadvantage of using edge-based features is

that only motion perpendicular to the spatial derivative can be computed.

The pioneer work in features based on local regions of high intensity variation was conducted
by Moravec [56], in which the notion of ‘points of interest’ was introduced. In the original work,
intensity variation over four directions was computed using un-normalised cross-correlation
over a local region of support. The lowest correlation value was then taken as a measure the
points interest. For each point, these measures were thresholded followed by a process of non-
maximal suppression to obtain the final collection of interesting points. One of the
shortcomings of this approach resided in noisy nature due to using the minimum
autocorrelation for only four directions. Since Moravec’s work, the detection of interesting
points has been developed in a number of ways. For example, Harris and Stephens [25] used the
first-order image derivatives rather than intensity auto-correlation. More recently, the SUSAN
[71] and the curvature scale space (CSS) [55] corner detectors have been developed. SUSAN
works by detecting corners using the centroid and second-order moments in a local area of
intensity. CSS uses a multi-resolution scheme for finding the locations of maximum absolute
curvature of detected edge contours. Corner-features have the distinct advantage of intensity
gradients in multiple directions, which leads to image motion being fully recoverable, although

since the points are more scares than edges, they suffer much more from occlusion.

The benefits of using features for motion estimates are in reducing the amount of information
to be processed, and moves closer towards a higher-level understanding of the scene through
the elimination of ‘unimportant’ points. Furthermore, because of the desirable characteristics
outlined above, the problem of feature correspondence is generally an easier task than for

arbitrary points in the scene. Many feature-based systems do not use a specific type of feature,
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but rather a selection of features. For example, Weng [79] combined intensity, edges, and
corners to form multiple attributes for matching. Several other localised 2D features have been
used, such as texture patches [67]. Once features have been extracted, they may either be used in
a matching process, or as reliable seed points in other methods, such for the gradient-based

approach.

The matching process can be very difficult search procedure if appropriate constraints are not
applied. There are a number of these which can be used to significantly reduce the search space

and probability of mis-match. The following list comprises some of the most common:
®  Epipolar constraint. The matching search space can be reduced from 2D to 1D.
®  Unigy: Each feature can only be matched with a single feature

®  Smoothness: Continuous and smooth variaton is assumed in disparities across the

image

®  Ordering constraint: The ordering of features along epipolar lines is preserved across

the images
o Disparity gradients: The amount of allowed variation in disparity should be restricted.

Various approaches for performing the matching have been used, which include simple
correlation, relaxation methods [46] and recasting the problem into an energy minimisation
process [2]. Once features have been matched, a sparse set of 3D can be established. In some
instances this may be sufficient. However for many applications, dense reconstructions may be
required. This leads to one of the biggest disadvantages with feature-based approaches; accurate
and complete reconstruction of arbitrary scenes from sparse 3D scenes is very much an open
problem. Attempts in building continually triangulated models from space 3D data were first
proposed by Faugeras et al. [16], who used 3D Delaunay triangulation of the set of image
features to construct a volumetric model. The major limitation with this approach is that each
feature must be visible, and so fails in the face of partial occlusion. Other methods have
included the off-line fitting of surfaces [4, 19], although the resulting 3D structures are usually

very simplified and unconnected.
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2.3.2 Optic-flow methods

The second class of image-based SfM techniques are those which attempt to estimate image
motion densely at each pixel rather than for a selected subset (i.e. they calculate optic flow). The
majority of these methods fall into two categories depending on whether optc flow is calculated
using intensity correlation (area-based methods), or using spatial and temporal partial derivatives

(gradient-based methods) [3].

Area-based methods

Area-based approaches typically operate on pairs of images, in which optic flow is calculated by
comparing intensity values within small image sub-windows of either image, which then try to
maximize the similarity between these sub-windows. These approaches are based on the
reasonable assumption that a pixel is surrounded by a patch of pixels which have approximately
the same disparity. Several methods for quantifying the degree of patch similarity have been
proposed [1] [66], and their choice reflects the particular requirements related to computational
load, algorithmic simplicity and achieved performance. A common similarity metric is to use the
cross-correlation between intensity sub-windows. An outline of the basic algorithm is presented

in Table 1.

Inputs:

1. The image pairs, I(x, y,7) and I(x, y,t+At)

2. The width of the comparison sub-window =2W +1

3. The search region R(p, ) in the second image associated with pixel p, in the first

image

For each pixel p, = (x,y)!(x, y,t)e I(x, y,t)

For each displacement d =(d, ,d, )€ R(p, ), compute the cross correlation:

|14 W
cc(d)= > > I(x+k,y+jt)-I(x+k—d,y+ j—d,,1+6t) (2.9)
k=—W j=-W
The disparity of p, is the vector d =(d,,d, ) that maximises CC(d)over R(p,)
d =argmax,_, I:CC(d)]

Table 1Cross-correlation matching algorithm

Particularly in stereo vision, Normalised Cross-Correlation (NCC) may be used in which the

distribution of intensities are normalised in each comparison window. This has the effect of
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invariance to local changes of illuminaton, although this is less significant for consecutive
frames in a video sequence. Alternative (dissimilarity) metrics include the Sum of Squared

Differences (SSD) between the two sub-windows:

woow )
ssD(@)= Y S (I(x+k,y+jit)=I(x+k—dy,y+ j—dp,t+61))  (2.10)

k=-W j=—W

or the Sum of Absolute Differences (SAD)

SAD(d) = i i [ (x+k,y+j,t)=I(x+k—d,,y+ j-d,,t+61)  (2.11)
k=W j=—W

and many other variations [1]. Several attempts have been made to assess the relative merits of
these and other comparison metrics. Leclercq and Morris [38] used a series of ‘perfect’ ray-
traced images from various scene models and corrupted the images with varying amounts of
additdve white Gaussian noise. They found that in low noise regions, there is very little
difference in matching accuracy between the metrics mentioned above, which leads choosing
the simplest and fastest (SAD). However, at higher noise levels, SSD (the next cheapest)

performed consistently better.

Despite their simplicity, area-based methods require several parameters to be carefully selected.
It has been shown that the probability of mismatch usually decreases as the size of the sub-
window increases. However, larger windows lead to accuracy loss, due to projective distortion

and smoothing across depth discontinuities.

Gradient-based methods

In contrast to area-based methods, gradient-based methods use spatial and temporal partial
derivatives to estimate dense image flow at every point in the image. Recall the Brightness

Consistency Constraint Assumption:
1(x,t)=1(x+0x,t+05t)

where OXis the displacement of the local image region at (X,t ) after time Of . The right-hand

side of this equation can be expanded in a Taylor series to yield:
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1(x,t)=1(x,t)+VI-8x+6tl,+0* (2.12)

where VI =(I_‘,I_‘,) the spatal intensity gradient and IX,I),'I, are the 1% order partial
derivatives of [ with respect to X, yand?. 0’ represents the 27 and higher order terms. By

ignoring the higher order terms, subtracting [ (X,t ) from both sides, and dividing by Ot we

arrive at the following:
VI-v+1,=0 (2.13)

where v = (u, v) is the image velocity. This equation is known as the Brightness Consistency

Constraint Equadon (BCCE), which defines a single local constraint on image motion. It also

forms the basis of a very large proportion of research into optic flow. However, since the BCCE
is a single linear equation in the two unknowns V= (u,v) , the constraint is not sufficient to

compute both components of V. As a consequence only V, , the motion component in the

direction of the local gradient of the image intensity function may be estimated:

Al
[v1[;

(2.14)

L

This result is directly related to the aperture problem, which states that only the component of
velocity in the direction of the intensity gradient may be estimated. The other component of the
actual image motion, which is orthogonal to the intensity gradient cannot be computed directly;
the information is lost due to the local view (aperture) of the processing. For example, the
velocity of a surface that is homogeneous or contains texture with a single orientation cannot be
fully recovered using optic flow. In order to better determine V, the majority of gradient-based
algorithms rely on making assumptions about the true motion flow field to constrain optic flow.
This has lead to two general classes of algorithms; which either use globally or locally defined

constraints.

