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Abstract 
 

The lack of accurate knowledge concerning the magnitude and distribution of           
fishing discards amongst commercially fished species constitutes a ‘taxonomic         
impediment’ to organisations such as Marine Scotland which have to advise and            
act upon the ecological and economics concerns of the state. The installation of             
CCTV cameras on commercial fishing vessels as a part of steps taken to             
implement the EU wide ban on discarding by 2019 has provided a data deluge,              
and as such would benefit from an automated system to accurately produce            
counts of fish discards. In this report we describe the full machine learning             
pipeline from preprocessing segmented fish from the raw CCTV image captures           
to classification. We report a classification accuracy of approximately 84% using           
a multivariate gaussian model in a hierarchical classifier discriminating between          
the species Haddock, Hake, Saithe, and Whiting. We also make recommendations           
to improve data collection practices and discuss further research avenues for           
when more raw data is available.  
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1 Introduction 

 

1.1 Background 

 

The practice of discarding dead or dying fish for which a fishing vessel is over quota                

under the European Union’s Common Fisheries Policy (CFP) has been under criticism            

for many years. The Scottish Government states these two main negative effects on             

the environment : 1

 

● Through increased mortality to target and non-target species particularly at          

juvenile life-history stages. 

● Through alteration of food webs by supplying increased levels of food to            

scavenging organisms on the sea floor, and to sea birds. 

In 2013 reforms made to the CFP mean that between 2015 and 2019 a full ban on all                  

forms of discarding will be phased in. As a part of their responsibility to help oversee                

this implementation of this ban in Scottish fishing waters Marine Scotland have            

installed CCTV on trial vessels to monitor their discarding practices. Given the vast             

amount of data produced by such a scheme it is of interest to assess whether or not                 

automating the identification of the discarded fish species is feasible. 

 

1.2 Project Scope and Objectives 

 

The remit of this project is to explore the automated classification of fish species              

using images captured from CCTV footage from commercial fishing vessels. As such            

the scope of this project covers the complete machine learning pipeline starting from             

the assumption that individual fish have been identified and segmented in the            

images. The stages within the scope are: 

 

● Preprocessing of raw data into a normalised format. 

● Appropriate data cleansing such as outlier removal. 

1 http://www.scotland.gov.uk/Topics/marine/Sea­Fisheries/19213/discards (as of 11/08/14) 

 

http://www.google.com/url?q=http%3A%2F%2Fwww.scotland.gov.uk%2FTopics%2Fmarine%2FSea-Fisheries%2F19213%2Fdiscards&sa=D&sntz=1&usg=AFQjCNEGEkHPDKi3gsj2sIOatIa2Y00dTw
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● Feature extraction and selection. 

● Application of appropriate classification methods and analysis of results. 

● Discussion of possible improvements to the work presented here. 

● Recommendations of improvements to the stages outwith this project and 

discussion of the implications these would have to possible future work. 

 

The overall objective of this project is to demonstrate that it is feasible to create an                

automated system to accurately classify the species of fish features in the image             

captures of discards. 

 

 

Figure 1.2.A. Example image from the raw data. 
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1.3 Overall Summary of the Report 

 

This report contains full descriptions of the work carried out within the scope of this 

project.  

 

● Section 2 gives a brief overview of some of the relevant literature with a              

focus on fish identification and places this project in context of those works.  

● Section 3 introduces the raw data and describes the preprocessing steps taken            

to convert manually extracted fish cropped out from the raw images to a             

normalised image suitable for use in a feature extraction algorithm and           

reports an over 90% normalisation accuracy. 

● Section 4 describes the implementation of outlier removal to help clean up            

the dataset, the feature extraction methods, the feature selection algorithm,          

and the classification methods and overall results and reports that          

classification accuracy of 77% was achieved with a 4-way multiclass classifier           

and 84% with a hierarchical classifier vs. 25% at random. 

● Section 5 goes into a more detailed analysis and discussion of the processes             

and results described in sections 3 and 4 and proceeds to discuss possible             

improvements, bottlenecks, and directions of future work. 

● Section 6 concludes that the project was successful overall based on the            

objectives outlined in the project scope above and discusses the feasibility of            

implementing an automated species identification system for fish discards. 
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2 Background Literature 

 

2.1 Motivations for Automated Species Identification 

 

There are a multitude of motivations for the identification of an individual            

specimen’s species, whether plant, animal, or bacteria, etc. Broadly speaking it is            

possible to categorise these motivations threefold: 

 

● Science and Engineering: e.g. Keeping track of populations to study their           

behaviour, or as a benchmark for a machine learning algorithm.  

● Ecological: Natural balances of species in the wild can be fragile and keeping             

track of population numbers and/or movements is useful to protect          

endangered species. 

● Economic: Many sources of food can affect or be affected by ecological concerns             

and so these externalities must inform economic decisions. 

 

Gaston and O’Neill (2004)[3] published a review on automated species identification           

(ASI) citing 8 factors of ‘taxonomic impediment’ to biodiversity studies that could be             

alleviated by ASI. In particular the 8th factor, “(viii) the vast number of specimens              

(often of common species) for which routine identifications are required.”, speaks           

directly to the issue at hand. The inability to gain accurate counts of discarded fish               

despite having monitoring equipment deployed may pose a serious ‘taxonomic          

impediment’ to the aims of organisations such as Marine Scotland whose job it is to               

safeguard ecological and economic interests. It is clear that the motivation for and             

objectives of this project fit well in this context.  

 

2.2 Previous Machine Vision Fish Literature 

 

Here we summarise (in no particular order) some of the recent work relevant to fish               

classification in machine vision. In the next section we will use these summaries to              

assess the context in which this project fits relative to previous work. 
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Larsen et al. (2009)[8], 

Shape and Texture Based Classification of Fish Species  

 

The authors present an application of the Active Appearance Model (AAM, cf. Cootes             

et al.[1]) to the classification of Cod, Haddock, and Whiting out of water in controlled               

conditions. AAMs produce a model based on geometric (from annotated landmark           

points in the training set) and textural information producing a combined           

appearance model by applying PCA to the parameters of separate shape and texture             

models. The authors ranked the features using Fisher discriminant analysis and           

selected the best two and applied linear discriminant analysis (LDA) to classify the             

samples reporting a 76% accuracy rate. These results are not based on a separate test               

set and so may not generalise well. Furthermore the authors do not state if the               

reported accuracy is on the complete training set or if cross validation was used,              

although the implication appears to be it is training set accuracy. 

 

Although this study is of relevance as the species concerned are all species of interest               

for this project the major drawback to this approach is that AAMs try to fit a                

complete appearance model to the sample image and so does not handle images             

where the object of interest is obscured or incomplete very well. 

 

 

Joo et al. (2013)[7], 

Identification of Cichlid Fishes from Lake Malawi Using Computer Vision  

 

The authors use a variety of features extracted from the images (taken under             

controlled conditions, similar to Larsen et al.) including colour information (i.e.           

