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Abstract

Timely information about the necessity of thinning in the forest is vital for forest man-

agement to maintain a healthy forest while maximising income. Currently, very high

spatial resolution remote sensing data can provide crucial assistance for the experts to

evaluate the maturity of thinnings. Yet, this task is still predominantly determined in

the field and demands extensive resources, thus causing high temporal resolution in the

procurement. In this study, we propose to employ a deep convolutional neural network

(DCNN) to detect the necessity and urgency of thinnings by using only remote sensing

data. Notably, we merge very high spatial resolution RGB and near-infrared orthopho-

tos, canopy height model (CHM), digital terrain model (DTM), slope and the reference

data into one data set to train the DCNN. Experts acquired the reference data in spruce

dominated forests in the Austrian Alps. After tuning the model’s hyper-parameters on

the data set, the model achieves a test set F1 score of 82.23%. Consequently, we con-

clude that DCNNs are indeed capable of detecting the need for thinning in forests. In

contrast, all attempts of assessing the urgency of thinnings with DCNNs proved to be

unsuccessful. However, additional data such as age or yield class has the potential of

improving the results. We further investigate the influence of the individual input fea-

tures on the model performance. For example, orthophotos appear to contain the most

relevant information for detecting the demand for thinning. Moreover, we observe a

gain in performance by adding CHM and slope, whereas adding the DTM harms the

model’s performance.
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Chapter 1

Introduction

Maintaining a healthy, stable forest to produce valuable wood requires fostering the

forest. An essential technique to accomplish that is a silvicultural operation called

thinning (Daume and Robertson (2000)). The main objective of thinning is to regulate

the vertical space of trees, thus steering the allocation of the available resources (e.g.

sunlight, water, nutrients) into the stems of remaining higher quality trees (Mitchell

(2000)). Although the primary objective of thinning is to prepare the forest stand

for the final harvest, it also provides forest owners with the opportunity of obtaining

additional income by selling the removed trees.

Determining if a forest stand needs thinning is a complex task since it is dependent

on many factors such as soil quality, age and tree species composition (Juodvalkis et al.

(2005)). This assessment makes assessing a forest stand for the necessity of thinning

a non-trivial task and is why the job is still mainly conducted by specialised forest

personnel. Sending personnel into the field is often very expensive. Hence, thinning

assessment is either not done at all like in the case of small forest owners or done

at long time intervals, which might be sufficient for slowly growing sites, however

vital areas with high mean annual increment are often overlooked, which results in a

sub-optimal timing of thinning in these stands.

In recent times, the proliferation in the amount and enhancement in the quality of

remote sensing data has raised the possibility of providing detailed information over

large areas from above (Ghamisi et al. (2017)). Furthermore, this data is currently

utilised as a base for everyday tasks such as planning felling operations and conducting

nature protection projects. Therefore, remote sensing imagery is now an essential tool

for operational forest management.

Although assessment of the necessity of thinning is not done exclusively using
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Chapter 1. Introduction 2

remote sensing data, it provides essential information for the evaluation. In particular,

colour-infrared (CIR) orthophotos provide insight into tree species composition, crown

width, crown density, and all-important parameters for determining the necessity of

thinning. In addition, another crucial parameter for assessing thinnings is the top height

of the forest stand that can be estimated through a remote sensing product named the

canopy height model (CHM).

Furthermore, we can employ the data to develop models capable of automatic ex-

traction of valuable information. This processing is possible due to recent increases in

computing power that allows more capable machine learning (ML) algorithms to be

deployed. This advancement resulted in the development of ML models, such as clas-

sifying tree species (Immitzer et al. (2019)) or estimating the standing volume (Halme

et al. (2019)).

Nevertheless, little research has been done to detect the necessity of thinning solely

with remote sensing data. That is why our main target for this study is to develop a

model capable of achieving this task. An accurate prediction of thinnings from remote

sensing data has the potential of delivering information for vast forest areas promptly

and thus improving the stability and wood quality of forests. The main objectives of

this study are:

• To evaluate the possibility of detecting the need of thinning with deep convolu-

tional neural networks (DCNNs) trained on very high spatial resolution imagery.

• To assess the possibility of additional differentiation between thinnings with dif-

ferent urgency.

• To identify the main sources of errors

• To investigate the importance of the individual data inputs.

