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Abstract

This thesis presents a novel linear-chain CRF model for ordered state transition mod-

elling aiming to recognise 2 ceilidh dances. The algorithm uses a two stage training

process. It learns the feature of each dancer and then it learns the dance itself. The final

trained model was evaluated using k-fold cross validation. The proposed linear-chain

CRF model had an accuracy of 96.85% for dance 1 and 94.42% for dance 2 where the

state lag tolerance is set to +/- 5 frames. The proposed linear-chain CRF model also

outperformed the traditional linear-chain CRF model by an average of 6.79%.

i



Acknowledgements

I want to thank my supervisor Prof. Robert Fisher for sharing his wisdom with me at

the times of need. His feedback and problem solving ideas were always on point. I

would to thank Edigleison Carvalho for his additional supervision and keeping me on

track.

I also want to thank my family and friends who encouraged me to stay focused and

helped me through the demanding parts of the thesis.

ii



Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification except as specified.

(Jeremiah Aizeboje)

iii



Table of Contents

1 Introduction 1
1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 The Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Object detection and tracking . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.1 Markov Model . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2.2 Hidden Markov Model . . . . . . . . . . . . . . . . . . . . . 7

2.2.3 Linear-Chain Conditional Random Field . . . . . . . . . . . . 8

3 Data Labelling 11

4 Phase I: Object detection and tracking 14
4.1 Background subtraction . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.2 Processing foreground . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.3 Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Phase II: Learning activity features 20
5.1 Feature functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Motion features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.3 Spatial features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.4 Feature extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4.1 Feature selection . . . . . . . . . . . . . . . . . . . . . . . . 23

5.4.2 Training feature CRF . . . . . . . . . . . . . . . . . . . . . . 23

iv



6 Phase III: Learning the dance 24
6.1 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7 Experiment and Results 27
7.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8 Conclusion 31

A State Transition Matrix 32

B Classification Plot 35

C Confusion Matrices 37

Bibliography 41

v



Chapter 1

Introduction

Nowadays, computers and video surveillance systems are relied on for security pur-

poses. Humans are also relied on to use such tools to make important decisions. How-

ever, humans have certain defects that prevent them from being efficient even when

the tools have already been provided. Behavioural analysis and activity recognition is

a stimulating topic in the medical field especially during controlled experiments i.e. to

understand the interactions between micro cells over a long period of time.

The need to analyse a behaviour helps one to gain a better insight about the object

in question. Animals are primarily used for biological experiments. The main issue is

that they have no way of intelligently explaining how they feel during an experiment,

so biologists look out for certain behaviours. Behavioural patterns are infinite and

might be dismissed at first sight to the human eye. On the other hand, computers are

known for their multi-tasking abilities and their computational powers. Adding some

form of intelligence to such machines with the aim to classify similar behavioural pat-

terns together seems like a formidable approach. This would yield better and more

accurate experimental results when compared to relying only on a humans wit.

It goes without saying that higher quality video (high video resolution and number

of frames per second) entails more defining details and would go a long way in produc-

ing more accurate results. However, the higher the video quality, the more power and

time required to process this videos. This problem introduces some form of quality

versus accuracy trade-off. These trade-off helps to decide the bounds of this project.

It helps in choosing what level of behaviour to monitor. For example, a real-time

hand monitoring application using high quality video would be able to model finger
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Chapter 1. Introduction 2

gestures, whereas using low quality videos would only enable modelling of the hand

movement as a whole. With the current speed at which technology is advancing, the

quality-accuracy trade-off is becoming an important topic of interest.

The aim of this project is to push the capabilities of video analysis through the use

of a simple context: ceilidh dancing. Ceilidh dancing is a group activity where each

of the dancers have specific roles to play. These dancers create some patterns when

viewed from above. This is an interesting fact because it is these patterns that are seen

as the behaviour of the dance. Applications that emits patterns can similarly use the

approach used in this project to recognise their different states.

On each frame, the position of each dancer is spatially and locally related. The

same can also be said of their activities. In order to identify a dancers’ activity from

an observation sequence, a spatio-temporal model is a primary requirement. Such a

model uses each frame in an observation sequence to learn the activities within the

observation sequence. Treating each frame as independent and identically distributed

(i.i.d.) would fail to make the most of the sequential patterns that is observed in the

transition between neighbouring frames. A conditional random field (CRF) relaxes the

i.i.d. assumption and makes it a suitable model for this project.

1.1 Goal

A CRF would be mainly used to achieve the goals of this project as well as 640 by 480

videos of 10 ceilidh dancers from an overhead camera. The goals of this project are as

follows:

• To explore how a probabilistic method can be used to recognise activities.

• To create an activity recognition system

• To create a ceilidh dance differentiation system.

The completion of these goals determine the success of this project. As this project

would be built around a probabilistic framework, probabilistic models would be mainly

reviewed in the next chapter.
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1.2 Overview

This project can be broken down into 3 different phases:

I Object detection and tracking: The position of each dancer at every time step

would be required to test the CRF. Object detection and tracking is the approach

that will be used to achieve this task. Chapter 4 explains more about the approach

used.