‘posterizing’ the fish into 7 colours), colour ratios, entropy, edge size, line features,             

and a number of geometric landmark points. The authors used a Support Vector             

Machine (SVM, cf. Cortes and Vapnik[2]) to discriminate between 12 classes (8 species,             

some between male and female also) and reported a 78% accuracy using 5-fold cross              

validation. It is unclear what kernel was used in the SVM. The authors also reported               

that the mean accuracy for human volunteers was 42%. 
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The result here is more reliable than the result reported by Larsen et al. as the                

authors clearly stated the validation method used. Additionally the features          

extracted by Joo et al. will be more robust to problems with the images than the                

AAM model. However the results still benefit greatly from the images being taken             

under controlled conditions and furthermore considerable data selection was         

undertaken including excluding all juvenile fish, all fish that may have been            

misclassified by the labellers, and all photographs that were deemed of poor quality             

due to e.g. blurring. 

 

Liu, X. (2013)[10], 

Identifying Individual Clown Fish 

 

Liu tackles a slightly different problem. Rather than trying to discriminate between            

species, here the purpose was to identify individual Clown fish from image frames             

captured by underwater cameras linked to the Fish4Knowledge project in a           2

Taiwanese harbor. The features that were extracted for identification included          

colour ratios, length ratios, and stripe area ratios. The author reports a 90.7%             

accuracy rate at clustering detections into individual fish. 

 

The challenges faced here differ from the previous studies in that the images are              

taken in an uncontrolled environment (although the cameras were positioned          

facing locations where coral reef fish were likely to be seen) and so are of a lower                 

quality, although the characteristic richness in colour and texture of tropical fish            

helps compensate. 

 

Li, Y. (2012)[9], 

Fish Component Recognition 

 

In contrast to the above studies here the goal was not to identify a species, or an                 

individual, but to segment individual fish into their component parts (i.e. head,            

body, tail) via a tail finding algorithm, also using Fish4Knowledge data comprising            

15 species. Li extracts boundary pixels and then computes curvature using the            

2 http://fish4knowledge.eu 
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parametric form with smoothed coordinates derived from the boundary pixel          

locations. The tail is then found by computing the extreme points on the curvature              

curve and combining this with prior information e.g. that fish are assumed to be              

facing horizontally. Using the segmented tails Li reports a 73% accuracy rate at             

classifying tail types between three 3 classes of tail.  

 

2.3 Project Context 

 

This project shares characteristics with each of the the studies described above. The             

fish we are attempting to identify are out of water as in Larsen et al. and Joo et al.                   

but are not photographed in controlled conditions and as such the quality of image              

is more similar to the Fish4Knowledge images. The additional challenge faced here is             

also that there is a high rate of obscuration meaning that we cannot rely on               

extracting a full geometric description of an individual. Given these considerations it            

is clear that general and robust methods should be applied to this problem. 
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3 Data Exploration and Preprocessing 

 

3.1 Introduction to the Raw Data 

 

The raw data comprises 172 image captures of approximately 640x480 pixel           

resolution from analogue CCTV videos recording the discard conveyor belts of           

several different commercial fishing vessels. The images came grouped by the           

predominate species of interest featured in frame. Figure 3.1.A. shows four typical            

examples of these images: 

 

Figure 3.1.A. Example images capture of Haddock (top left), Hake (top right), Saithe (bottom left),               

and Whiting (bottom right).  
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Inspection of the data finds these salient traits: 

 

● The fish look very similar in shape and texture to a naive observer. 

● Low quality: the images are captures from analogue video footage and           

causing problems such as blurring and lense shadows, consequently the level           

of detail is low. 

● Variable lighting: there are no prior known features in the image that would             

allow calibration for scale and lighting. This means subtle colour differences           

between the species may be lost in the noise. 

● Individual fish form relatively small subsets of these images further limiting           

the resolution of the relevant areas of interest. 

● Partially obscured fish (e.g. from fish overlaying each other) are the norm, not             

the exception. This particularly affects the usefulness of any geometry based           

models. 

● Mix of juvenile and adult fish: Size differences between the species may be lost              

in the noise of different fish sizes in the images due to fish being different               

ages. Furthermore, there is no prior known feature to calibrate scale between            

images coming from different vessels. 

 

 

 

Figure 3.1.B. The distribution of images amongst the species of interest. 

 

Figure 3.1.B. shows number of images provided for each species. Although many            

images show multiple examples of the species in the same frame it was decided that               

the number of examples for Cod and Monk are insufficient to generalise from.             

Therefore, this report will focus on the remaining four species: Haddock, Hake,            

Saithe, and Whiting. 
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3.2 Data Preprocessing 

 

The purpose of the data preprocessing stage is to convert the raw data (i.e. the               

captured video images) to individual examples of fish images appropriate to apply            

feature extraction techniques for machine learning. This preprocessing can be          

summarised as two steps: (1) segmentation of individual fish from image frames,            

and (2) normalisation of the individuals’ scale and pose. 

 

3.2.1 Image Segmentation 

 

The automatic segmentation of the raw images to extract individual fish is outside             

the scope of this project and so the extraction of individuals for use in the dataset                

was conducted manually. In total 48 individuals of each of the four species were              

extracted from the image frames. This number represents the upper bound on how             

many individuals could sensibly be extracted for the species we have the fewest             

examples of, in this case Haddock. The aim of having the same number of samples               

for each species is to maximise the comparability of the learned models and             

classification results. 

 

Figure 3.2.1.A. Examples of manually segmented fish. Haddock (top left), Hake (top right), Saithe              

(bottom left), and Whiting (bottom right). The non red areas form a mask for the extracted image. 
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3.2.2 Normalisation Methodology 

 

The aim of the registration step is to ensure that similar fish who differ in terms of                 

pose appear the same to the feature extraction methods to be applied to them. The               

process described below attempts to convert the raw segmented fish images to            

images resampled to a standardised size where the fish are orientated horizontally,            

facing the left, and the “correct” way up. 

 

Step 1: Angular Orientation 

 

In order to orient the fish horizontally we exploit the fact that all of the species have                 

a similar elongated shape. This means that by applying Principal Components           

Analysis (PCA) on the coordinates of the masked out pixels we know that the first               

principal component will correspond approximately lengthways along the fish and          

the second widthways. Consequently, transforming the original [r,c] (row/column)         

coordinates using PCA will reorientate the fish as desired. 

 

 

Figure 3.2.2.A. An example showing a scatter plot of a subset of the pixel coordinates before (left)                 

and after the reorientation using PCA (right). 