Global methods typically hypothesise that optic flow field should vary in a smooth manner by
incorporating a global smoothness regularization term into the computation. They were first

pioneered by Horn and Schunck [30] in which the algorithm seeks the smoothest velocity field
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consistent with the image data. The general form of global optic flow algorithms is to find some
flow vector Vwhich minimises an error comprising a data term and a smoothing term defined

over V:
E(V)=E,, (V)+2E ... (V) (2.15)

The data term E,,, (V) penalises a flow vector which does not agree well with the data, whilst

E

smooth (V) determines the amount of preference for smoother flow fields and is governed by

the regularisation parameter A. The classic objective function defined by Horn and Schunck is

as follows:
E,s(v)= I((VI v+ +/12tr((Vv)T (Vv)))dx (2.16)

By contrast, local methods use constraints which only hold in local regions of the image. These
have in part been motivated by the fact that optical flow estimation errors propagate across the
entire solution. Perhaps the best known example of local optic flow calculation is the Lucas and
Kanade algorithm [42] in which a local constant model for V is solved by minimising the error

in V via weighted least squares:

E (v)= 3 W2 (x)(VI(x,1)-v+1, (x,1))°
XeR
In one respect, local optimisation techniques can be viewed as a Winner-Takes-All approach, in
which disparity is associated with the minimum local cost value. However, the uniqueness of the
matches are only enforced for one image (the reference image), while points in the other image
might get matched to multiple points. Other problems encountered by local methods is through
the lack of ordering constraints, and in regions where the spatal gradients change slowly, the
optical flow estimation becomes ill-conditioned because of lack of motion information and
cannot be detected correctly. Optic flow algorithms must also address the problem of #me
aliasing, in which fine scale analysis cannot correctly detect large displacements. Many authors
have suggested using a multi-resolution approach. Starting from coarse scale measurements (e.g;
relying on coarse scale image information and sampled on a coarse grid), optic flow estimates

are iteratively refined using information at finer scales [6].
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2.3.3 Image motion through video sequences

Some of the most successful SfM approaches involve using the small spatiotemporal changes
between frames in a video sequence to track points throughout the sequence, and then to
perform triangulation once the baseline becomes large enough to use the first and last frames as
a stereo pair. A drawback of this approach is that points can be lost during tracking by occlusion
and can drift throughout the sequence. In addition to point matching between frames, optic
flow has been investigated as means to compute dense motion vectors integrated over time. The
main problem with these approaches is due to the high computational complexity of estimating
the optic flow and the difficulty in integrating the motion vectors over time. This is caused by
the inherently noisy nature of current optic flow algorithms and as such, it is poorly suited for
tracking over multiple frames. The problem of time integration has commonly been addressed
by using motion models such as the Kalman filter, which is an optimal recursive solution for

linear problems with Gaussian error, although this is rarely the case for real images.

2.4 Deformable models

Deformable models, also called active contour and surface models have become a well used tool
in image processing for shape modelling, visual tracking [27] and image segmentation [24].
Deformable models offer an alternative to rigid geometric models, in which the surface or
border of an object is treated as an elastic body that is able to stretch and deform when forces
are applied. Such models are termed ‘active’ because once initialised, their structure modifies in
relation to a number of forces applied to them. Deformable models were first introduced by
Kass ¢f al. [33] as the active contour model, or snake, and have been predominantly used for
detecting and locating objects, and to describe their shape. The snake is an energy minimizing
spline which can dynamically conform to object shapes in response to a combination of the

following three forces:
¢ Internal contour forces govern the elasticity and stiffness of the snake
® Image forces which attract the snake to desired features

® External forces derived from external constraints imposed either by a user or some

other higher level processes.
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The parametric representation of the snake is given by V(s) = (x(s) Y (s))
wherex(s) and y (s) are the x and y co-ordinates along the contour and parameter § is defined
in the interval [0,1]. The three forces combine to form the following energy potential field at

the contour:

e = IJ[&'M, (V(5))+ Eimage (V(5)) + Eupme (v(s))] ds (2.17)

0

One internal energy model is:

2+Wz (s)

v,(s)

£ur(5) = (5) v.(s)f) /2 2.18)

where v (s) and v (S) are the first and second derivatives of the contour respectively and try

to enforce curve smoothness. The image energy usually involves the inverse gradient of the
image, which pulls the snake towards strong edges. W, and w, are weight functions which dictate

the ability of the snake to stretch and bend. In practice, these weights are usually assumed to be
constant over the length of the contour. The generalisation of the active contour model is the
active surface model, which has been shown to be very well suited to the problem of extracting
objects from volumetric data. They are intensively used in 3D tracking and motion analysis [60],
mapping [44], and non-rigid modelling [44] and have found much success in medical image
analysis [68]. There are various formulations for the active surface model which include both
parametric and implicit forms. However, the formulation which has inspired the deformable
model in this work is the mesh representation, where deformation is petformed by constraining
the model at its vertices [54] [74] (Figure 11). The deformable mesh is considered as a mass-
spring system whose nodes are its vertices. The potential energy stored in the springs represent

the regularisation constraints.
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Figure 11: Example of using a 3D deformable mesh for volumetric
segmentation [74]
The mesh representation has also been used for two-dimensional active contours. For example,
Tu [76] connected a set of deformable contours to form a 2D deformable mesh for interactively

mapping irregular texture images onto irregular 3D geometric shapes (Figure 14).

Figure 12: The deformable mesh model used in [76] for texture mapping

Despite much research into deformable models and their applications, there has been almost no
work investigating their use for solving the Shape from Motion task. In particular, we would like
to know whether deformable models can be used to model dense (or semi-dense) motion fields
throughout image sequences and to discover what type of internal and data-driven constraints
are necessary to achieve this robustly. This is very much an open question in computer vision
research. This project has sought to determine answers to these questions, and has léad to the
development of the Disparity Deformation Model (DDM). In the next two chapters, modelling

motion and reconstructing 3D scenes using the DDM is described in full



Chapter 3

The Deformable Disparity Model

This chapter introduces the Deformable Disparity Model (DDM), a new deformable model
used for calculating semi-dense disparity maps throughout a video sequence. Disparity in
consecutive frames of a sequence is modelled through the deformation of the DDM, which is
achieved by the minimisation of its energy function. The deformation may be both geometric
and topological. The model’s geometry changes as it adapts to fit the true image-motion vector
field, whilst its topology may change either to encompass newly exposed regions, or to adapt to
regions which have become occluded. The deformation process also has a mechanism for
preserving disparity discontinuities. These result from discontinuities in the depth of objects in
the scene, and must be handled correctly to achieve accurate disparity estimates at object
boundaries. This problem has hindered many dense optic flow algorithms [30] since they are
based on the general assumption of smooth disparity across the image. In the following sections
the DDM and its structure is formally defined, and the terms comprising its energy of its nodes
are presented. This is followed by a description of the model initialisation process and the

algorithm developed for minimising its energy.

3.1 Structure of the DDM

The DDM is a finite-element model defined by a set of unique nodes
M= {n1 N AT nm} arranged densely in 2D image space, where each node is connected to a set

of local and global neighbouring nodes. In once sense the model can be viewed as an elastic

mesh, since the local connectivity leads to a homogeneous mesh-like structure (Figure 13). The
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nodes in the model correspond to unique points in the scene which have at one or more frames

been projected onto the image plane, and the model deforms so as to maintain these

correspondences. Each node n,€ M is defined by a 2D position (x,' y,) and two sets of
. [ 1 {5 Lt g
edges; the local set N, —{elvl,e,'z,...,e,.'jl } and the global set Ni'g = {et.l’et.l"“’er.k. } . Edges

in the local set are unique and define the local neighbourhood of 1, . Edges in the global set are

also unique, but are mutually exclusive to the local set and define the global neighbourhood
(Figure 13). The purpose of the two neighbourhoods is significant; they define the spring
networks which determine the local and global internal energy of each node. Although these
edges may be bi-directional, the use of directed edges offers the advantage of enabling the
influence between node pairs to be asymmetric. This is necessary for global connections, since
global nodes are selected based (among other things) on their photometric properties (section

3.4.2).