II Learning activity features: There are 10 dancers and 12 features observed in

all the dances. About half of the features are higher dimensional or real valued;

the features are not binary in nature. For example, if we had a feature to detect if

a kettle was hot, instead of having a Bernoulli distribution explain the hot feature

{on, off}, a multinomial approach is used instead to better understand how hot

the kettle is {high, medium, low, off}. Learning the activity features would help

reduce the number of features the dance CRF (chapter 6) is trained with in order

to learn the dance.

III Learning the dance: This phase involves training the dance CRF using the

preprocessed feature values (chapter 5). The preprocessing step helped reduce

the dimensionality of the features which is analogous to the pooling layer of a

convolution neural network. It also helped reduce the amount of noise in the

data.

Teaching the CRF with the correct data is a crucial task in this project. Correct

labelling of the training data is fundamental to the accuracy obtained during training.

Chapter 3 discusses the approach taking to ensure correct labelling.

The proposed linear-chain CRF model produced 96.85% for dance 1 and 94.42%

for dance 2. The experiments carried out is discussed in chapter 7. The proposed

linear-chain CRF model also outperformed the traditional linear-chain CRF model by

an average of 6.79%.

1.3 The Dataset

The videos were obtained from an overhead camera staring approximately 90◦ to the

ground as seen in figure 4.1 There are 2 different ceilidh dances used for this project.
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Dance 1:

• 9 different videos recorded

• contains 10 ceilidh dancers

• the dance has a duration of 16 to 20 seconds at a rate of approximately 8fps

• 640 by 480 resolution

• 15 labelled states

Dance 2:

• 7 different videos recorded

• contains 10 ceilidh dancers

• the dance has a duration of 41 to 44 seconds at a rate of approximately 8fps

• 640 by 480 resolution

• 44 labelled state



Chapter 2

Background

Video analysis via automated means has been frequently researched into. Multiple

approaches from regression techniques [3] to deep belief networks [21] have been

explored. One of the main goals of video analysis is to somewhat make sense of

what is going on within the video. Such videos may contain complex activities. This

approach to video analysis has influenced computer vision research fields like object

detection and tracking as well as activity recognition.

2.1 Object detection and tracking

Object detection and tracking is a core topic in computer vision. There are many ap-

proaches to detecting and tracking objects [10]. Lee et al. [11] use colour histogram to

detect object. This technique is applicable where the objects to be tracked have distinc-

tive colours. Lee et al. combined this technique with a local binary pattern approach

to detect objects at different scales. The local binary is calculated using the intensity

of neighbouring pixels.

Using colour histograms to track multiple objects is an approach being used by

Morioka et. al [13]. However, before such an approach can be used, the objects of

interest needs to be extracted. A simple background subtraction approach is used [19]

f oregorundimage = currentimage−backgroundimage (2.1)

Overall, object detection and tracking algorithms are usually unique and tweaked

to the task in hand as there are many factors (i.e. lighting, noise) that could affect its

performance .
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2.2 Activity Recognition

An activity has two main states: start and end. It can be described as the path taken

from the start state to the end state. Activity recognition aims to understand the path be-

tween the start and end states as each distinct activity should ideally have unique paths.

A probabilistic reasoning approach is currently being applied to activity recog-

nition problems. The main problem with a supervised learning approach is the vast

amount of labelled ground truth data required to train the model. However, Hossain

et al. [6] attempt to solve this problem by introducing an active learning factor. Their

approach proposes the use of a dynamic k-means clustering to classify activities for the

active learner. An interesting finding from this approach was the ability for the active

learner to discover unseen activities. This is useful to prevent wrong classification of

activities. Also, if a traditional model only relied on the ground truth data, it could fail

to correctly classify unseen activities.

Probabilistic graphical models such as the Markov model and its descendants are

often used in modelling sequential data. The next section would dive into the Markov

model and a few of its descendants.

2.2.1 Markov Model

The Markov model [2] is well known for its sequential modelling properties of time

series data. That is, it does not perceive observations to be independently and iden-

tically distributed (i.i.d.) ; it conditions the observations at time t − 1 to predict the

conditional distribution of the observation at time t as seen in equation 2.2

Figure 2.1: A first order Markov chain. The graphical model of equation 2.2

p(xt |xt−1) (2.2)



Chapter 2. Background 7

where xt is the observed data at time t.

This is also known as a first-order Markov model. A second-order Markov model

would allow influence from the previous two observations, at time t− 1 and t− 2, in

order to predict the conditional distribution of the observation at time t and so on. The

higher the order, the more complex the model. For example, one might wish to use the

Markov model to predict the weather if it is going to rain today based on if it rained in

the past week.