 

To illustrate this, Figure 3.2.2.A. above shows the results of applying this process on              

the “Haddock-11-02.png” image in the unprocessed dataset. The fish portion of the            

image has 11,859 masked out pixels each with a unique row/column coordinate.            
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Mathematically PCA can be viewed as computing the eigenvectors of the covariance            

matrix of the data. The resulting eigenvectors form a new coordinate system where             

the dimensions are linearly uncorrelated in the data and the matrix formed by             

concatenating these eigenvectors together is a rotation matrix that transforms a           

datapoint in the original system to the new coordinate system. Thus to convert a              

datapoint x to a transformed datapoint y: 

 

(1) 

 

For this example the resulting rotation matrix is: 

 

(2) 

 

Knowing the form a rotation matrix takes: 

 

(3) 

 

We can intuitively understand this result to be an approximately 33 degree            

clockwise rotation of the original data and similarly to convert data from the new              

coordinate system we can simply rotate it back (i.e. multiplying by the transpose of              

the rotation matrix). 

 

Step 2: Image Resampling 

 

After reorientation the [r,c] coordinates of the pixels no longer correspond to integer             

values, and the data still have different scale ranges. The next step is to rescale the                

coordinates to fit within ±1 horizontally on the cartesian plane. Then we can sample              

from this space to an arbitrary resolution using the nearest neighbour method with             

a distance threshold to produce a new image of the reorientated fish. Below are              

examples of images sampled at a 128x256 pixel resolution, i.e. 256 samples between             

±1 horizontally and 128 samples between ±0.5 vertically with a distance threshold of             
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1/128. At this stage the image is also converted to a grayscale pixel intensity for               

simplicity and also due to our inability to calibrate colour information between            

frames. 

 

Figure 3.2.2.B. Examples of two sampled images. Haddock (left) and Hake (right).  

 

MATLAB code for this algorithm: 

 
function [sampledImage] = SampleImage(transformedPixels,resolution) 
 
% Initialise Variables 
sampledImage = uint8(zeros(ceil(resolution/2),resolution,3)); 
step = 2/resolution; 
row = 0; 
col = 0; 
 
% Iterate over a grid in the transformed x/y space at the desired resolution. 
for y = ((step/2)­0.5) : step : (0.5­(step/2)) 
    row = row + 1; 
    col = 0; 
    for x = ((step/2)­1) : step : (1­(step/2)) 
        col = col + 1; 
        % Compute distance to each transformed pixel and select closest. 
        ElemDist = sqrt(sum([transformedPixels(:,1)­y transformedPixels(:,2)­x].̂2,2)); 
        [MinDist, Pixel] = min(ElemDist); 
        % Sample the pixel only if the distance is below the step threshold 
        if (MinDist < step) 
            sampledImage(row,col,:) = transformedPixels(Pixel,3:5); 
        end 
    end 
end 
 
end 
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Step 3: Left/Right Flipping 

 

At this stage the fish may still be facing horizontally the wrong way (like the               

Haddock in Figure 3.2.2.B) or upside down (like the Hake). To fix the horizontal              

registration we exploit another commonality between the species - that they tend to             

be thinner around the tail and fatter towards the head. This means that a simple               

comparison of the mass (i.e. number of pixels) of the left hand portion of the image                

and the right hand portion allows you to determine which side of the image the               

head is currently on. If we find the right hand side to have more mass then we                 

simply flip the image so the fish is facing in the correct direction. 

 

Step 4: Column-wise Centring of Mass 

 

Next we can observe that many of the fish are not laying exactly straight, and have a                 

slight bend to them. To compensate for this we use a naive approach of simply               

centring the mass of each column of pixels. Although this approach is not perfect it               

is very effective for producing the property required in the next step and also              

deforms the image in a predictable way for similar fish. 

 

 

Step 5: Up/Down Flipping 

 

The final step of registration is to ensure the fish are not upside down. Again we                

exploit a commonality between the species that the fish are lighter on the underside              

and darker on top. This is a simple comparison of the sum of intensities on the top                 

half of the image and the bottom half (taking advantage of the symmetry of mass               

produced in step 4) followed by an up/down flip if required. 

 



Andrew Ferguson ­ s0451611 

 

Figure 3.2.2.C. Examples of two normalised images. The same Haddock (left) and Hake (right)              

featured in figure 3.2.2.B.  

 

Normalisation Results 

 

 

Figure 3.2.2.D. Results table for the registration process.  

 

The normalisation process succeeded in 173/192 samples giving an accuracy rate of            

~90%. The most common errors were those of the fish facing the wrong direction,              

accounting for ~63% of errors. Figure 3.2.2.E below shows examples of each error: 

 

Figure 3.2.2.E. Examples of errors in the registration process. A Haddock facing the wrong way               

(left) and an upside down Whiting (right). 
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These examples are representative of the general problems. Left/right errors are due            

to partially obscured fish distorting the relative mass away from our expectation.            

Up/down errors are due to texture noise from lighting specularity. 

 

An eye finding procedure was also considered to aide registration by due to the              

difficulties of finding circles at such low resolution in noisy images the results were              

little better than chance and so this approach was abandoned. 

 

In the following sections we will report results based on both the dataset as              

produced by this preprocessing as-is and also where normalisation errors have been            

manually corrected. This should help indicate whether improvements to the          

normalisation process would significantly improve the performance of the system as           

a whole.  
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3.3 Feature Extraction and Exploration 

 

3.3.1 0th Order Features 

 

The raw resulting 0th order features from the preprocessed images are 32768 pixel             

intensity values for each of the 192 images. Appendix A contains all of the 192               

images in the dataset and visual inspection of these images should satisfy the reader              

that although the images are of low quality and the fish all look quite similar there                

are definitely some general differences observable, such as whiting being lighter           

than the other fish (hence the name). This intuition can be tested by using a simple                

Nearest Neighbour classification approach on the Euclidean distances between the          

pixel intensity vectors for each image. The take-one-out method was used where for             

each sample the Euclidean distance to the other 191 samples was computed and the              

class of the closest sample is selected. 

 

 

Figure 3.3.1.A. Confusion Matrix for the Nearest Neighbour classification of the normalised data             

(left) and the data after only the orientation and resampling steps (right). Rows indicate the true class                 

and columns the classification result. Total N = 192. 

 

We can see that this achieved accuracy for the normalised data of 58.85%,             

considerably better than the accuracy that can be achieved by random guessing, i.e.             

25%. This result provides us with strong evidence that this endeavour is not a waste               

of time and also a baseline for comparing future accuracy. Furthermore, we can see              

that this accuracy is considerably higher than the accuracy achieved on the            
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resampled images after the orientation step only. This suggests that normalisation           

contributes substantially to the discriminability of the classes. 

 

 

Figure 3.3.1.B. Confusion Matrices for the 3 and 9 Nearest Neighbour classification of the              

normalised data. Rows indicate the true class and columns the classification result. Total N = 192. Ties                 

were broken by selecting the class with the closest result. 

 

To test whether or not this result is robust K Nearest Neighbours classification was              

also ran with K = 3 and K = 9 breaking ties by choosing the class with the closest                   

result. Figure 3.3.1.B. shows the confusion matrices and accuracies for these           

classifications which are very similar to the 1NN result suggesting this result is             

reliable. Finally a set of data where normalisation errors have been manually            

corrected were tested. This produced only a slight increase in accuracy, perhaps due             

to the fact that samples which produce normalisation errors are already outliers in             

some respect meaning correct normalisation does not help as much. 