Figure 13: Illustration of the local connectivity of a section of a DDM. Nodes
are indicated by filled circles, and the edges are shown as lines connecting the
nodes. The green node has 8 local neighbours and therefore 8 local springs
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Global
neighbour

Local
neighbour

Figure 14 Illustration of a node’s local (red) and global (blue) neighbours

Although each node’s initial position is within the viewable area of the image plane, there is no
restriction for it to remain visible in all subsequent frames. This is particularly significant when
nodes become occluded, or when they move beyond the camera’s maximum viewing angle. In
cither case, these nodes no longer have any image data. Nodes which are not visible could be
simply removed, although their structural information so far gained is lost. In the absence of
image data, the DDM is able to sustain nodes and determine their positions in subsequent

frames using their non-image based energies.

3.2 Model Energy

This section presents a complete description of the DDM energy function. The energy function
in full is first presented, with the component energy terms explained in subsequent sections. The
energy quantifies how well the model has deformed with respect to both fitting the image data
presented in a new frame, and the degree to which the deformation matches our prior
expectations. Therefore a well formulated energy function attributes higher energies to models

which have deformed pootly in these two respects. Given such an energy function, the

deformation process at time! + 1is cast as the following optimisation problem:

find M,,, such that M, € M and M ,, =arg min E(M,11,.M,)

Given image |
M eM

141
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where I, is the image at time 7+1, Mdefines the set of valid models at dme 7+1 and
E(Mth IM,,IH_I) is the energy of the model M, given priors M, and I .. In the

remainder of this section, for clarity we shall denote this model energy using E (M ) .

The energy function of the DDM is defined as the sum of the energies of its constituent nodes:

E(M)=ﬁE(n,.) @3.1)

The energy of each node is further divided into a weighted combination of two components.

The first, E,

img

is the node’s image energy, which reflects the degree to which the image data (or

evidence) agrees with the model. The second, E,, is the node’s net internal energy which

embodies prior assumptions about ‘good’ deformations. Thus, E (M ) becomes:

E(M ) = WI-ZEimg (ni)+wl Einl (ni) (32)

where w, and w, are the weightings of the image energy and internal energy terms. Since only
their relative weighting is significant, W, can be treated as unity. The net internal energy of a

(ni)is the

node is defined as a weighted combination of two internal energies. The first, E_, .

spring energy of a node’s derived from the geometric relations between a node and its

neighbours. This energy governs the model’s elasticity, regularity and smoothness. The second
term, E, ., is the model-based energy of a node, which is applicable once a model of the scene
has been build after a reconstruction. This is also an elastic energy but which operates using
springs defined 7n scene space, rather than image space. The energy of a node n, therefore

becomes:

E(ni) = Eimg (ni)+ Wim : ((1 - a) Espring (ni ) + aEnmdel (ni )) (33)
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The internal energies E

spring 21d E, 4 are further defined as a weighted combination of local

and global energies, which is given by a node’s local and global spring networks. Thus,

E, s2nd E, ,, are expressed as the following:
Espring (ni ) = ﬂ(E:[al:mg (ni )) + (1 —ﬂ) (E-Tgﬂlfll',lg (ni )) (34)
Epgier ()= B(Ennge (1)) + (1= B) g (n,) 3.5)

Equations (3.1- 3.5) provide the complete form of the DDM energy function. In the following

sections, E, , and E

ata spring AT€ explained in detail and the motivation for having both global and

local internal energies. E

model 15 2 quantity derived after the scene’s initial reconstruction, and so

is discussed after the reconstruction process (section 4.2).

3.2.1 Image energy

The image energy relates to degree to which the model fits with the evidence presented in the
image. For deformable contours and surfaces, this is commonly related to the intensity gradient
of the image, which attracts the model to object boundaries. By contrast, the image energy of
the DDM embodies a local constraint on photometric similarly. Several of the gradient or
correlation-based matching functions outlined in section 2.4.2 are suitable for this purpose. The
Sum of Squared Differences was selected due to its good performance in previous studies [1] [38]
whilst being relative cheap to compute. This complexity of the matching function is of

considerable importance for dense or semi-dense motion estimation algorithms. Assuming a

node A, has coordinates (x,., Y ) , its SSD score over a window W is given by:

SSD(n. W)= 3 (1(x+k.y,+ jut) =1 (5 +k=dy,y,+ j=dy,t+1)°)  (3.6)

k. jew
Although simple to compute, matching using SSD (and other area-based methods) are only
reliable when the pixels in the comparison window have similar disparities. If the depths of the
pixels are different, then using the surrounding pixels to support the matching leads to errors
where disparity estimates are smoothed over these pixels. In early experiments using SSD

matching, this was leading to problems at object boundaries. One of the most successful
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approaches for improving area-based matching algorithms is the use of adaptive window sizes.
In Kanade and M. Okutomi’s influential work [31], this is achieved by searching for the window
size which produces a disparity estimate with the least uncertainty. Whilst this is feasible for
feature-based matches, the additional cost of performing this search at many points collimates in
an extremely expensive matching function. In this work, an alternative approach using multiple-
windowing is used [20] [21], which can potentially be more cost-effective. The idea of multiple
windowing is to use several comparison windows anchored at a various positions in the local
region of the point being matched. The minimal SSD score of these windows is then taken as
the matching score for that point. This approach is based on the good assumption that a
window yielding a smaller SSD error is more likely to cover a constant depth region. Therefore,

it is the true disparity map which drives the selection of an appropriate window.

The choice of the number of windows reflects a trade-off in accuracy and cost. Using eight
possible windows might yield a better match than only four, but the cost in performing the SSD
comparison is doubled. In practice, most approaches rarely use more than 9 windows. In this

work, 5 sub-windows are used (Figure 15)

Figure 15: The 5 sub-windows used in the multiple windowing algorithm. The
grid units represent pixels. The grey pixel is the position of the point being
matched with respect to the window

The choice in these windows reflects the various orientations of possible depth boundaries in an
image. The intention is that irrespective of the depth boundary direction, at least one of these

will envelope pixels at a single depth. This is shown in Figure 16.
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[

Figure 16: Various orientations of a depth discontinuity (shaded boundary)
with an appropriate sub-window. The grey box represents the matching
anchor point

The image-based energy of a node is thus computed as follows:

E,,(n,)=min[ $SD(n,W,),SSD(n, W,).....SSD(n,, W;)] (3.7

where W, denotes each of the matching windows shown in Figure 15

Efficient implementation for multiple window matching

The disadvantage of using multiple windows is that the time taken to compute the SSD error
grows linearly with the number of windows. However, by means of an efficient implementation,
this can be reduced to constant time, albeit with an initial overhead. This is achieved using an
approach inspired by the inzegral image representation, which was first used in fast box filtering
for real-time face detection [78]. The integral image is a cumulative summation of intensity
values over a particular region of interest. An illustration of the integral image is shown in

Figure 17.

image(x,y)

ii(xy)= Y image(xy)

Jexk<y

Figure 17: The integral image
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Once the integral image has been computed, the summation of pixels within a box bounded by

corners (a,b, c,d ) in the image can be computed in constant time:

image(x, y)

ii(a) ii(b)

Figure 18: Box filter defined by corner points in the integral image
filter (a,b,c,d) =ii(c)—ii(b)—ii(d)+ii(a) (3.8)

This approach can be applied to compute the SSD error of the various windows by using
squared difference values in the integral image rather than pixel intensity values. The SSD
integral image must be computed over the region which encompasses each of the sub-windows
(the additional overhead), and then computation of the sum of squared differences for each

window can be computed in constant time.