The Markov chain also assumes that the observation at t − 1 (for a first order

Markov) incorporates all previous observations, hence equation 2.2 is derived from

p(xt |x1, ...,xt−1) = p(xt |xt−1) (2.3)

where the joint distribution of the model for T observations is

p(x1, ...,xT ) = p(x1)
T

∏
t=2

p(xt |xt−1) (2.4)

The next section would illustrate how this model is extended by the hidden Markov

model (HMM).

2.2.2 Hidden Markov Model

HMMs are directed graphical models [16]. The HMM introduces latent or unobserved

variables to the Markov model. These variables are the hidden states of the model.

Figure 2.2: A first order HMM. The graphical model of equation 2.5
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and the joint distribution is

p(x1:T ,z1:T ) = p(z1)
T

∏
t=2

p(zt |zt−1)
T

∏
t=2

p(xt−1|zt−1) (2.5)

where zt is the hidden state of the model at time t and xt is the observed data at time t.

In comparison to the example given for the Markov model, one might wish to use

the HMM to predict the weather if it rained last night based on some observations like

if the grass is wet. The HMM model partially observes the previous data while the

Markov model fully observes the previous data. This model is known to play the key

role in the human genome project [5] and speech recognition applications [17].

2.2.3 Linear-Chain Conditional Random Field

A Conditional random field (CRF) can be viewed as a descendant of the HMM ap-

proach. It is well known for its uses in natural language processing [23][22][14][15].

In comparison to HMM, linear-chain CRFs [20] are undirected graphical models and

also discriminative in nature which means it is built on a model that is conditionally

distributed p(z|x). The conditional probability of a linear-chain CRF takes the form

Figure 2.3: A Linear-Chain CRF.

p(z1:T |x1:T ) =
1
Z

exp

(
T

∑
t=1

F

∑
i=1

wi fi(zt−1,zt ,x1:T , t)

)
(2.6)

where T is the number of frames in a single observation sequence, F is the number of

features, fi is the feature function (explained in chapter 5.1), wi is the weight and Z is

the normaliser also known as a partition function. The partition function ensures that

the model produces valid probability values between 0 and 1.
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Z = ∑
z1:T

exp

(
T

∑
t=1

F

∑
i=1

wi fi(zt−1,zt ,x1:T , t)

)
(2.7)

Training or estimating the CRF parameters involves finding w that maximizes the

conditional log likelihood of the training data. This requires a data set (that is labelled

and sequential in nature) for training { (x(1),z(1)), ...,(x(N),z(N)) } where x(n) = x(n)1:T

is an observation sequence. The objective function takes the form

N

∑
n=1

log p(z(n)| x(n)) (2.8)

The gradient of the model is used to train the weights of the CRF [7]: wi← wi +δwi .

The gradient can be computed as:

∂

∂wi

N

∑
n=1

log p(z(n)| x(n)) (2.9)

=
∂

∂wi

N

∑
n=1

(
T

∑
t=1

F

∑
i=1

wi fi(z
(n)
t−1,z

(n)
t ,x(n)1:T , t)− logZ(n)

)
(2.10)

=
N

∑
n=1

T

∑
t=1

(
fi(z

(n)
t−1,z

(n)
t ,x(n)1:T , t)−Ez′t−1,z

′
t
[ fi(z′t−1,z

′
t ,x

(n)
1:T , t)]

)
(2.11)

where the derivative of logZ is

Ez′t−1,z
′
t
[ fi(z′t−1,z

′
t ,x

(n)
1:T , t)] = ∑

z′t−1,z
′
t

p(z′t−1,z
′
t |x

(n)
1:T ) fi(z′t−1,z

′
t ,x

(n)
1:T , t) (2.12)

The derivative of logZ is made up of the edge marginal probability p(z′t−1,z
′
t |x

(n)
1:T ). An

edge can be defined as the connection between two nodes (zt−1 and zt).

Once a CRF has been trained, it is only normal to use it for prediction or inference.

Similarly to the HMM, the forward-backward algorithm can also be used [16][7].

The forward procedure:

αi=0(z|x) =

1, if z = start

0, otherwise
(2.13)

αi>0(x) = αi−1(x)Mi(x) (2.14)
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where αi(x) is the forward vector with i its index {0, ..,m+1}

The backward procedure:

βi=m+1(z|x) =

1, if z = stop

0, otherwise
(2.15)

βi<m+1(x)T = Mi+1(x)βi+1(x) (2.16)

where βi(x) is the backward vector

Both procedures use M(x) the exponential of the state transition matrix Λ(x).

Mi(zt−1,zt |x1:T ) = exp(Λi(zt−1,zt |x1:T )) (2.17)

Mi(x) = [Mi(zt−1,zt |x1:T )] (2.18)

The edge marginal probability used in equation 2.12 can further be explained as

p(z′t−1,z
′
t |x

(n)
1:T ) =

αi−1(z′t−1|x
(n)
1:T )Mi(z′t−1,z

′
t |x

(n)
1:T )βi(z′t |x

(n)
1:T )

Z(x(n)1:T )
(2.19)

A more comprehensive description of the model exists in the paper, ”An Introduc-

tion to Conditional Random Fields”, by Sutton and McCallum. [20].