 

 

Figure 3.3.1.C. Confusion Matrix for images that have had normalisation errors manually corrected.  
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3.3.2 First Order Features 

 

The next natural step to take is to examine the first order features of the data,                

namely the mean and variance of the pixel intensities: 

 

Figure 3.3.2.A. 1-Dimensional Scatterplots of the mean and variance of each species with fitted              

gaussians representing the distribution of values.  

 

The use of gaussians to visualise these distributions is justified by visual inspection             

of the histograms to confirm the data appears to be normally distributed and will be               
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standard practice for visualising a feature’s statistical distribution in the rest of this             

report. 

 

We can see that the marginal distributions of these statistics offer little in the way of                

discriminability with the exception of Saithe having a much lower mean intensity            

value than the other classes. We can construct a simple class conditional Gaussian             

classifier by assuming a uniform prior distribution on the classes (i.e. the four             

species). This means we assume the probability of a data point belonging to a certain               

class is proportional to the probability of the data point being generated by the              

Gaussian distribution modelling that class. Applying such a classifier using only the            

mean and the variance statistics in turn yields classification accuracy of 36.98% and             

28.65% respectively. These results are what one would expect from a visual            

inspection of the figure above and are considerably worse than the Nearest            

Neighbour classifier. 

 

Two other first order statistics were also computed speculatively: The total pixel            

mass of the image and the ratio between the mass on the left hand and right hand                 

side of the image. 

 

3.3.3 Dimensionality Reduction and Data Exploration via PCA 

 

Principal Components Analysis (PCA) is a linear transformation of data that uses an             

eigenvector analysis of the covariance matrix of the data to transform the data to a               

new coordinate system where, when ordered by their corresponding eigenvalues, the           

first axis corresponds to the direction of greatest variance, the second to an             

orthogonal direction accounting for the second greatest direction of variance and so            

on. We already used a simple application of PCA to reorientate the fish in the               

registration process. One of PCA’s more common applications is in that of            

dimensionality reduction in images (cf. Turk and Pentland[11]). By choosing some           

arbitrary number of principal components it is possible to reduce the data from a              

dimensionality in the tens of thousands (i.e. the number of pixels in the image) to               

just a few dozen with very little loss of information. In fact, when the number of                

data points N is much less than the number of dimensions, the maximum number of               
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nonzero eigenvectors is N-1 and so we can account for all of the variation in our                

dataset in the 191 principal components formed by performing PCA on our 192 data              

points. 

 

Figure 3.3.3.A. Cumulative eigenvalues from applying PCA on the dataset. We can see that it takes                

over half the principal components to account for 95% of the variance in the data, a standard                 

threshold used for dimensionality reduction. 

 

Due to the relatively small size of our dataset there is no pressing reason to               

arbitrarily remove principal components from consideration and so all 191 features           

will be used in the feature selection process later. We can model the marginal              

distribution for each feature in the same fashion we applied to the mean and              

variance statistics above: 

 

Figure 3.3.3.B. Scatterplot and Gaussian representation of the 1st principal component. The legend             

is the same as in Figure 3.3.2.A.  
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Figure 3.3.3.C. Visualisations of the loadings of the first 16 and the 145th-160th principal              

components. The early components (i.e. those accounting for the most variance in the data) show               

biases towards the general shape of the fish whilst the later ones appear to account for more noisey                  
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features of individual fish, so we might not expect the later components to be useful in discriminating                 

between classes. 

 

3.3.4 Higher Order Features (Texture) 

 

In computer graphics, texture mapping refers to the process of mapping texture            

elements (or texels) to pixels in the image being rendered. In machine vision it is               

very difficult to declare that we are simply trying to reverse this process despite it               

sounding satisfactory to our intuitions. Indeed, Haralick (1979) remarked “Despite its           

importance and ubiquity in image data, a formal approach or precise definition of             

texture does not exist.”, a statement which still rings true as the texture analysis              

methods used today are still based on those invented in the 1970s. Intuitively,             

however, we can understand texture to be the relationship between intensity or            

colour of an image segment that is due to the physical properties of an object, and                

therefore relates to a higher order statistical relationship between pixels in a            

digitised image. 

 

 

Figure 3.3.4.A. Contrasting artificial textures (left) and natural textures (right). Source:           

http://en.wikipedia.org/wiki/Image_texture (11/08/14) 

 

Gray Level Co-occurrence Matrices (GLCMs) 

 

Haralick (1973) introduced GLCMs and the summary statistics applied to them as a             

method of texture analysis for image classification. A GCLM is a L x L matrix where L                 

 

http://www.google.com/url?q=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FImage_texture&sa=D&sntz=1&usg=AFQjCNH_9iL-6KFdA5K-zpE4nLsMDRXAoQ
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is the number of intensity levels (e.g. up to 256 in an 8-bit grayscale bitmap,               

although in practice images are often thresholded to a smaller number of levels) and              

each entry represents the number of co-occurrences of the row and column            

intensities present in the image according to an arbitrary displacement vector. 

  

Figure 3.3.4.B. Example displacement vectors in row/column space. Every possible valid placement            

of the vector is considered for computing the co-occurrence matrix. GLCMs are computed using              

pairs of pixels and therefore represent 2nd order statistics of the image. 

 

The large degree of freedom granted by the parameterisation of computing the            

GLCM (i.e. the levels of thresholding and the different displacement vectors possible)            

and there being no method a priori to know which parameters should be used              

means that it is often considered to be a “scattergun” approach where many             

different parameters are used and a subset of features is chosen during feature             

selection. 

 

The GLCMs themselves are not easy to work with for the purposes of image              

classification and so Haralick described a set of 13 summary statistics computed from             

the GLCM: Energy (Angular Second Moment), Contrast, Correlation, Sum of Squares:           

Variance, Inverse Difference Moment, Sum Average, Sum Variance, Sum Entropy,          

Entropy, Difference Variance, Difference Entropy, Information Measures of        

Correlation, and Maximal Correlation Coefficient. These summary statistics are then          

used as features for classification. In this case we have chosen to computer features              
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at displacement depths of D = 2, 4, 6, and 8 with vectors [0 +D], [-D +D], [-D 0], [-D -D]                     

to try and cover a reasonable portion of possible parameters in a tractable way              

producing 4 x 4 x 13 = 208 numerical features. 

3.3.5 Covariate Visualisation of Feature Distributions 

 

 

Figure 3.3.5.A. Left: We can see that the first class (red) is positively correlated between the two                 

features and the second class (blue) is negatively correlated. Visually we would be able to               

discriminate easily between classes for most samples except for those in the overlapping area in the                

centre of the plot. Right: The marginal distributions. Discrimination is impossible. 