3.2.2 Internal energy

The internal energy of the DDM parallels the smoothness constraints used in dense
correspondence algorithms to enforce the assumption that disparity should vary smoothly
across an image. This energy marks a preference for solutions which preserve geometric
relations between neighbouring nodes, although in a scale, translation and rotation invariant
manner. This is realised using an elastic spring network defined over the (root) node’s

neighbourhood (Figure 19).
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Neighbour n;

Root node

Figure 19: Illustration of the springs which connect nodes to their neighbours

Each neighbour 7, of the root node has an associated spring which has a natural length/, , and
energy e, proportional to the difference between its length and its natural length. Given a root

node positoned at (xo s yo) , then for a neighbour positioned at (xk » Ve ) , the spring energy is:

€ k=‘(""k"‘lk )| 3.9)

where V, = (xk ) Vi )— (xo, yo) . Notice that this energy term is translation and rotation
invariant, since we are using (scalar) spring lengths rather than vector quantities. To achieve
scale invariance, both the springs’ natural lengths, and the vectors v, must be normalised
before e, is computed. This is achieved by dividing each /, by the mean natural spring length of

the spring network, and the node vectors by their mean length:

, |Neighs,. | , |Neighs, |
I =l Xxi=o— V, =SV X
D T A
n,€ Neighs; n, & Neighs;
et =|(Ivil-%) (3.10)

where Neighs, is the collection of neighbours of node 1, .The internal energy E,, (ni) is then

given by the sum of the individual spring energies between the root node and neighbours:

Eim (ni)= Z e; (311)

e Neighs;

34



Chapter 3 The Deformable Disparity Model

Natural spring lengths and spatiotemporal constraints

The natural spring lengths determine the distances between a node and its neighbours for which

E

. 1 zero. Therefore, they represent the solution for which the model is guided towards
during deformation, and so must be set accordingly. Several choices are apparent for selecting
the natural lengths. The first is to use their lengths at the time the model was inidalised.
However, as the sequence progresses these natural lengths will become invalid. The reason for
this is because the springs are only invariant to affine transformation, which generally does not
model image motion well over longer time scales. To resolve this problem, they must be
temporally adjusted. One approach is to use the lengths of the springs in the previous frame to
be their natural length in the next. This reduces the problem of the first approach. However, the
new natural lengths are sensitive to errors in the pervious deformation. If these are poorly

determined, they will guide subsequent deformations towards poorer solutions. This leads to

errors propagating in a positive-feedback manner, which is a serious problem.

The solution taken in this work is to use the spring lengths at the previous frame, but to
incorporate an element of history. Noisy spring lengths in one frame will be smoothed out by
the natural lengths in previous frames, but yet these natural lengths will temporally adapt as the
sequence progresses. This mechanism is implemented using a discount factor A such

that0< A <1. For larger values of A, less weight is attributed to historical spring lengths:
L(t+1)=A-1 (1)+(1-A)-L (r-1) (3.12)

where [ i (t ) denotes the natural spring length lk at ime .

3.3 Node Initialisation

This section describes the process for distributing nodes in the DDM in the initial frame.
Without knowledge of the structure of the scene, it is difficult to position the nodes such that
they are well distributed throughout the scene. A dense coverage over the initial frame does not
guarantee this since the surfaces which are facing the camera receive more coverage. However,
when the model is first initialised, no structural information is assumed, and so only image-
based properties can be used. One method is to uniformly distribute the nodes over the first

frame at a fixed density (Figure 20). For very dense correspondences, i.e. at the pixel level, this is
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the correct approach. However, for a sparser DDM, more useful node positions are those which
reveal more structural information from the image. This closely reflects feature-based
reconstruction methods, in which disparity estimates are made only for a very sparse set of
‘interesting points’ with typically high local structure, such as edges or corners. Prioritising node
placement in favour of more structural regions has the further advantage of increasing the
reliability of disparity estimates at those points. The resolution of the camera also determines the
density of the node distribution. For images of lower resolutions (e.g. 320X 240 pixels), more
nodes are required to achieve a similar density over the scene as for higher resolution images.
Also, if the computational cost is an important factor, a lower density mesh may be needed to

reduce the cost of deformaton.

Figure 20: DDM node initialisation using a uniform distribution. The scene is
of a simple three dimensional comer with textured surfaces

3.3.1 Sparse meshes

While node placement using a uniformly dense mesh is trivial, several approaches for initialising
sparser meshes were considered. The first achieves satisfactory results using a cheap algorithm
which is linear in the number of pixels. The algorithm distributes nodes through two passes of

the image. The first pass places nodes at detected interesting points only if a node has not

already been placed within a certain proximity §,, . The second pass distributes nodes at the non-

interesting pixels only if 2 node has not already been placed within a certain proximity s, . The
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algorithm is summarised in Table 2. The Canny edge detector has been used to detect the

interesting points, and the results obtained for a simple scene using 5, =3 and 5, =10 are

show in Figure 21.

Acquire a set of interesting points SIP={p,.(x,y)} and define
interesting point separation Sp and non-interesting point separation Sq
ror each p,(x,y)e SIP
If no node in the mesh exists within .S‘ppixels of P,

Insert node at (x,y)

End
End

For each pixel (; (X,y)E SIP

If there does not exists a node within S'Fpixels q;

Insert node at (x,y)

End
End

Table 2: The algorithm for selecting node locations for sparse meshes

Figure 21: Mesh initialisation which prefers nodes close to interesting points.
The image resolution is 250%250

The algorithm provides good results over a range of images, although is dependent on the

reliable detection of interesting points and appropriate values of § B and S, One shortcoming
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of this approach is that the nodes are not repacked after distributions. This can result in some

sparsely covered regions. Figure 22 illustrates the problem, which shows two nodes that have

been placed a distance of 2Sq —1 pixels from each other. This can happen since the algorithm

distributes nodes through two passes of the image. In this situation, a node cannot be inserted

in between the two placed nodes. Thus the worst case separation between nodes of the model is

25, —1 pixels.

<—sq-1 '—T—— Sq —>
O O
P P —

Figure 22: Worst case separation using the algorithm given in Table 2

Several avenues for improvement were identified, although time did not permit their
implementation. One is to model the nodes as energy particles in which nodes are both attracted
to interesting regions but which are also mutually repelled. The second is a generalisation of the
original algorithm in which node separation is not fixed, but is determined dynamically using the
degree of estimated local structure at a point in the image. This can be achieved, for example

using the Moravec interesting point operator [56].

3.4 Constructing node neighbourhoods

Two processes are used for connecting the nodes in the DDM to their local and global
neighbours. The local connections form the mesh-like structure of the DDM and are
determined exclusively by the geometric relationships between nodes. By contrast, global
neighbours are selected on the basis of geometric and photometric properties. These two

processes are outlined in the next two sections.

3.4.1 Local neighbourhoods

For a uniformly distributed DDM the local connections are trivially computed, since they
comptise the set of eight surrounding nodes (for those which are not on boundaries). For non-
uniform distributed meshes this is less simple. Popular approaches for connecting meshes
specified by a number of vertices are various triangulation algorithms which create a set of non-

overlapping triangularly bounded facets. The Delaunay triangulation is perhaps the most
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popular triangulation scheme. It is related to the Voronoi diagram in which the circle

circumscribed about a Delaunay triangle has its centre at the vertex of a Voronoi polygon

(Figure 23).

Figure 23 Duality between Delaunay triangles and a Voronoi diagram

The local neighbourhoods are constructed using the Delaunay triangulation. The set of
neighbours for each node is given by the vertices of the triangles for which that node is also a

vertex. Figure 24 shows the Delaunay triangulation of the nodes distributed in Figure 21.

Figure 24: Delaunay triangulation used for locally connecting nodes to form
local neighbourhoods for a sparse mesh.
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3.4.2 Global neighbourhoods

Motivation

The motivation for having connections between nodes which span larger regions in the DDM is
to guide deformations toward global energy minima. This is to help alleviate the problem of
local minima which can occur when using only local neighbourhoods. This problem is a
manifestation of the aperture problem, which states the component of the motion field in the
direction orthogonal to the spatial image gradient is not constrained by the image brightness
constancy equation. For instances where over a local region (i.e. at a single node) there is a uni-
directional image gradient (or even no gradient), the spring forces imposed by the node’s local
neighbours serve to disambiguate the image motion at that point. However, when the aperture
problem is effective over a wide area, encompassing many local neighbourhoods, a high

proportion of the neighbours themselves are affected by the problem.

A simple scenario illustrates this. Figure 25 shows two frames of a scene comprising a static,
low-textured rectangle. A DDM defined over the rectangle is illustrated in Figure 26. For nodes
further into the centre of the rectangle, there is no apparent motion between frames. This is
because there are virtually no intensity gradients at these regions. Furthermore, their neighbours
are also affected by the aperture problem, and so their immediate spring energies are ineffective.
In order to correctly deform the entire model, motion at the outermost nodes must propagate
through each local neighbourhood right into the centre. However, this propagation is hindered

by the fact that the internal and data energy of the inner nodes are already at local minima.