Chapter 3

Data Labelling

The data required for this project can be divided into three sets:

1. Positional labelling for each dancer

2. Feature labelling for each dancer

3. State labelling for each dance

Positional labelling for each dancer is an easy task. All that is required is to record the

(x,y) coordinates of each dancer within a frame for each dance (figure 3.2).

Labelling the feature for each dancer is a more tedious task because the video has

about 8 frames per second (fps). This is a low fps to capture the full sequential prop-

erties of fast moving objects, especially an object with non-linear motion. A human

judgemental call is required to determine when a feature begins and ends. For exam-

ple, a dancer could be seen walking left, then walking down but after observing more

frames, it can be later seen that the dancer is actually rotating anti-clockwise. Such

features are hard for humans to be precise on during the labelling task. The CRF uses

12 features; walk left, walk right, walk down, walk up, twirling, standing, north, south,

west, east, horizontal and vertical. These features are discussed in chapter 5

An even more difficult task is the state labelling for each dance. Ideally, in the con-

text of this project, a state can be defined as an activity (feature) change between one

or more dancers. The problem is that some of the dancers could be out of sync with

the other dancers. For example, assuming the transition from state 7 to 8 is defined

the activity change of 6 dancers but only 2 dancers had an activity change. Then 3

11
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time steps later, the remaining 4 dancers had an activity change. Where does this state

begin? Is it when 2 of the dancers have changed activity or when all 6 have changed

their activity? This problems was solved by taking an average estimate between the

start of the state transition (when at least 1 dancer has changed activity) and end of the

state transition (when all 6 dancers have changed) as a new state. The first dance is

broken down into 15 states and the second dance into 44 states.

Not all the data provided had exactly the same pattern. Some observation had dis-

torted dance patterns (especially from the first dance); variations of the same dance.

This meant the CRF would be trained some noisy observations. This would help the

CRF to generalise properly during inference.

In each of the dances, the data is strictly labelled to have an ordered state sequence.

This means that during a dance, the transition from one state to another can only be

observed once and after a state has changed that state can no longer be observed (figure

3.1). All this information can be encoded in the state transition matrix of the CRF.

Figure 3.1: A 4-state transition matrix

Figure 3.1 illustrates an example of a CRF’s state transition matrix of a dance

with only 4 states. The state transition diagram for the two dance pattern are given in
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Appendix A.

Figure 3.2: The labelling tool used. Clicking on a dancer would record their position.



Chapter 4

Phase I: Object detection and tracking

4.1 Background subtraction

Background subtraction is used for two main reasons. Firstly, the video being pro-

cessed was taken from a stationary camera. Secondly, the only moving objects within

each frame are the ceilidh dancers.

(a) Background frame with no dancers
(b) Frame from first dance style with overlaid

border of dance region

Figure 4.1: Example frames from the dance video

In order to extract the dancers seen in figure 4.1b, figure 4.1a (the background im-

age of figure 4.1b) would need to be subtracted from figure 4.1b. The resulting image

can be seen in figure 4.2

The background subtraction approach used here is similar to the one used by Ma-

14



Chapter 4. Phase I: Object detection and tracking 15

Figure 4.2: A simple background subtraction applied

jecka [12] (background subtraction using chromaticity coordinates)

chrom1 =
Red

Red +Green+Blue
(4.1)

chrom2 =
Green

Red +Green+Blue
(4.2)

chrom3 =
Blue

Red +Green+Blue
= 1− chrom1− chrom2 (4.3)

Both images (figure 4.1a & 4.1b) are converted to their chromatic coordinates first

before the background subtraction process is run. This makes the algorithm robust

when there is a difference in lighting between the background image and the cur-

rent image. This is because the chromatic coordinates are invariant to lighting con-

ditions(luminance).

4.2 Processing foreground

The resulting image (figure 4.2) has some noisy pixels. This problem is solved by

further processing the image. Erosion [4] is a common technique used in removing

noisy pixels from a binary image. After eroding the image, a dilation [9] function was

applied to enlarge the regions of interest as seen in figure 4.3.
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Figure 4.3: After processing figure 4.2 using erosion and dilation

4.3 Tracking

After the background was subtracted and the binary image was cleaned, a tracking al-

gorithm was implemented to track the blobs. The blobs can be describe as a group of

pixels joint to getter holding the value of 255 (white) and separated by black pixels

(values of 0) i.e. figure 4.3. Using the Matlab function, bwmorph, informative prop-

erties (centroid, area, bounding box e.t.c.) about each blob was obtained. Some of the

properties of the blob was used in the tracking algorithm i.e. the bounding box used to

collect the dancer histogram, the centroid is used to estimate the dancers motion.