Based on a study of the literature, we concluded that no researchers have previ-

ously explored using DCNNs to estimate the need for thinning (see Chapter 2). We

developed a machine learning based approach (see Chapter 4) that used data from the

Austrian Federal Forest system (see Chapter 3) which was then preprocessed (see Sec-

tion 4.1) to make it suitable for a deep-learning based classifier (see Section 4.2). The

trained classifier was capable of recognising when thinning was needed with an accu-

racy of 82.5% (see Chapter 6). An overview of the data prepocessing is displayed in

Figure 4.1, the training approach can be seen in Figure 4.3, and an example of aerial

forest data and its classifications is seen here in Figure 5.2).



Chapter 2

Related work

This chapter provides background information related to detecting the necessity of

thinnings with the help of remote sensing. First, we introduce thinning, its effect on

the forest stand, and its impact on the timber quality. After that, we show the current

state of remote sensing in forestry on its most important research questions. Finally,

we overview the current state of the art on semantic segmentation techniques and their

application in remote sensing.

2.1 Thinning

Thinning can be seen as the primary steering technique in preparation for the final

harvest. Although many types of thinning have emerged through the history of forestry,

the main objective of all of them is to remove some trees and accelerate growth in the

remaining future crop trees. Notably, this enables the remaining trees to allocate the

newly available resources mainly into their basal stem (Mitchell (2000), Holgén et al.

(2003)), which is economically the most valuable part of the tree.

Furthermore, by applying selective thinning, hence selecting the most promising

future crop trees, the log quality can be significantly enhanced (Stirling et al. (2000),

Macdonald et al. (2010)). Thus, thinning provides an opportunity to increase the

amount of good quality timber in the final harvest while producing additional income

from the sale of the removed trees. Since the main objective of many forest owners is

to maximise the net present value of their forest area, thinned stands outperform un-

managed stands in that matter (Spellmann and Schmidt (2003), Hynynen et al. (2005),

Hein et al. (2008)).

One of the main concerns of performing thinning is the enhanced risk for damages
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Chapter 2. Related work 4

to the forest due to high wind or snow. Various studies have shown that right after

thinning, the forest stand’s stability is lower due to the higher roughness of the tree

crowns (Persson (1975)). Although this is true for the time right after thinning, the

risk of injuries decreases with time until no additional risk is present anymore (Pers-

son (1975), MacKenzie (1976)). Nonetheless, thinning in Norway spruce stands has

been recorded to reduce the h/d ratio of trees (height to diameter ratio) (Slodicak et al.

(2005)). The h/d ratio is an indicator for the individual stability of a tree, where low

h/d values are equivalent to high tree stability (Pollanschutz (1980), Valinger and Frid-

man (1999), Valinger et al. (2006)). Thus, newer research suggests that early heavy

thinning might even increase the stability of a stand (Schütz et al. (2006)). Thereby,

timeliness is crucial, as delaying thinnings results in a risk increase of damage in the

stands (Pollanschutz (1980), Cameron (2002)).

2.2 Remote sensing in forestry

Utilising remote sensing imagery for extracting information about the forest struc-

ture and its employment in forest planning has been practised since the 1960s (Avery

(1966)). Remote sensing provides the opportunity to gather uniform information about

considerable areas otherwise impossible to collect from field measurements. Auto-

mated derivation of crucial information from the forest, such as tree species classifi-

cation and wood volume estimation, has long been a goal of researchers in forestry

(Kangas et al. (2018)). Traditionally, collecting information about the forest structure

was based on sending experts into the field as in conventional forest inventories. This

process is costly and often not affordable for small forest owners. With the advances in

sensor technology as well as computing power, the interest in applying algorithms for

automated extraction of forest parameters from remotely sensed spectral information

increased (Ma et al. (2019)).

At present, the leading sensing instrument technologies applied for retrieving forestry

relevant metrics are multi-spectral or hyperspectral cameras, light detection and rang-

ing (lidar), and to a certain extent, Synthetic-aperture radar (SAR) (Holopainen et al.