 

In addition to the visualisations of the univariate statistical distributions of a            

feature for each class we can also visualise these distributions in a covariate             

manner. To illustrate why this is useful figure 3.3.5.A shows an example of             

discriminating between 2 classes in a 2 dimensional features space that have the             

same marginal distributions on features but different covariance. 

 

 



Andrew Ferguson ­ s0451611 

Figure 3.3.5.B. A scatter plot of Principal Component 1 vs. Principal Component 2. We can see a                 

moderate level of separability of the species in these two dimensions and differences in the species                

covariance for these features.  

 

3.3.6 Summary 

 

In this section we have described the preprocessing steps taken to normalise the raw              

data achieving a 90% normalisation accuracy rate. Subsequently we have created a            

set of features from the normalised data including first order statistics such as pixel              

mean and variance, reduced dimensionality through Principal Components Analysis,         

and computed higher order statistics using Haralick’s Gray Level Co-occurrence          

Matrix texture analysis method. These features will be used in the classification            

algorithm presented in the next chapter. All results reported later in this report use              

the dataset as produced by the normalisation process, and not the manually            

corrected dataset.  
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4 Data and Feature Selection, Classification, and Results 

 

4.1 Data Selection 

 

Classification methods all try to capture some information about the classes we are             

trying to discriminate between based on some assumptions (usually that we expect            

samples of the same class to be similarly described in the feature space). In simple               

terms different models essentially produce different classification decision        

boundaries in the feature space of varying complexity based on a set of samples with               

known classes called the training data. For example:  

 

● A Nearest Neighbour classifier produces a voronoi grid of boundaries.  

● A covariate Gaussian classifier can produce quadratic boundaries such as          

ellipses or parabolas.  

● A Support Vector Machine with a polynomial kernel can produce boundaries           

with shapes to an arbitrary polynomial degree.  

 

A naive assumption would be that more data is always better. However there are              

good reasons to conclude the contrary. Outliers are training samples that are            

subjectively considered to be abnormal in some way. Reasons for having outliers            

present in training data can vary, for example:  

 

● Mistakes could be made in data collection and samples may be misclassified. 

● Instruments used to collect the data are noisy and add variance to the data or               

even malfunction and give incorrect readings. 

● There is truly high variance in the classes being studied and a very unusual              

sample is collected purely by chance. 

 

Different classifiers will respond to outliers in subtly different ways and can be             

robust or sensitive depending on the data. As such it seems sensible to try and               

ensure the training data is as representative as possible to try to preempt these              

problems even if it means relying on prior intuition about the problem. 
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With this in mind we performed outlier removal based on the following three             

heuristic rules: 

  

● Outliers should be obvious outliers: we chose components that lay more than            

2.9  times the standard deviations from the mean of some feature. 3

● Outliers should be outliers on a feature that explains a lot of variance, i.e.              

principal components with higher eigenvalues, as it implies they are more           

unusual than samples which are outliers on a less “important” component. 

● Outliers should be outliers within their class and not the statistics of the             

entire population otherwise class differences are misinterpreted as being         

outlying statistics. 

 

The result of this outlier removal process was as follows: 

 

Species Fish Image IDs 

Haddock 16, 45, 47 

Hake 60, 75, 79 

Saithe 103, 104, 107 

Whiting 168, 169, 174 

 

Figure 4.1.A. Haddock outliers with fish image IDs 16, 45, 47 from left to right. 

 

Figure 4.1.B. Hake outliers with fish image IDs 60, 75, 79 from left to right. 

3 This exact number was chosen because it happened to generate the same number of outliers for 
each class conveniently leaving them the same size. 
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Figure 4.1.C. Saithe outliers with fish image IDs 103, 104, 107 from left to right. 

 

 

Figure 4.1.D. Whiting outliers with fish image IDs 168, 169, 174 from left to right. 

 

We can see that the outliers that have been detected mostly correspond to samples              

with normalisation errors. This suggests that it might be possible to improve the             

normalisation process by detecting outliers in this fashion and utilising that           

information. 

 

All results reported later in this report are on the data set without outliers, i.e. 45 

samples of each species for a total of 180 samples. 

 

4.2 Feature Selection 

 

Similarly to above a naive approach to feature selection would be to assume that              

having more features is always good. However there are two main problems that             

can affect classifier performance caused by bad feature selection. Features that are            

essentially noise can potentially drown out the useful information, e.g. using           

Euclidean distance in a Nearest Neighbour classifier where there are 99 noisy            

features and only 1 useful feature. Features that are highly correlated can have a              

disproportionate influence on the result, e.g. having both length in feet and in             

meters (and inches, etc) as features in a Naive Bayes classifier would cause the length               

to become more influential than another property with only one feature           
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representing it. Furthermore, the “curse of dimensionality” provides a sensible          

motivation for good feature selection from a computational point of view. 

 

There is no a priori best method but there are two main approaches for feature               

selection. Filtering methods, e.g. information gain, that are independent of the           

classifier to be used or wrapper methods that use a specific classifier to guide              

selection decisions. Janecek et al. (2008) compared these two approaches on email            

filtering and drug discovery datasets and concluded wrapper methods outperformed          

the filtering methods for the drug discovery dataset, which like similarly to this             

dataset has higher dimensionality than sample size. 

 

For the full Gaussian classifier, feature selection was performed with a two stage             

process: First, an initial subset of high quality features was identified by applying a              

Gaussian classifier for all individual features and also for all possible pairs of             

features. Subsequently iterations of backwards feature elimination and forward         

feature selection are performed until the subset stabilises. 

 

The classifier used here for feature selection implements Leave One Out Cross            

Validation (LOOCV) whereby each sample is classified by using every other sample to             

learn the classifier. Given the small sample size of the dataset this method gives the               

best approximation to the generalised error rate assuming outlier removal was           

successful at producing a training set that is representative of future data. 

 

 

Feature Numbers Description Feature Numbers Description 

1 - 191 Principal Components 401 Pixel Variance 

192 - 399 GLCM Statistics 402  Pixel Mass 

400 Pixel Mean 403  Left/Right Mass Ratio 

 

Figure 4.2.A. Table showing the general descriptions for the feature IDs. 
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The initial set of candidate features comprises the features that were in the top 15               

accuracy individually and/or in one of the top 15 pairs of features. This corresponded              

to 31 features with the following IDs (56.11% Accuracy LOOCV): 207 212 213

214 215 221 237 238 243 256 257 264 266 273 289 290

293 294 295 308 309 310 311 315 316 318 326 327 345

360 368. 

 

We can see from the IDs that all of the features chosen were GLCM statistics. After                

backwards elimination 16 features were removed (76.67% Accuracy LOOCV, 15          

Features):  215   221   243   257   273   290   294   295   308   311   315   316   327   345   360. 

 

Forward addition added just one feature (77.22% Accuracy LOOCV, 16 Features): 215            

221   243   257   273   290   294   295   308   311   315   316   327   345   360     4. 