First of all, a colour histogram for each of the 10 dancers was captured and saved

from the first image in the observation sequence. This was used to help distinguish

between the dancers based on their colour combination. A Bhattacharyya distance

metrics was used for the comparison. The Bhattacharyya distance basically measures

the similarity between two probability distributions (continuous or discrete). The Bhat-

tacharyya distance formula for the discrete case takes the form

− ln
(

∑
x∈X

√
h1(x)h2(x)

)
(4.4)

where h1(x) and h2(x) are the colour histograms being compared. The smallest abso-

lute value of equation 4.4 is used to identify the dancer of interest; when a dancers’

histogram is compared with all the histograms from the detected blob regions. How-

ever, the outfit of most of the dancers are quite similar and this causes some confusion
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when calculating the Bhattacharyya distance as it could return confusing results i.e.

assign to wrong dancer. This problem is complimented with the tracking algorithm.

A condensation tracker [8] was developed for this project. The condensation tracker

enabled multiple hypothesis to be encoded. Nine different motion models were en-

coded:

• up left

• up

• up right

• left

• stop

• right

• down left

• down

• down right

For example, assuming a dancer is in the center of a 3 by 3 grid, then every cell in

that grid would have been modelled. The pseudocode is given in Algorithm 1

4.4 Summary

The object detection algorithm used was able to detect the foreground object on every

frame. However, the tracking algorithm did not work well and the results were incon-

clusive. This also meant that the accuracy of the person detection could not be obtained

because the centroid values was the distance metric used to calculate the accuracy. As

seen in figure ??, the blobs are joint together to form a big blob which meant that the

person detection algorithm would classify this as a false detection (centroid position is

away from the dancers real centroid position). The main problems that occurred were:

• Sometimes the blobs of 2 or more dancers merged together in often in dance 1

and frequently in dance 2. A fix was attempted by increasing the number of time
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Algorithm 1 Condensation tracker
1: procedure BEGIN

2: t← 1

3: hypos← 9 motion models

4: probs← probability of each hypotheses

5: loop N times to generate hypothesest :

6: ht−1← random hypothesis(hypost−1)

7: pt−1← probs(hypos(ht−1))

8: st−1← new state vector(distribution(ht−1))

9: st ← new state vector(current observation(st−1))

10: eval probability(current observation|st)

11: pt ← probability(st |current observation)

12: update hypos

the image was eroded, but this caused the problems of not seeing other dancers

on the other frames. After the dancers have separated the colour histogram was

used to try and identify the dancers but not all the dancers had unique colours.

• The temporal spacing between each frame was non-linear. This put the tracker

off a lot because if the next frame had a temporal spacing of 3x the norm then

the tracker would be lost or would attach itself to a dancer following in the path

of the original dancer (especially if they have the same clothing colours). If

the temporal spacing between each frame was known then it could have been

included in the tracking algorithm.

Due to the time limitation on this project, no other approaches were looked into.
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(a) Problem frame from dance 1 (b) Problem frame from dance 2

Figure 4.4: Example of problem blobs



Chapter 5

Phase II: Learning activity features

5.1 Feature functions

The feature function plays a critical role in the CRF. They tell the CRF what to look out

for when trying to decode what state the system currently is in. The feature function

can be presented in the form

fi(zt−1,zt ,x1:T , t) (5.1)

where zt is the current state and zt−1 is the previous state, x1:T is the whole observation

sequence and t is the index of the current observation sequence. Each of the feature

function contains enough data to detect a feature. For example, a binary standing

feature function can be encoded

fstanding(zt−1,zt ,x1:T , t) =

1, if ||xt− xt−1||< τ and ||xt− xt+1||< τ

0, otherwise
(5.2)

where τ is a thresh hold distance (relatively small value).

The ground truth observation data x1:T of each dancers’ position within a frame

was passed through similar feature functions. The features were made up of spatial

and motion features and a single motionless feature, standing.

5.2 Motion features

The implemented motion features can be divided into two groups, simple and compli-

cated. The simple features are:

20
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• Walk left (when a dancer is moving towards west)

fwalkle f t(d, t) =

1, if (x(d)x,t−1− x(d)x,t )> 0

0, otherwise
(5.3)

• Walk right (when a dancer is moving towards east)

fwalkright(d, t) =

1, if (x(d)x,t − x(d)x,t−1)> 0

0, otherwise
(5.4)

• Walk up (when a dancer is moving towards north)

fwalkup(d, t) =

1, if (x(d)y,t−1− x(d)y,t )> 0

0, otherwise
(5.5)

• Walk down (when a is moving walks towards south)

fwalkdown(d, t) =

1, if (x(d)y,t − x(d)y,t−1)> 0

0, otherwise
(5.6)

where (d) denotes the index of a dancer and x(d)x,y,t denotes the x and y component of the

dancers’ position at time t.

These features are easily modelled. Only one complicated feature was imple-

mented, twirling (when a dancer is moving in a circular motion). This feature is

classified as complicated because it is inclusive of at least two simple features in an

observation sequence.