4 /
4 -/
S

= 100 150 200 250 2 100 150 20

Figure 25: A simple scene comprising a low-textured 2D box. The camera is moving in the
direction (-1,1) in image coordinates. (Left) Frame 1. (Right) Frame 2. The arrows indicate
apparent motion
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Figure 26 DDM defined over a 2D rectangle with very little texture. The
further into the rectangle’s centre (yellow), the more the nodes and their local
neighbours are affected by the aperture problem

The solution to this problem is to define a global neighbourhood for each node, in which global
neighbours are selected which are less affected by the aperture problem. In this example, these
are nodes at the corners and edges of the rectangle. While the local energy will serve to maintain
the local structure of the mesh, the purpose of the global energy is help propagate motion

throughout regions of the model which is affected by the aperture problem.

Constructing global neighbourhoods

There are three properties which must be considered when constructing global neighbourhoods:
1. The amount of local photometric structure at the node
2. Whether the node belongs to the same surface as the root node
3. The degree of separation between global neighbours

Triangulation algorithms are therefore insufficient since they only consider geometric properties.
Furthermore, global neighbours (as illustrated in Figure 14) should not be restricted to those
only forming valid triangulations. These three properties are now explained in the following

sections.

Quantifying photometric structure
Various methods exist for estimating the amount of variation using local texture. These range
from statistical measurement, such as contrast, variance or intensity gradient magnitudes, to

saliency maps [80], in which regions associated with high saliency are those considered more
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important by subjective human judgment. The method used in this approach is to approximate
structure using the amount intensity variance defined over a local support window. Intuitively, a
window with high intensity variance is likely to reflect more photometric structure than one with

a low variance, will suffer less by the aperture problem, and is therefore more suitable as a global

neighbour. The intensity variance var, (1) of an image I over alocal region W is given by:

> (I(x.y)-mean, (I))

var,, (1) =2k W (3.13)

> I(xy)

_ (r)eW

where mean,, (1) |W|

An example of an tmage which has large areas of homogeneous intensity is shown in Figure 27

(left). On the right is a corresponding plot of local intensity variation using the filter in equation

3.13.

Plot of local intensity vaniance in the 1lly' image

Vanance

Figure 27: Example image (left) with a corresponding plot of local intensity variance
(right). The window size used is 7x7 pixels. The response of the filter is clearly higher at
regions with high intensity gradients
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Neighbour suitability

Global neighbours should not be selected on the basis of the amount of local intensity variation
alone. This is because the spring energies perform most reliably when the disparity of the two
connected nodes varies smoothly. Discontinuities resulting from objects at different depths
cause the springs to smooth disparity estimates across this object boundary, which results in
inaccurate estimates. Therefore, global neighbours should be selected which are believed to not
cross a depth discontinuity. The local intensity variation can serve as a cue for this; high local
structure can demarcate object boundaries. However, of these regions, those which are further
away from the root node should be considered less suitable than those which are closer.
Consider the root node positioned at the cross in Figure 28, left. If we consider only those
points passing through the illustrated line as candidate neighbours, we can visualise the intensity

variation with respect to the distance from the root node.

Plot of local intensity variance in the illy' image
Local vanance of points along the line y=50 in the Tilly" image
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Figure 28: Intensity variation in the lily image along one dimension. Point X marks the root
node. (Left) 2D intensity variance. (Right) 1D cross section
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Although the highest intensity variance is at column 200, this crosses an object border at
column 120 which is nearer to X . To discourage global neighbours from forming across object
boundaries, they should be determined by both local intensity variance and their separation
from the root node. Several fitness functions were developed for assessing the suitability of a
global neighbour. One involved penalising nodes which were both too far away and too close to

the root node using a ‘doughnut’ filter. This takes the one-dimensional Gaussian of the
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Euclidean distance between the root node and candidate neighbour. However, calibrating robust
kernel parameters proved a very difficult task. A simpler, but nevertheless effective fitness

function has been developed in which a node is considered suitable if two criteria are met:

1. The node’s intensity variation is above a certain threshold o

N

No pixel between the root and candidate node has an intensity variation above O
3. The node is within a certain distance §

This first property is related to the discussion in the previous section. The second property is a
cheap way of eliminating candidates which may cross object boundaries. This is implemented by
marching along pixels between the root node to the candidate node, and rejecting the candidate
if an encountered pixel has a varation above . The selecton process can afford to be
pessimistic, by using a moderately high variation threshold. The third property is necessary to

prevent unreasonably distant global neighbours.

Forcing spatial separation between global neighbours

The third property which must be considered is the degree of spatal separation in the global
neighbourhood. The reason for this is because global neighbours are generally more effective
when they are well distributed around the root node. This again is directly related to the aperture
problem. If neighbours are close to one another, they are likely to have similar intensity
gradients. In cases where these gradients are unidirectional (i.e. at edges), only their motion
parallel to the intensity gradient is recoverable, and so the root node will experience spring
forces only in this direction of motion. This is illustrated in Figure 29. If only the red nodes are

used as neighbours for the root node, motion in the horizontal direction remains ambiguous.

Recoverable image motion
component

Neighbours

Recoverable
image motion
component

Figure 29Illustration of the reduction in image motion ambiguity at a root
node by having global neighbours which have contrasting intensity gradients
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A more effective situation is when the global neighbours have different intensity gradients, since
their combined recoverable motion will better influence the root node. In Figure 29, this means
introducing the blue node, which removes the motion ambiguity. Since the neighbour nodes will

have neighbours themselves, their disparity estimates will be reinforced in a similar fashion.

A node’s global neighbourhood should therefore support a wide spectrum of intensity gradients.
The way this is achieved is to make use of the assumption that by sweeping in an arc around the
root node, candidate neighbours will exhibit an entire range of intensity gradients. The space
around a root node is first quantised into 8 angular segments (Figure 30). For each segment, the
closest candidate in this segment which has passed the fitness function described previously is

selected.

Figure 30 The 8 angular segments from which global neighbours are selected.
Here, 6 neighbours have been selected (red nodes). The yellow nodes
represent candidate neighbours which were not selected

3.5 Deformation

This section outlines the process of deforming the DDM throughout frames in the video
sequence via energy minimisation. There are several well-established optimisation algorithms
used in the context of deformable models and energy-based dense correspondence. The most
popular have included dynamic programming [22] [68] [34] and more recently graph cut
methods [77] [35]. One of the strongest properties of the DDM is that through the use of
locally and globally defined constraints, good solutions can be found using a simple and cheap
discrete hill-climbing optimisation. The organisation of this section is as follows. A high-level

description of the deformation process is first presented. This is followed by a description of
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variable intensity window and node prediction. Finally, the mechanisms for preserving disparity

discontinuities and handling occluded nodes are presented.

3.5.1 High-level process overview

The optimisation progresses in an iterative fashion, where at each iteration a single hill-climbing
step is performed on each of the model’s nodes until termination. A high-level overview of this
process is given in Table 3. The optimisation terminates when either the energy of every node is
minimal, or is forced after a fixed number of iterations have been reached to prevent cyclic or
chaotic deformations. The upper limit on the number of iterations is 100 iterations, although in

practice this is rarely exceeded.

Define iteration upper limit L
Terminate = false
While {NOT Terminate}
Order the nodes according some ordering function
For each node
1. Form candidate next-frame position set
(including current position)
2. Evaluate node energy for each candidate
3. Move to candidate position with lowest energy
End

If (no node has moved OR number of iterations >= L)
Terminate = true
End
End

Table 3 Hill climbing optimisation for DDM deformation

A single hill-climbing step involves evaluating the energy of a node at its current position and at
set of candidate next-frame positions. The node then moves to the candidate position with the
lowest energy, if this energy is lower than its current energy. The candidate set determines the
maximal step-size at each iteration. A trade-off is reached in choosing the size of this set. For a
larger set, there is more computational cost in evaluating energy function, although when using a
smaller set both the number of iterations before termination may be increased and the
likelihood of finding only local minima. Since we expect nodes to only move by a few pixels
with each frame, the candidate set comprises the eight pixels surrounding a node’s current

position (Figure 31).
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Figure 31: Set of candidate positions during a single hill climbing step. (Left)
The node’s current position marked in green with the 8 candidate marked in
blue. (Right) The candidate positions need not correspond with visible pixels.
Here, three are beyond the border of the image.