(2014)). These instruments can be mounted on three different platforms, satellite,

aircraft and unmanned aerial vehicle (UAV), each giving the sensing instrument dif-

ferent ranges of spatial resolution. Moreover, sensors mounted on a plane can support

conventional forest inventories and provide helpful information for operational forest

management (Magnussen et al. (2018), Kangas et al. (2018)).
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Despite the importance of forest operations such as thinning, few studies have tried

to create models which can predict the necessity of thinning directly from remote sens-

ing data (Vastaranta et al. (2011)). Most research has been focused on change detec-

tion, tree species classification as well as wood volume estimation. Although substan-

tial progress has been made in all the introduced research questions, they are far from

being solved and still active research subjects.

2.2.1 Change detection

The forest changes continuously, whether through carried out forest operations such

as thinning or clear-cutting or by forest damages caused by heavy winds, fire and

other natural disasters. The man-made changes can be reported and easily updated.

However, the changes induced by nature must be spotted differently. Automatic de-

tection of changes in the forest using aerial imagery shows promising results in ar-

eas where severe changes happened, such as clear-cutting and intense storm damage.

However, moderate changes such as thinnings were much harder to discover Hyvönen

et al. (2010)). When using airborne laser scanning (ALS) as the data source to de-

tect changes, Yu et al. (2004) were able to identify the removal of individual trees.

Nonetheless, acquiring aerial images or even more expensive ALS data is often done

at considerable intervals. Hence, a more interesting remote sensing platform for this

problem are satellites. Due to their higher temporal resolution, satellites can provide

much more timely data as it is often required in disaster response. In particular, SAR

data can provide data even on overcast days. Although weather conditions influence

the signal, this noise can be filtered, as Olesk et al. (2015) has demonstrated. Thereby

they were able to detect changes in forest areas greater than 1 ha with Sentinel-1 data.

2.2.2 Tree species

Accurate assessment of tree species composition over large areas is easily possible by

utilising remote sensing data. However, automatic classification of tree species with

remote sensing data has proven to be a challenging task (Fassnacht et al. (2016)). How-

ever, recent studies have shown great potential either by using hyperspectral imagery

(Ballanti et al. (2016), Fricker et al. (2019)) from one acquisition or by utilising multi-

temporal and multi-spectral data (Immitzer et al. (2019), Axelsson et al. (2021)). The

latter is especially impressive since Immitzer et al. (2019) employed just freely avail-

able Sentinel-2 imagery, resulting in very high classification accuracy. Yet, the spatial
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resolution of the Sentinel-2 optical sensor is limited to 10 m (Bands 2,3,4,8). Using the

WorldView-3 satellite with a spatial resolution of 1.6 m of the Bands RGB and near-

infrared (NIR) as well as a deep convolutional neural networks (DCNN), Yan et al.

(2021) has been able to achieve even more refined individual tree classification.

2.2.3 Tree height and wood volume

Besides tree species composition, the other two most essential forest attributes for for-

est managers are tree heights and stocking wood volume. Stocking wood volume is

highly correlated with tree heights since tree heights are, besides the basal area, the

most critical parameter for estimating wood volume. Therefore many studies that de-

rive the tree heights from remote sensing data provide results on both forest parameters.

Up until now, research has deployed multi-spectral and hyperspectral cameras, li-

dar as well as SAR to determine wood volume with varying success. Deriving tree

heights from airborne hyper-spectral data with over a hundred bands ranging from the

visible to the near-infrared is feasible (RMSE 6.39 m). Nonetheless, a similar accu-

racy can be achieved by employing just multi-spectral satellite data (RMSE 6.14 m)

(Halme et al. (2019), Cooper et al. (2021)). Additional input data can further improve

the performance of models determining tree heights from remote sensing data as in the

research of Liu et al. (2019), who fused SAR (Sentinel-1), multi-spectral (Sentinel-2)

and digital elevation model (DEM) data successfully to estimate the mean height to

obtain an RMSE of 2.9 m.

It has been shown that on comparable spatial resolutions, lidar, which captures

directly three-dimensional information, is more precise in estimating tree heights and

thus wood volume than any other commonly used sensor technology (Bohlin et al.

(2017), Ganz et al. (2019)). When lidar is mounted on a UVA, the captured data even

surpasses manual field measurements of tree heights in precision (Ganz et al. (2019))

(RMSE 0.43 m). However, the drawback is the higher operational cost of the sensor

and hence its lower temporal resolution. Although spaceborne lidar devices exist that

can resolve the temporal resolution problem, the laser beam is sparse and needs to be

fused with additional data to provide canopy heights covering the entire area (RMSE

3.4 m) (Boudreau et al. (2008), Simard et al. (2011)).