5.3 Spatial features

Adding these features improved the accuracy substantially for dancers that had multi-

nomial motional features in an observation sequence i.e. twirling. The implemented

spatial features are:

• North

fnorth(d, t) =
max(x(d)y,T − x(d)y,t ,0)

maxu=1:T (x
(d)
y,T − x(d)y,u )

(5.7)



Chapter 5. Phase II: Learning activity features 22

• South

fsouth(d, t) =
max(x(d)y,t − x(d)y,T ,0)

maxu=1:T (x
(d)
y,u − x(d)y,T )

(5.8)

• West

fwest(d, t) =
max(x(d)x,T − x(d)x,t ,0)

maxu=1:T (x
(d)
x,T − x(d)x,u )

(5.9)

• East

feast(d, t) =
max(x(d)x,t − x(d)x,T ,0)

maxu=1:T (x
(d)
x,u − x(d)x,T )

(5.10)

• Horizontal

fhorizontal(d, t) =
x(d)x,t −minu=1:T (x

(d)
x,u )

maxu=1:T (x
(d)
x,u )−minu=1:T (x

(d)
x,u )

(5.11)

• Vertical

fVertical(d, t) =
x(d)y,t −minu=1:T (x

(d)
y,u )

maxu=1:T (x
(d)
y,u )−minu=1:T (x

(d)
y,u )

(5.12)

The cardinal features(north, south, west and east) are relative to the dancers final

position xT . The features’ function returns a normalised value between 0 and 1. For

example, if the north feature returns a value of 0.5, this means that dancer d’s current

position x(d)t is midway between their final position x(d)T and the furthest position to the

north reached by the dancer

max
u=1:T

(x(d)y,T − x(d)y,u ) (5.13)

which is also the normalisation constant used in equation 5.7

The normalised values of the spatial features were multiplied by a constant to in-

crease the detail of the feature. For example, if the vertical feature was multiplied by

3 then one can say a more detailed location of the dancer exists; where the multiplied

value lies between of 0 and 1 means verticalup, 1 and 2 means verticalmiddle and 2 and

3 means verticalbottom,
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5.4 Feature extraction

The dataset is comprised of 2 dances and 10 dancers. Each of the dancers had a CRF

assigned to them and trained to learn their features.

5.4.1 Feature selection

It is not all the activity features that is seen in a dance grammar that applies to each

dancer. For example, dancer 3 may just be standing while dancer 1 may walk left, twirl

and move about throughout the dance. It goes without saying that looking for features

that cannot be observed is like looking for noise to add to the data.

Only relevant features were used to train each of the 10 CRFs. These are the

features that had the best performance per CRF. The performance metrics used was

the test error from the trained CRF in question. Optimizing the CRF this way had a

positive effect on the dance CRF (chapter 6)

5.4.2 Training feature CRF

Training a CRF to learn each dancers’ features helped in smoothing out the noise in

the data. The modelled CRF is analogous to the unsupervised CRF autoencoder by

Ammar et al. [1] but with supervision; each feature would have a unique labelled state.

If a dancer has 5 features then that dancer is said to have 5 states.

The traditional linear-chain CRF model reviewed in chapter 2.2.3 was used to train

the feature CRF. The input vector for the CRF was determined by the number of rel-

evant features selected for the dance. For example, if only 4 features are relevant to a

dancer, then the vector would have a size of 4. The features were processed to contain

binary values. This meant that if a feature could take 3 values then the feature is treated

as 3 relative features where only one of the three features can be active at a time. This

technique was also adopted when training the dance CRF in chapter 6 because the

results obtained from the training the feature CRF were real values to represent each

state (extracted feature).



Chapter 6

Phase III: Learning the dance

Learning the activity features does not only act as a supervised CRF autoencoder but

also as a dimensionality reducer.

Figure 6.1: Dimensionality and noise reduction from each dancer.

In the scenario illustrated by figure 6.1, 3 motion features are active (walk right,

walk down and twirling ) and 1 spatial feature is active (horizontal). However, the de-

coded state only picks 1 motion feature (twirling) an all the 2 spatial features(vertical

and horizontal)

First of all, it is not possible for a person to walk in the same but opposite direction

at the same time and space i.e up and down, left and right. On the other hand it is
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possible to move diagonally, hence the 2 active motion features detected. An act of

twirling requires a minimum of 2 motion features at a time (most of the time). In this

case, if a twirling feature has been detected, it would be trained to take precedence

over the other active motion features.

Secondly, it is possible for twirling or any other motion feature to occur at different

locations within the observed frame. For this reason, the spatial values are always

encoded in the final state.

6.1 Training

The dance CRF is trained using the 10 input vectors representing the 10 dancers. The

size of each vector is determined by the number of decoded features observed for that

dancer.