In the cases when a node is not fully visible, the fraction of the visible intensity comparison
window (if at all) is used to calculate the image energy. The advantage of constraining the
maximum allowable movement of a node in each iteration to be one pixel is that the model
deforms in a regular, homogeneous fashion. The order in which nodes are processed can be
defined by an ordering function. Functions so far investigated have included scan-line ordering,
random ordering and a greedy selection policy which chooses the node which has the maximal
energy of all unprocessed nodes. However, there was no significant performance differences

between these strategies.

3.5.2 SSD energy surfaces and reducing the comparison window

While hill-climbing is a relatively cheap optimisation, one of the major drawbacks is its tendency
to converge to local minima. This is because the optimisation is strongly influenced by the
smoothness of the energy surface being ‘climbed’. It is difficult visualise this surface for the
complete energy of a node, since it is continually changed with each iteration due to the
adapting of neighbouring nodes. However, the image energy of a node remains fixed, and can
give an insight into how well the hill-climbing will perform. It is instructive to show an example
of this; Figure 32 shows an SSD energy surface at points in the example image which are

matched against the region centred at the red point.
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Figure 32 Smooth SSD error surface for the matching region centred at the red mark. The
window size used here is 7 pixels wide

The smoothness of this energy surface reflects the suitability of hill-climbing for the given point.

However, if an inappropriate window size is chosen, a very undesirable energy surface can result

(Figure 34).

SSD Ervor surface when using a small companson window
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Figure 33 Irregular SSD error surface for the matching region centred at the
red mark. The window size used here is small (3 pixels wide)

In general, larger SSD comparison windows result in smoother energy surfaces. However, larger
windows suffer more inaccuracies for the reasons outlined in section 3.2.1. This work proposes

a way in which both smooth error surfaces are achieved, whilst also exploiting the accuracy of

48



Chapter 3 The Deformable Disparity Model

smaller windows. The solution is to progressively shrink the SDD window as the hill-climbing

optimisation progresses. For this, we select 2 maximum and a minimum window size (W_,, and

W,.,) and a shrinkage rate k,, . The window size W is then shrunk linearly with the iteration

win °

number:

W =max [ W, round (W,,,, —k,,, xi) | (3.14)
Where i is the round number. Reasonable values for W, W_. and k,,, have been found to

be 14, 6 and 0.25.

3.5.3 Node prediction using spatiotemporal splines

In additon to a smooth error surface, hill climbing is (as are most optimisations) sensitive to the
initial configuration prior to optimisation. Rather than use the position of a node in the previous
frame as its starting point in the next frame, we can make use of the assumption of
spatiotemporal smoothness to better predict the position of nodes in the next frame. Thus, the
initial configuration will be closer to the desired energy minima and improve the performance of
the optimisation. The way in which this is achieved has been inspired by work on the
spatiotemporal volume [9].. Nodes in the DDM which move throughout the video sequence
track paths through the spatiotemporal volume. Node positions in subsequent frames can be
predicted by assuming the paths they have so far tracked should be smooth over a small
temporal region. Spatiotemporal cubic splines are fitted to the paths of each node, which then
predict their position in the next frame. Furthermore, these splines are so-called p-splines (or
smoothing splines) which involves fitting a function to the data while penalizing the size of its
second derivative. This, in effect, ensures that the fitted functon will have limited curvature in

the spatiotemporal domain.

3.6 Preserving disparity discontinuities and handling occlusions

This section outlines the mechanisms developed for enabling the DDM to preserve disparity
discontinuities and to handle occluded regions. So far in this dissertation, the DDM has been
described as a single elastic sheet which deforms to fit image data whilst being both locally and

globally constrained. Whilst this is a suitable model for individual surfaces in the scene, these
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constraints can potentally have adverse affects whilst deforming across multiple objects present

in the image. The following example illustrates this problem.

Figure 34 shows a simple scene in which there is a textured planar surface elevated over a
background surface, and which is undergoing continuous steady motion (as indicated by the
arrows). The camera, denoted by COP is looking down onto the scene in the direction
perpendicular to the background surface normal. Figure 36 shows the first frame of the

sequence with an initialised deformation superimposed onto the image.

A coe

Optical axis

Elevated surface

Background

4
1\Sun‘acc normal,

<

Figure 34: Simple scene in which an elevated surface occludes a background
surface

Figure 35: Initalised DMM
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The apparent motion of the elevated surface is directed towards the bottom-left corner of the
image, and approximately 4 pixels in each direction. After the model has deformed over 5
frames (using a typical weighting configuration for the enesrgy terms), a typical state is shown in

Figure 36.

Figure 36: State of the deformation mesh after the first 5 frames. (Left)
mesh structure. (Top-right) smoothing across object boundary.
(Bottom-right) Occluded nodes undergoing compression

We observe the DDM deforming to fit both the background surface and the moving raised
surface, although at their boundaries two problems have arisen. The first is related to the model
deforming smoothly across the objects boundaries (Figure 36, top-right). Ideally, the
background nodes which are close to the foreground object should remain stationary. However,
a number of these which are connected to foreground nodes are being ‘dragged’ as a result of
the spring energies. In doing so, the model is failing to preserve the depth (and consequently
disparity) discontinuities at object borders. This is due to the neighbourhood springs crossing
the depth discontinuity .The second problem is related to the occlusion of the background
surface (Figure 36, bottom-right). Ideally, as the raised surface moves over the background, the
background nodes in the model which are being occluded should maintain their positions.

However, these nodes are not being correctly handled; the DDM forces these nodes to

' This is not caused by the SSD energy because it uses the multiple windowing scheme
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compress into the background surface rather than being overlapped by the foreground nodes.
This is caused by the SD energy, which has the effect of forcing those nodes which are being
occluded to where the intensity similarity is highest, which in this case is into the background

region.

For the deformation mesh to accurately determine disparity at depth discontinuities and to
correctly handle occluded nodes, it must therefore behave with the following (ideal)

characteristics:
1. Neighbouring connections should be severed when they cross disparity discontinuities

2. Occluded nodes should either have no intensity-based energy term, or be eliminated

from the model

The next two sections outline the work undertaken towards achieving these properties.

3.6.1 Severing neighbourhood connections

There are several cues which can be used to predict whether a node’s neighbour crosses ia
disparity discontinuity. In some of the earliest attempts, intensity gradient cues were used, since
edges often demarcate object boundaries. It is relatively easy to sever connections which cross
edges, however this leads to rather unsatisfactory results since in places which there is high
texture with many edges that do not represent object boundaries the DDM becomes unstable by

having many fragmented spring networks.

A novel approach presented in this work is to use the correlation of particular SSD sub-window
chosen by near-by nodes as a cue for the presence of a discontinuity. The insight is that if a
node has a single particularly high sub-window SSD, or the sub-window SSDs have a high
variance, it is likely that the node is at a discontinuity. This is illustrated in Figure 37. Figure 38
shows a plot of the maximal SSD sub-window score for each node in the DDM shown above.

The peaks coincide very closely with the object boundaries.
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Figure 39 Problem of determining whether to disconnect a neighbour with a
high variation in sub-window SSD errors

The solution comes from the fact that neighbouring nodes on the same side of the depth
discontinuity are likely to have their SSD window scores more positively correlated than nodes
on the far side of the discontinuity. In fact, nodes which are on far side will have their SSD
window scores negatively correlated. By using the correlation of the SSD scores, we are able to

disambiguate which side of a depth discontinuity a neighbour is.

The severing of these connections is not necessarily permanent, since they are based only on
estimates of disparity discontinuities. If these are incorrect, this can lead to a fragmented DDM.
Instead, the connections are temporarily severed after the model’s deformation has first
stabilised. A second deformation then follows using the severed connections which refines the
model at the disparity discontinuities. This process is outlined in Table 4 and the results are

discussed in chapter 5.