 

At this stage further iterations did not change the selected feature subset. All of              

these features are GLCM statistics (see Table 4.2.A), apart from feature 4, the 4th PCA               

feature (see Figure 3.3.3.C), which seems to relate a bit to variations in dorsal and               

ventral brightness. Appendix B lists the feature descriptions in full. 

 

A similar approach was applied to a Naive Bayes classifier also implementing            

LOOCV, but taking the top 25 individual features and not considering pairs as initial              

candidates due to the independence assumption in NB rendering this less effective at             

finding a promising subset. The initial features selected were (53.89% Accuracy           

LOOCV): 193 212 213 214 215 217 221 241 243 264 266 273 275 293 294                

295   298   316   318   322   326   327   345   368   377. 

 

Backwards elimination removed 9 features (56.67% Accuracy LOOCV, 16 Features):          

212   213   214   215   266   275   293   294   295   298   318   326   327   345   368   377. 

 

Forwards addition added 14 features (64.44% Accuracy LOOCV, 30 Features): 212   213 

214   215   266   275   293   294   295   298   318   326   327   345   368   377     9    11    14    20 

25    29    59    80    85    87    150     5    22    34. 
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A second iteration of elimination removed 7 features (65.56% Accuracy LOOCV, 23 

Features): 212   213   214   215   266   275   294   295   298   327   345   368   377     9    11    14 

20    25    59    85   150     5    34. 

 

At this stage there were no further changes to the selected feature subset. 

 

In summary we have used the wrapper method of feature selection to create a subset               

of features for both the Naive Bayes and Full Bayes Gaussian classifiers by using              

iterative backward and forward feature selection starting with a subset of high            

performing features. The results of this feature selection left 23 features in the Naive              

Bayes subset and 16 features for the Full Bayes subset and although there is no one                

“killer” feature, both achieved considerable improvements in accuracy based on          

Leave One Out Cross Validation.  

 

4.3 Classification Results and Analysis 

 

 

Figure 4.3.A. Confusion matrices for the Naive Bayes and Full Bayes Gaussian classifiers using              

LOOCV. We can see that NB classifier shows a bias towards Hake and Saithe whereas the FB classifier                  

shows a small bias towards Whiting. Both classifiers outperformed the Nearest Neighbour based             

results reported above and the FB classifier performs considerably better than the NB classifier. 

 

The headline accuracy results reported for both classifiers compare favourably to the            

~58% accuracy reported for the Nearest Neighbour classifiers although it should be            

noted that the feature selection algorithm was essential to this process. However, a             

possible problem with generalising from the results using LOOCV is that it is reliant              

on the assumption that the dataset is representative of new data, i.e. that we expect               
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the statistics of future data to match that of the training data. With a small sample                

size such as this, and no reason to expect future data to differ significantly, it seems                

sensible to maximise the size of the training data and therefore LOOCV is the correct               

choice when evaluating our error rate. The robustness of the classifiers to changes in              

the size of the training set can be tested by varying the degree of cross validation.                

Figure 4.3.B. below shows the results for several fold sizes: 

 

 

Figure 4.3.B. Results from different CV fold sizes. 5 Fold CV means that there were 5 complementary                 

sets of ⅕ Test to ⅘ Training data. 

 

We can see that both classifiers accuracy suffered from reducing the size of the              

training set but that the Full Bayes classifier lost accuracy at nearly twice the rate of                

the Naive Bayes classifier. This is likely due to the Naive Bayes classifier only needing               

to estimate the class mean and variance for each feature whilst the Full Bayes              

classifier also needs to estimate the covariance statistics which will converge more            

slowly and thus be less accurate. Overall the results follow an expected pattern and              

increase our confidence in the accuracy rates reported. For comparison the accuracy            

achieved training and then testing on the entire dataset gives 65.56% for Naive Bayes              

and 92.78% for Full Bayes, implying that there are potentially large benefits available             

from increasing the training data available to the Full Bayes classifier. Furthermore,            

the upward trend of cross validation accuracy as the training set increases in size              

suggests that more data would be beneficial. 

 

 

 

  

 



Andrew Ferguson ­ s0451611 

5 Evaluation and Discussion 

 

5.1 Normalisation and Outlier Detection 

 

The preprocessing steps to normalise the data were very successful, yielding the            

correct result 90% of the time and showing a considerable improvement in            

performance as reported earlier (~45% to ~58%). Furthermore, the outlier detection           

process generally selects the errors in normalisation meaning that the final training            

data is of good quality for learning. Although using outlier detection to simply             

remove unwanted samples from the training set is effective, there may also be scope              

to use this information to correct the errors as opposed to discarding the samples.              

With a larger dataset it may also be possible to create a mixture model where               

outliers from the norm are classified using different parameters, however the small            

amount of data available here means this was not possible. 

 

5.2 Feature Selection 

 

The feature selection process was very successful at achieving higher accuracy for            

both the Naive Bayes (~53% up to ~65%) and Full Bayes Gaussian classifiers (~56% up               

to ~77%) comparable in magnitude to the normalisation stage in terms of increasing             

accuracy. Both feature subsets were weighted heavily towards selecting GLCM          

statistics (15/16 for Full Bayes and 13/23 for Naive Bayes). Relying on such a              

scattergun approach to extract and select features for classification may cause           

classification drift if the data collection methods or conditions change over time,            

meaning that evaluation and recalibration of the classifier on a periodic basis would             

be sensible to preempt this problem. Additionally, it makes it hard to interpret the              

results of the feature selection algorithm in an intuitive way. 

 

5.3 Classification Results 

 

In order to have a way of comparing the results we have presented here to a task                 

that is more directly comparable 10 human volunteers with no prior experience            

 



Andrew Ferguson ­ s0451611 

were asked to classify one of two sets of 20 randomly chosen images from the dataset                

based on examples of 36 different images for each of the four species. The mean               

accuracy was 47% with a standard deviation of ~21%, and the lowest score as 10%               

and the highest 75%, this result is similar to the result Joo et al. reported for human                 

classification of Cichlids. It is clear that this is a difficult task for untrained humans               

and the ~65% and ~77% rates reported here for the Gaussian classifiers compare very              

favourably to the human results. Figure 5.3.A. below shows the confusion matrix for             

the human results and the Full Bayes Gaussian LOOCV confusion matrix for            

comparison: 

 

 

Figure 5.3.A. Confusion matrix for inexperienced human volunteers (left, N = 200) and Full Bayes               

Gaussian LOOCV (right, N = 180). The volunteers performed considerably worse than the classifier,              

but the pattern of errors made is not dissimilar with Haddock and Whiting being the most likely to be                   

confused with each other. It is highly likely that many of the volunteers resorted to complete guesses                 

for some test samples. 