The traditional linear-chain CRF was slightly modified in order to properly train

the dance CRF. The new equation for the forward and backward vector from equations

2.14 and 2.16 was changed to

αi>0(x) = αi−1(x)(Mi(x)−1) (6.1)

βi<m+1(x)T = (Mi+1(x)−1)βi+1(x) (6.2)

The edge marginal probability from equation 2.19 was also changed to

p(z′t−1,z
′
t |x

(n)
1:T ) =

αi−1(z′t−1|x
(n)
1:T )(Mi(z′t−1,z

′
t |x

(n)
1:T )−1)βi(z′t |x

(n)
1:T )

Z(x(n)1:T )
(6.3)

The main reason for subtracting the value of 1 from M(x) (the exponential of the state

transition matrix) is to make sure that the 0 probabilities modelled in the state transi-

tion matrix is reflected in the CRF model as absolutely 0 because exp(0) = 1. This

makes sure that edges only exist between the states modelled in the transition matrix

Λi(zt−1,zt |x1:T ) from equation 2.17

This modification was required in order to encode the prior knowledge that each

dance is strictly labelled to have an ordered state sequence as discussed in chapter
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3. This modification also provided improved accuracy when compared against the

tradition linear-chain CRF by 8.79% for dance 1 and 4.78% for dance 2 as seen in

tables 7.1 & 7.2 and tables 7.3 & 7.4 (using best result at t +/- 5)

100.00%

0.00%

0.00%

100.00%

dance 1 dance 2

dance 1

dance 2

  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Figure 6.2: Confusion matrix for classifying the two dances



Chapter 7

Experiment and Results

7.1 Experiments

The approach discussed in this paper was carried out on two different ceilidh dances.

The first dance was trained using 9 sets of training data (videos) and the second dance

was trained using 7 sets of training data (videos). The first dance was also labelled

with 15 states while the second dance was labelled with 44 states. The additional test

data used to validate the models was the ground truth data with added Gaussian noise

(σ = 5).

The overall performance from the first dance was better than that of the second

dance. This could be because the number of possible states in the second dance were

more than that of first dance.

The CRF Matlab toolbox that was used for the experiments was developed by

Schmidt and Swersky[18].

7.2 Results

Both dances were trained using the k-fold cross validation approach (9-fold for the first

dance and 7-fold for the second dance) . The accuracy results are presented in tables

7.1, 7.2, 7.3 , 7.4 7.5 and 7.6 where t +/- 3 indicates a 3 frame tolerance. For example,

if the current state is 6 and the predicted state is 7 but within the next 3 frames, the

current state is 7 then this is considered a correct classification.
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Fold-n t +/- 0 t +/- 1 t +/- 2 t +/- 3 t +/- 4 t +/- 5

1 0.7923 0.8357 0.8599 0.8744 0.8841 0.8937

2 0.7029 0.7543 0.7771 0.7886 0.8000 0.8057

3 0.6892 0.7432 0.7838 0.8108 0.8311 0.8446

4 0.8966 0.9557 0.9852 1.0000 1.0000 1.0000

5 0.8315 0.8913 0.9185 0.9348 0.9511 0.9620

6 0.7047 0.7409 0.7617 0.7824 0.8031 0.8238

7 0.7650 0.8197 0.8470 0.8689 0.8852 0.8907

8 0.7734 0.8177 0.8473 0.8621 0.8719 0.8768

9 0.6879 0.7261 0.7580 0.7834 0.8025 0.8280

mean 0.7604 0.8094 0.8376 0.8561 0.8699 0.8806

s.t.d. 0.0721 0.0775 0.0772 0.0748 0.0701 0.0652

Table 7.1: Results from a normal Linear-chain CRF model on dance 1

Fold-n t +/- 0 t +/- 1 t +/- 2 t +/- 3 t +/- 4 t +/- 5

1 0.9517 0.9903 1.0000 1.0000 1.0000 1.0000

2 0.9371 0.9714 0.9886 0.9943 1.0000 1.0000

3 0.9122 0.9595 0.9932 1.0000 1.0000 1.0000

4 0.9064 0.9655 0.9852 0.9951 1.0000 1.0000

5 0.9239 0.9674 0.9891 1.0000 1.0000 1.0000

6 0.8497 0.8912 0.9171 0.9223 0.9275 0.9326

7 0.8852 0.9399 0.9672 0.9836 1.0000 1.0000

8 0.9261 0.9704 0.9951 1.0000 1.0000 1.0000

9 0.6306 0.6752 0.7070 0.7325 0.7580 0.7834

mean 0.8803 0.9256 0.9492 0.9586 0.9650 0.9685

s.t.d. 0.0983 0.0980 0.0943 0.0884 0.0813 0.0729

Table 7.2: Results from the modified linear-chain CRF model on dance 1
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Fold-n t +/- 0 t +/- 1 t +/- 2 t +/- 3 t +/- 4 t +/- 5