1. Deform model using standard energy function
Record max and min SSD scores of each node
3. For each node
If difference in max and min SSD scores is greater
than some threshold, or it has a neighbour above
this threshold (i.e. detected discontinuity)
Take normalised correlation between node and
neighbours’ SSD scores
If correlation less than 0, reduce weight of
spring energy to neighbour to zero
End

4. Deform model with this new energy

\N]

Table 4: Algorithm for preserving depth discontinuities
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3.7 Summary

The purpose of this chapter has been to provide a complete description of the Deformable
Disparity model. The model’s energy has been discussed in detail, as have the processes for
initialising the model and deforming it throughout image sequences. The DDM has several
desirable properties discussed throughout this chapter which set it apart from the traditional
dense, flow-based vs. sparse, feature-based SEM paradigms. In one sense, the DDM bridges the
gap between these approaches, since the distribution density of the nodes can very from very
dense (i.e. one node per pixel), to sparse distributions where nodes are attracted to interesting,
feature-like regions. This is a particularly useful characteristic because the density/processing
cost trade-off can be adjusted to reflect the requirements of the particular application. In the
next chapter, the methods for recovering and refining the 3D structure of a scene using the state

of the DDM are presented.
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Reconstruction and Model Refinement

This chapter describes how scene reconstruction is performed using the state of the DDM as it
deforms throughout an image sequence. The DDM is combined with a reconstruction method
which is inspired by the spatiotemporal analysis of image sequences [9] [65]. In this task, camera
parameters are assumed to be well estimated, which is not an unreasonable requirement in light
of the recent advances of camera auto-calibration. The chapter also describes how these
reconstructions can be then refined by incorporating the model-based term into the DDM’s
energy function, which is derived from estimated surface properties of a prior reconstruction.
The result is to further improve the accuracy of the subsequent reconstruction. Thus, the
deformation process is cyclic; better reconstructions lead to better deformations, which lead to
better reconstructions (image below). Furthermore, the model-based terms from semi-dense
reconstructions could then be used aid the reconstruction of a denser DDM, which leads to
denser reconstructions. In this chapter, the reconstruction method using the DDM is discussed,
and the process for building the surface model. The model-based energy of the DDM is
explained in detail

T

Model
Deformation

\ Model

Refinement

3DReconstruction
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4.1 Reconstruction as a search in the spatiotemporal volume

The recovery of a scene’s 3D structure from a video sequence is achieved using the deformation
history of the DDM. This method is closely coupled with the spatiotemporal analysis of video
sequences, in which a video sequence is treated as a single block of 3D data where consecutive
frames are stacked together to form a temporal dimension (Figure 40). If we consider the DDM
using this representation, with each deformation the model’s nodes extend their paths through
the spatiotemporal volume. The shape of these paths is directly related to the camera motion,
and can be used to recover the depth of each node [9]. With knowledge of the camera’s

parameters, these paths can be used to recover the 3D structure of the scene.
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Figure 40 Two frames of a sequence when viewed in (left) 3D-world space
(right) Spatiotemporal space [65]
The process of reconstructing depth of points from their spatiotemporal paths is similar to that
recently proposed by Rodriguez ef a/. [65]. The difference here is that this technique is used for
dense rather than feature-based reconstructions. In their approach, the depth estimation

problem is converted into the problem of matching spatiotemporal paths. Consider a point P in

the scene tracked reliably through the spatiotemporal volume between points Fyand P, (Figure

40). If we assume this point is at a particular depth d from the camera in the first frame, then, if
we know the camera trajectory, we can predict the path that the point won/d follow throughout
the spatiotemporal volume. The degree by which observed and predicted paths agree parallels
the accuracy of the estimated depth d . Thus, for a given node in the DDM, the recovery of its
3D coordinates is posed as the task of finding the depth for which the observed and predicted

paths most agree.
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To predicted a path through the spatiotemporal volume, we first estimate the point’s 3D

coordinates P using an estimate of its depthd, form the camera COP at time f:

f)=COP,+%(u,x,+r,y,+f-k,) 4.1)

where U, andT,are the up and right vectors of the image in scene space and Kk, is the vector of
the optical axis at time 7. X, and y, are ray-image plane intersection coordinates of the node at

time t and f is the camera’s focal length. This process is illustrated in Figure 41.

Figure 41: projection of point at an estimated depth d, onto the image plane

Using P, derived from the initial estimate d,, we can construct the predicted path of P through
the spatiotemporal volume by projecting P onto the image planes at times t =1, =2,...,t =T .

This forms the path {qo,q,,...,qT}. The agreement between this path and the observed path

T . . .
of the node,{no,nl,...,n,.} , where I, = (xi,yi) is evaluated using a cost function. Here, a

sumn of squared differences is taken between the points in the two paths:

T
Cs ({90,915 97 1 {ng,mpccom; 1) =D lg —m || 4.2)
i=l
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The task of finding the optimal depth d, is then to find the one for which Cj,, is minimal.. This

optimisation has been implemented using Matlab’s fminsearch, an unconstrained non-linear

optimisation which uses the simplex search method [37). This reconstruction process is repeated
for all nodes in the DDM. One consideration yet discussed is how to initialise d,. This is
important because fminsearch is a local optimisation, and prone to local minima. In this
approach, d, is initalised using the depth obtained by triangulation. The node’s position in the
first and last frame (or the frame preceding its termination) is used since this is expected to give
the widest baseline. From this, we obtain the initial estimate P, which is used to compute d, .
The minimisation is unaffected by the particular value oft (subject to 0 <t <T'), so it can be

chosen arbitrarily. In practice, two triangulating vectors rarely meet. When they do not exactly

intersect at a point they can be connected by a unique shortest line segment (Figure 42). The

midpoint of this line segment is then used as the first estimate of P,.

COB,. + A(n, - COR;)

COP,

Figure 42: Shortest line segment connecting two rays cast from COP, and COP,

Using the property that the shortest line segment is perpendicular to the two triangulation

vectors, points p,and p, (and their midpoint) can be solved using simple vector algebra [11].

4.2 Refining the DDM using Model-based Energies

This section presents the technique developed for refining the DDM energy functions using
surface properties derived from the scene’s reconstruction. This new model-based energy

constrains deformations in a manner which preserves geometric relationships between node
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neighbourhoods in the scene, rather than in the image, which is ultimately a more desirable
property.

The smoothing energy serves to maintain the structure and ordering of the nodes in the DDM.
The energies of the nodes are defined in two-dimensional image space, and as such the model’s
structure is maintained in image space. However, this does not necessarily mean that the
energies of the springs operate in a way which maintains the model’s structure in the 3D scene,
which is what we truly want. In fact, only for an orthogonal projection of a scene whose
surfaces are orthogonal to the view direction will the spring energies act to preserve 3D
structure. A simple illustration of the problem is presented in Figure 43. In this scene, a planar
surface is projected onto the camera’s image plane. The DDM nodes exist somewhere on the
image plane in the scene (ted circles) and correspond with various points on the planar surface
(blue nodes). It is important to notice that nodes in the image plane which are equidistant in

image space do not correspond with equidistant 3D points on the surface.

Image Plane

DDM nodes

cop

Figure 43 A scene illustrating DDM nodes and their corresponding points in
3D scene space

If we consider the spring energy at the green node, which has two neighbours above and below
it, the nodes are equally extended in the image plane. Irrespective of the camera’s orientation,
the model should deform such that the relationships between the blue nodes are maintained,
rather than the red nodes (Figure 44). However, the spring energies operate to maintain the
image space relationships, and thus equidistant spacing of the red nodes. The resulting effect is
to force the nodes to maintain their 2D image-space structure, thus leading to a warped estimate

of the scene’s surface.
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TSurface normal estimate

Projected spring

Springs in
image space

COP,

\

Figure 45 Projection of local spring networks defined in image space onto a
locally planar surface in scene space
Model-based springs defined in scene space are constructed through a projection process as

illustrated in Figure 46. This is performed for each neighbour by taking the intersection between

the line passing through COP and the neighbour at position a,,, with the plane defined by

(c,.mg —x)-nc =0. ¢, is the position of the root node on the image plane andn. is the

estimate of the surface normal at the root node.