 

The most directly comparable machine vision study discussed earlier was Larsen et            

al. (2009) as it (1) was discriminating between similar species (including Haddock and             

Whiting) and (2) was also using images of fish out of water. This study used shape                

and texture descriptors learned using an active appearance model and applied linear            

discriminant analysis (LDA) to the two principal components that performed best on            

the Fisher discriminant score and reported a 76% accuracy rate (noting we do not              

know if this is training or CV accuracy) in discriminating between the 3 species. As               

such the results reported here also compare favourably, especially as the random            

baseline in the Larsen study is ~33% whereas it is ~25% here and furthermore the               

data collected for their study was under controlled conditions and of much higher             
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quality than the raw data used here. However it should be acknowledged that             

Larsen et al. used (1) a simpler feature selection algorithm and (2) a less powerful               

discrimination algorithm. In conclusion, neither approach is obviously superior to          

the other from the current results available. 

 

Thus far we have only considered the classification of individual fish obtained ‘in a              

vacuum’ and have ignored any contextual information we have access to. In the raw              

data it is clear that it is common for fish of the same species to be in the same image                    

capture as each other, presumably because fish of the same species swim in groups              

and so are likely to be caught together. It may be possible to make improvements to                

the classification accuracy by utilising this information in a Bayesian framework.           

Bayes theorem tells us: 

 

 

 

Currently we assume a uniform prior on the probability of each species, i.e. P(C) =               

0.25, but by adding iterative Bayesian updating to our model we can attempt to              

exploit this information. Essentially the model would be updated to consider all of             

the fish extracted from the same image as a group. After applying the classifier once               

to each fish the classification probabilities would be updated using the proportion of             

the fish each species was classified as, as the new class prior probability. Thus the               

result would be to alter the classification of fish that lie on the margin between two                

species in favour of the majority class in that image. 

 

With regards to the choice of classification algorithms the results presented here            

suggest that the Full Bayes Gaussian classifier has struck the right balance in terms              

of learning power. The convergence of the training error and cross validation error             

of Naive Bayes confirms that the lack of power (i.e. high bias) of this model means                

that it has reached peak performance. Whereas a more powerful classifier such as a              

polynomial SVM of high degree might overfit the training data, the cross validation             

accuracy of the Full Bayes classifier is still on an upward trend suggesting that it is                

an appropriate choice. 
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5.4 Error Analysis 

 

By looking at the confusion matrices we can spot trends such as Haddock and              

Whiting being confused for each other as the most common error. By looking at the               

distribution of the class conditional probabilities assigned by the classifier we can            

ascertain whether or not these errors were marginal decisions or not: 

 

 

Figure 5.4.A. Area graph of the class conditional probabilities for the Haddock samples (Full Bayes               

Gaussian LOOCV). We can see that most errors are not marginal and the classifier assigned a                

probability close to 1 for the incorrect class. This trend is visible in the class conditional probability                 

distributions for all 4 species. 

 

Unfortunately we can see that most of the classification errors assign a near zero              

probability to the correct class, which means that the iterative Bayesian updating            

process proposed above will not repair these classification errors. There are,           

however, several cases where the correct Haddock classification was made and           
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Whiting was a close second. This suggests such correct classifications might be            

vulnerable to the iterated Bayesian updating miscorrecting the classification but          

given that the accuracy rate is relatively high it seems unlikely enough Haddock             

would be misclassified to push the probabilities in the wrong direction. Figure 5.4.B             

below shows 13 marginal cases across the entire dataset where marginal is defined             

as either the correct classification but with under 0.6 probability or incorrect            

classification where the correct class was assigned a nontrivial 2nd place probability.            

Green squares show correct classifications and red squares incorrect, with the           

correct class in 2nd place highlighted in blue: 

 

 

Figure 5.4.B. Table and area graph of the 13 marginal cases identified in the class conditional                

probability distributions. We can see that marginally correct classifications outnumber marginally           

incorrect classifications by 10 to 3. 
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Given the probability distributions of the errors examined in our dataset it is unclear              

whether iterated Bayesian updating would help, hinder, or have no measurable           

effect. Further work with a much larger dataset would be needed to settle this              

question. An alternative (and simpler) idea would be to implement a majority            

winner takes all approach to fish in the same frame, although again a much larger               

dataset would be required to assess whether this would produce more accurate            

results than classifying fish individually.  

 

It is worth noting that the training set classification accuracy rate is ~92% and out of                

the 13 errors made 7 of them are Haddock/Whiting confusion errors further            

reinforcing the idea that the discrimination between these two species deserves           

special attention.  

 

Figure 5.4.C. Excerpt from the quick training guide to classification for the CCTV footage supplied               

with the project proposal by Marine Scotland. 

  

Figure 5.4.C. shows an excerpt pertaining to Haddock and Whiting training guide            

supplied by Marine Scotland for inexperienced humans to learn the main differences            

 



Andrew Ferguson ­ s0451611 

between the species to identify them in the CCTV footage our data is captured from.               

By examining the images our classifier made errors on we can attempt to ascertain              

whether or not these characteristics might be useful in creating new custom            

features to improve discrimination. 

Haddock classified as Whiting Whiting Classified as Haddock 

 

 

Figure 5.4.D. The confused samples of Haddock and Whiting (Full Bayes Gaussian LOOCV). 

 

It is clear that the quality of the images are insufficient to utilise the information               

about the heads, tails, or lateral lines given in the guide. Also, there are several               

images here suffering from normalisation errors which is also due to the poor             

quality of the raw images.  

  

Figure 5.4.E. 1D scatter plot and gaussian representation of the yellow feature. Although Whiting              

has a slightly higher mean the feature does not appear to help discrimination. 
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Finally the guide suggests that Whiting have a “greeny yellow tinge”. Although our             

resampled images were converted to grayscale the original RGB resampled images           

have been stored. As such it was relatively simple to compute an interaction term              

whereby the mean pixel value for Red * Green (i.e. yellow) was computed for each               

sample. Unfortunately this was ineffective, as shown in figure 5.4.E. We discuss the             

issue of colour bias in the raw images in the next section. 

 

5.5 Raw Data Collection 

 

Apart from the limited number of raw images that were provided to us by Marine               

Scotland, the main external influence on the results presented here that was beyond             

the control of this project was the method of raw data collection. The issues caused               

by the data collection stage fall into two broad categories: (1) Lighting, and (2)              

Technical. 

 

 

Figure 5.5.A. Cropped image from the raw data showing the problems caused by specular              

reflection and shadowing due to the lighting. 

 

The lighting issues primarily pertain to two problems: (1) Specular reflections caused            

by the glossy surface of the fish skin, and (2) shadowing obscuring details such as               

tails and fins. Figure 5.5.A. demonstrates such problems. It appears from the raw             

images that light is provided by a single strong light source, several softer light              

sources spread out would provide a much clearer image for the camera. 

 

The technical issues also primarily pertain to two problems: (1) Resolution, and (2)             

Colour bias. The low resolution at which the digital images were sampled from the              
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analogue video feed forces an upper bound on the size of the images of fish that can                 

be extracted. Regardless of the resolution though, it is not clear that the quality of               

the image in terms of blurring is sufficient even at this resolution as on many               

images we cannot see distinctive features such as lateral lines or spots.  