1 0.7105 0.7703 0.8110 0.8445 0.8589 0.8660

2 0.7443 0.8128 0.8356 0.8539 0.8676 0.8744

3 0.8083 0.8762 0.9102 0.9248 0.9320 0.9369

4 0.7400 0.7916 0.8220 0.8361 0.8431 0.8454

5 0.8527 0.9179 0.9420 0.9565 0.9638 0.9686

6 0.7143 0.7734 0.8079 0.8251 0.8374 0.8498

7 0.8082 0.8772 0.9079 0.9258 0.9284 0.9335

mean 0.7683 0.8313 0.8624 0.8810 0.8902 0.8964

s.t.d. 0.0547 0.0586 0.0558 0.0530 0.0502 0.0490

Table 7.3: Results from a normal linear-chain CRF model on dance 2

Fold-n t +/- 0 t +/- 1 t +/- 2 t +/- 3 t +/- 4 t +/- 5

1 0.8349 0.8923 0.9234 0.9426 0.9498 0.9545

2 0.8813 0.9361 0.9543 0.9658 0.9726 0.9795

3 0.7670 0.8374 0.8592 0.8689 0.8738 0.8786

4 0.7635 0.8220 0.8501 0.8712 0.8759 0.8782

5 0.8696 0.9469 0.9734 0.9879 0.9928 0.9952

6 0.7956 0.8695 0.8941 0.9113 0.9212 0.9261

7 0.8568 0.9361 0.9744 0.9872 0.9923 0.9974

mean 0.8241 0.8915 0.9184 0.9336 0.9398 0.9442

s.t.d. 0.0488 0.0505 0.0520 0.0508 0.0509 0.0513

Table 7.4: Results from the modified linear-chain CRF model on dance 2

t +/- 0 t +/- 1 t +/- 2 t +/- 3 t +/- 4 t +/- 5

0.9298 0.9716 0.9861 0.9927 0.9964 0.9982

Table 7.5: Modified linear-chain CRF model for dance 1 (best model): Results from

using the ground truth data (9 videos) for dance 1 with Gaussian noise (σ = 5) to test

t +/- 0 t +/- 1 t +/- 2 t +/- 3 t +/- 4 t +/- 5

0.9298 0.9763 0.9855 0.9911 0.9942 0.9959

Table 7.6: Modified linear-chain CRF model for dance 2 (best model): Results from

using the ground truth data (7 videos) for dance 2 with Gaussian noise (σ = 5) to test
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7.3 Summary

The proposed CRF model was able to achieve an accuracy 96.85% for dance 1 and

94.42% for dance 2 where the frame tolerance is set to +/- 5 frames. There was no

confusion in the dance classification matrix (figure 6.2). A couple of classification

plots can be seen in Appendix B. The confusion matrices between each dance role and

the dancer can also be found in Appendix C



Chapter 8

Conclusion

This project set out to increase the capabilities of video analysis using a ceilidh dance

as a foot stool. The outcome of this project has shown that a linear-chain CRF can be

used to recognise a ceilidh dance. High accuracies of 96.85% for dance 1 and 94.42%

for dance 2 were obtained. The proposed linear-chain CRF model outperformed the

traditional linear-chain model by 8.79% for dance 1 and 4.78% for dance 2.

Though the goals of the project were accomplished a vital issue still remains. Fur-

ther research is required on developing a suitable tracking algorithm so that the model

can be tested using real world data.

For further development, this model can be compared with a model that does not

have the intermediary step of learning features before learning the dance. This way,

the model could be evaluated against a model that jointly trains the 10 dancers at a go.

Real world problems that require the recognition of spatio-temporal tasks can be

experimented on. i.e. hand-gesture recognition, understanding animal behaviour, dis-

ease life-cycle
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State Transition Matrix
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Table A.2: State transition matrix for dance 2
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Classification Plot
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Figure B.1: Classification plot on the best model for dance 1.
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Figure B.2: Classification plot on the best model for dance 2.
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Confusion Matrices

100.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

100.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

100.00%

10.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

90.00%

0.00%

10.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

100.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

90.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

100.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

100.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

100.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

0.00%

100.00%

da
nc

er
 1

da
nc

er
 2

da
nc

er
 3

da
nc

er
 4

da
nc

er
 5

da
nc

er
 6

da
nc

er
 7

da
nc

er
 8

da
nc

er
 9

da
nc

er
 1

0

dance role 1

dance role 2

dance role 3

dance role 4

dance role 5

dance role 6

dance role 7

dance role 8

dance role 9

dance role 10

  0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

Figure C.1: Confusion matrix for dance 1: Using ground truth data (9 videos) for dance

1 as test data with Gaussian noise (σ = 5)
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Figure C.2: Confusion matrix for dance 2: Using ground truth data (7 videos) for dance

2 as test data with Gaussian noise (σ = 5)
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Figure C.3: Confusion matrix for dance 1: Using ground truth data (9 videos) for dance

1 as test data
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Figure C.4: Confusion matrix for dance 2: Using ground truth data (7 videos) for dance

2 as test data
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