Image Plane
Plane (C,,,,, —X)~n,

Figure 46: Projection of spring onto surface plane defined at the image plane
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The intersection point is given by a,,. This is useful because the vector defined

—a__.is a scaled version of € —a

img proj scene scene *

byc

(apmj _cinlg ) = y(a.\‘cene —cscene) (43)

where ¢, and a_,  are the positions of the root node and neighbouring nodes in the scene.

Since the scale factor ¥is consistent for all neighbours of the root node, by maintaining the

springs in terms of ¢, anda between frames, we are also maintaining the vectors between

img proj

... 2anda__ . The validity of this method hinges on (4.3) and a proof is now presented.

scene scene

We assume we have the following camera parameters:
COP (now denoted by vector e), k and f

We also have:
u, the unit vector in the up direction of the image

r, the unit vector in the right direction of the image

f

_e) -k x(cSCGIIE _e)

1. Point ¢, isgivenby ¢, =e-+

img img — (
scene

f

Similarly a,,, =e+mx(am -e)

2. The intersection a, . of the line defined by the two end points eanda,, and the plane

img
defined by (p—c,,, ) n =0 is given by p=e+u(a,, —e) where u =—-————::E:’"g :3
img
Therefore, a =e+—n 'Ecmg _e; X(a,-,,.g —e)
n- aimg —e€
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and by substituting the expressions in 1. for ¢, anda_ and

mg mg

3. Considering (a,,mj “Cing )

simplifying, we arrive at:

n-(c,,—e)
e) -k n- a“me ) X(a“e"e _e)_(c-\‘t‘ene _e)

( scene

f

scene

aproj _cmxg = (

=0, we have n-a =n-c So we can

scene scene *

scene

c

scene )

4. However, since n-(a

scene

further simplify to a . —c¢, = (c

e) . k (a.\'L‘Ellt _cSCCIIC )

Thus aI"“’J _clnlg = 7/(asctme _c:cenz) -QED

Table 5: Proof of scalar relationship between points in the scene thatareona
locally planar surface and nodes in the DDM intersected with a similar plane
passing through the image plane

Using this property, we can now establish a relationship for which the vector (a proj —c,.mg)

should satisfy between frames in the sequence. Since at any frame at ime ¢ =0,2,...,T, the
C

relationship a = }’(a“m Y ) holds, it follows that:

proj - img

(8, (1) = Cie (1)) = 7(1) (2, (5) = €10 (5)) V5,1 € {0,1,2,..., T} 4.4)

Thus, separations of the projected nodes should be maintained, up to a scale factor, throughout

the frame sequence. This property leads to the model-based energy term of a node. The energy
between a node n,and a neighbour 7, at time ¢ is given by the projected difference in its

position at a previous (reference) frame § <7 and its current:
€1 (1) =[Vis (1) = v,u (5)] 4.5)

where Vv, (t) = (ak,pmj (t)—ci,img (t)) and V;, (s) = (ak.pmj (s)—ci.img (s))

Notice, however, the vectors must be normalised to account for ¥:
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e, (1) =[Vix (1)=vic (5)] (4.6)
i N |Neighs,.| , B INeighs,.I
where V, (t) V,L( )X—;h "v'.‘k (t)" and V;, (S) =V, (S)X————Nz;h "v‘-'k (s)"
mENeighs; M EiNeighs;

The sum of these energies gives the total model energy of the root node #; :

Emadel (ni’t) = z e; (t) (47)

n € Neighs;

To choosing appropriate reference vectors V,, (s), notice that the problems with the 2D

image-based reference springs used in E (n,.) are not present. This is due to the property

spring

in equation 4.4, which states that the irrespective of the reference frame vector, V,, (s) and

Vi (I ) differ only in scale. Consequently, we choose § to be the frame where the connections

between the node and its neighbours were first established. The result of this that the model
constraints both preserve the 3D scene-space relations between nodes, and are robust in the

presence node drift at all times between §andf. This is because any poorly determined vectors

Vik between §andf do not influence the 3D spring energies.

4.3 Building the surface model using Point Cloud Distributions

The model-based energy of 2 DDM node E,

model (ni,t) requires an estimate of the local surface
normal at its point in the 3D scene. While this is initially unknown, a first approximation can be
made using the reconstruction processes described previously without incorporating the model-

based energy. A useful property of the DDM energy equations is that the two internal energies
E,  and E

. spring Ar€ Weighted using the parameter & in a complimentary fashion:

Eim (ni’t) =0k

spring

(ni’t)+(1_a)Emodel (”i’t)’0<a<1

This is advantageous because by decreasing &, E (n,.,t) can be phased into the total node

‘model

energy, but this will not affect the node’s internal/image energy balance since the energy from

65



Chapter 4 Reconstruction and Model Refinement

E

spring (nl.,t )13 also desirable because we

(ni,t )reduces accordingly. The reduction in E .

want to relax the 2D image-space constraints of the DDM for the reasons outlined above.

A reconstruction of a scene without using model-based energies (i.e. @ =1) results in a semi-
structured 3D point cloud distribution (PCD). This contrasts unstructured PCDs which have no
other information on the input data other than spatial positions. Further structural information
is provided by the spring connections running throughout the DDM. The traditional way to use
PCD is to reconstruct the underlying surface model represented by the PCD. Much of the
research for achieving this, using both measured and inferred PCDs have focused on converting
the data into regular and continuous 3D polygonal (or mesh) models [53]. To achieve this, it is
first necessary to filter out the noise from the PCD to prevent sharp inaccurate surface features
usually by some smoothing filter [40]. Once a polygonal surface model has been constructed,
the normals at points on the surface can be estimated using several methods. The simplest and

most well used involves interpolating the vertices normals of the surrounding mesh primitive.

However, when the size of the PCD is large (i.e. when a dense DMM is used) both the
smoothing and surface model construction processes may be expensive In this work, an
alternative approach is taken which bypasses modelling the underlying surface representation
and uses the PCD directly. Here, we estimate the normal at each point by fitting a plane
obtained by an orthogonal least square method to the k nearest neighbours of the point. This is
robust in the presence of noise due to the inherent low pass filtering. A similar method used by
Hoppe et al. [29] where total least squares was used, and has proven successful for estimating

normals at points in PCDs measured directly using a range sensor.

An efficient method for finding the normal to the least squares plane is found using Singular

Value Decomposition (SVD).

A plane is given by
ax+by+cz+d=0 (4.8)

To fit the plane to the set of k points {(xl,yl,zl )T ,(xz,yz,zz)r ,...,(xk,yk,zk )T] using

least squares, we wish to find a,b,¢ andd such that we minimise
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& 2
e(a’b’c’d)=zlaxi+ayi+aZ,~+d

4.9
p a’+b*+¢* (+9)

By setting the partial derivative with respect to d equal to zero, we can solve for d to obtain:
d =—(ax, +by, +cz,) (4.10)

Where (xc,yc,zc )T is the centroid of the k points. This means that the least squares plane

contains the centroid. We can substitute this for d in equation 4.9 to obtain:

“4.11)

e la(x—x)+a(y-v.)+a(z-2)
e(a,b,c,d)=z|a(X, xc) az(y, 2yc)2 a(z‘ Zc)
=l a +b +c

e (a,b,c, d) can be represented compactly using matrix form. By defining v = [a,b, C] and

X—=% =Y 4%

M= X=Xy V2= Y L7

YT YT LT %4
then we obtain the Rayleigh Quotient f (Vv):

v (M'M)v

4.12
Ty (4.12)

f(a,b,e,d)=f(v)=

. . e - . . T
This is minimised by the eigenvector of the covariance matrix A where A =M"M that
corresponds to its smallest eigenvalue. The eigenvector decomposition of A can be achieved

using the SVD of M:

M=USV’ 4.13)

where Sis a diagonal matrix containing the singular values of M, the columns of V are its
singular vectors and U s an orthogonal matrix. Using this decomposition, we can re-write a

decomposed expression for A:
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A=M"M=(USV") (USV")=VS>V’ (4.14)

This is an eigenvector decomposition, meaning that the eigenvalues of A are the squares fo the

singular values of M and the eigenvectors of A are the singular vectors of M
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