 

Colour bias is also a severe problem. For example, the partial image shown in figure               

5.5.A shows an odd green streak going diagonally up and right across the image. It is                

for this reason that the preprocessing step in this report converted the images to              

grayscale and it is likely such colour bias problems are the reason features like              

measuring the yellowness of the fish are ineffective despite there being clear            

differences between the colour of the species in real life. 

 

It is certain that a high resolution digital camera would provide a much clearer              

image that could potentially allow more specific features to be developed for the             

identification task. It is also clear that image segmentation, which was beyond the             

scope of this project, is a nontrivial problem and would also benefit from better data               

collection. 

 

5.6 Hierarchical Classification 

 

When dealing with a multiclass classification problem where there are pairs of            

classes that are commonly misclassified together one approach to try and overcome            

this is hierarchical classification (cf. Huang et al (2012)[5]). The principal idea here is              

to split a multiclass problem into a hierarchy of binary classification problems,            

leaving the most difficult problems at the leaves of the tree. This allows us to apply                

feature selection to each binary problem individually. In this context the hope would             

be that discriminating between Haddock and Whiting, for example, is easier when            

only considering the two species and not all four at the same time. Figure 5.6.A               

below shows our proposed hierarchy for this problem: 
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Figure 5.6.A. The hierarchical classification formulation of the 4 class fish identification. 

 

We applied feature selection to each level of the hierarchy using the selected features              

for the 4 class problem as the initial candidate subset. The results of the feature               

selection were as follows: 

 

Level 1: Haddock and Whiting vs. Hake and Saithe: 243   273   294   295   308   311 

315   327   116   209   312   212    18    60 

 

Level 2A: Haddock vs. Whiting: 215   221   243   257   273   290   294   295   308   311   315 

316   327   345   360     4   116   209   312    25   212 

 

Level 2B: Hake vs. Saithe: 215   221   308   316   360    26   125 

 

 

Figure 5.6.B. Results from each binary classifier using only the ‘pure’ subsets. The combined              

estimated low bound on the error rate is 81.49% (i.e. the weighted average of 91.11% times 86.67%                 

and 92.22% respectively) , an approximately 4%  improvement on the flat multiclass classifier. 
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Figure 5.6.C. Results from the hierarchical classification from passing the data down through the              

tree. We can see that it achieves 84.44% accuracy, approximately 3% better than the theoretical low                

bound derived from the individual classification performance and an 7% improvement than the flat              

multiclass classifier. 

 

The application of hierarchical classification (also conducted with LOOCV) improved          

the accuracy to an overall rate of ~84%. This was better than the theoretical accuracy               

derived from the error rates of applying the correct species subsets to each classifier,              

the reason for this is that the more ‘difficult’ samples misclassified in the higher              

layer are not passed down to the correct subclassifier and therefore the accuracy of              

the level 2 classifiers on the correctly classified samples from the above layer is              

higher than the accuracy of the level 2 classifiers on the entire species subsets. 

 

We can also see that the distribution of overall classified counts is more even than               

the flat 4 class classifier, ranging between just 44 and 46 in contrast with 37 and 52.                 

This will be discussed further below. 

 

5.7 Species Classification Distribution 

 

Returning to the original objective of this project - to classify the species of fish to                

facilitate the counting of discards - it should be noted that the distribution of errors               

matters. If errors are distributed evenly then the overall counts may still be fairly              

accurate, but if they are skewed then the counts might be way off. We have seen that                 

the hierarchical classifier offers both a better accuracy rate and a more even             
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distribution of classification, meaning that it is preferable to the flat classifier in             

both senses of accuracy, i.e. individual classification and distribution of species. If            

errors happen in a predictable way, e.g. one species is always overrepresented, then             

true counts could be estimated from the classification numbers based on past data.             

However the dataset here is clearly not large enough to draw any meaningful             

conclusions about how this should be corrected. 
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6 Conclusion 

 

The overall objective of the project set out in section 1.2 was to demonstrate the               

feasibility of creating an automated system that could effectively classify the species            

of fish in the CCTV captures of commercial fishing discards. Assuming the existence             

or development of a segmentation algorithm to extract the individual fish from the             

raw images we believe that this project was a success in terms of its scope. Despite                

the small amount and low quality of the raw data provided we have reported              

classification accuracy that compares well to both previous academic literature and           

outperforms (inexperienced) humans considerably at the same task. Given the vast           

amount of raw data that would be produced by monitoring all such Scottish fishing              

vessels it is unlikely that a sufficient number of expert humans would be available              

(or inclined) to identify and count the fish. As such an automated system achieving              

accuracy along the lines of the results reported here would be preferable to hiring              

inexpert human classifiers. 

 

Furthermore, the analysis and discussion of the results in the previous section            

concluded that the Gaussian classification model here could achieve higher accuracy           

simply with more data of the same quality. One caveat to such a positive assessment               

of these outcomes is that we were forced to discard two species from consideration              

due to a lack of data. Monkfish are extremely different to the species studied here               

and so would likely be trivial to discriminate against, however Cod are another             

species relatively closely related to the 4 we considered and as such may reduce the               

accuracy rate but it seems unlikely that this would fall to levels resembling the              

inexperienced human classification accuracy reported here. We have seen that          

hierarchical classification already benefits the 4 class problem addressed here, and it            

is certain that increasing the number of species to be classified will require a              

hierarchical approach to achieve a good level of accuracy. 

 

In conclusion we have demonstrated that the species studied here can be            

discriminated to a high level of accuracy, and that there are a multitude of avenues               

to explore to improve classification including better quality of data collection           
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through digital images of higher quality in terms of focus and resolution, better             

lighting and colour registration, and more training data. The key technical hurdle to             

overcome that has been left unaddressed here is an effective image segmentation            

algorithm to extract the fish from raw images. 
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Appendix A - Normalised Fish Images -  Haddock 
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Appendix A - Normalised Fish Images  - Hake 
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Appendix A - Normalised Fish Images - Saithe 
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Appendix A -  Normalised Fish Images - Whiting 
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Appendix B - Full Feature List 

 

The ‘AllFeatures’ vector in the dataset structure correspond to the following 

features: 

 

1 to 191 PCA Components 

192 - 399 Gray Level Co-occurence Matrix Statistics: 

 

Grouped into four 52 statistic series at displacements 2, 4, 6 and 8. 

 

Subgrouped into 4 displacement directions of North West, North, North East, 

and East. 

 

Contrast 

Correlation 

Energy 

Entropy 

Homogeneity 

Sum Variance 

Difference Variance 

Inverse Difference Moment Norm 

Cluster Shade 

Cluster Prominence 

Max Probability 

Auto Correlation 

Dissimilarity 

 

400 Pixel mean 

401 Pixel Variance 

402 Pixel Mass 

403 Left/Right Pixel Mass Ratio 

 

 