A suitable alternative to lidar is the estimation of tree heights by applying stereopho-

togrammetry on aerial imagery. Contrary to the more expensive ALS acquisition, many

countries have annual schedules for aerial image acquisitions. For instance, Austria
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and Sweden renew one-third of their area every year. Moreover, Bohlin et al. (2017)

demonstrated that the canopy heights derived from aerial imagery by applying pho-

togrammetry deliver comparable accuracies (RMSE 1.6 m) similar to those obtained

by lidar.

2.2.4 Forest operations

Despite the high importance of planning forest operations timely, few studies have

been conducted to predict thinnings from remote sensing data. Just two known stud-

ies addressed the challenge. Hyvönen (2002) tried to predict forest operations at the

stand-level by using Landsat-TM satellite imagery with moderate success. A second

study was carried out by Vastaranta et al. (2011) to predict the thinning maturity at

the stand-level from ALS data derived features. This study showed much better re-

sults with classification accuracy ranging from 79% to 83% for predicting the timing

of the subsequent thinning. Nevertheless, ALS data is still expensive to obtain and,

in many countries, not systematically acquired. Another approach to predict the ne-

cessity of thinning is to utilise key forest parameters acquired through remote sensing

together with additional inventory data to create statistical models (Haara and Korho-

nen (2004)).

2.3 Deep learning architectures for semantic segmen-

tation

Semantic segmentation is a computer vision task where the algorithm labels each pixel

or patch of an image to a predefined range of classes. Accelerated by the first end-

to-end fully convolutional network (FCN) (Long et al. (2015)), the utilisation of end-

to-end DCNNs for the task of semantic segmentation increased strongly. Since then,

many different architectures were proposed and adapted to remote sensing applications

(Volpi and Tuia (2018), Yue et al. (2019), Diakogiannis et al. (2020)). The main ad-

vantage of using DCNNs for semantic segmentation is their effectiveness in extracting

complex features from wide receptive fields. Nonetheless, this capability comes with

the price of not being able to maintain high spatial resolution and results in inaccurate

and blurred boundaries between the classes. To counteract this, newer DCNNs use

more pronounced/distinct encoder-decoder architectures with skip connections. For

example, UNet applies such skip connections in its symmetrical encoder-decoder ar-



Chapter 2. Related work 8

chitecture (Ronneberger et al. (2015)), where the features extracted in the encoder are

directly coupled to the corresponding decoder layers. The outstanding performance

results, together with the simplicity of the architecture, ensured the wide adoption in

the remote sensing research community for a variety of applications such as ship de-

tection (Hordiiuk et al. (2019)), road extraction (Chen et al. (2021)) and land cover

classification (Stoian et al. (2019)).

To obtain models that can learn more complex input representations, deeper DC-

NNs with more stacked layers were created. However, these deeper DCNNs often

resulted in worse-performing models than the more shallow predecessors due to the

degradation problem (He and Sun (2015)). This issue was resolved by Deep residual

networks (ResNet) that employed residual blocks, which added an identity shortcut

connection and overcame the degradation problem (He et al. (2016)). Further develop-

ment of the DCNNs resulted in the creation of a network architecture called DenseNet,

which utilises dense blocks that introduce direct connections from any layer to all sub-

sequent layers to improve further the information flow between layers (Huang et al.

(2017)). Jegou et al. (2017) adopted the DenseNet connection structure for semantic

segmentation by applying dense blocks to the UNet like symmetric encoder-decoder

structure. This merge resulted in a DCNN called FC-DenseNet that needs fewer pa-

rameters while performing better on various semantic segmentation challenges.

Another compelling approach to resolve the trade-off between high context extrac-

tion with heavy downsampling and accurate boundary prediction is the use of dilated

or atrous convolutions. Atrous convolutions contribute with a convolution filter that is

spaced apart, thus attaining a wider field of view while retaining its spatial dimension.

Chen et al. (2014) proposed a DCNN architecture called DeepLabv1 that incorporates

the atrous convolutions in a VGG-16 architecture to address the trade-off between high

context extraction with heavy downsampling. After several revisions of this architec-

ture that included, among other things, a Spatial Pyramidal Pooling that was intro-

duced in SPPNet (He et al. (2015b)) and adopted by Chen et al. (2018a) to create the

Atrous Spatial Pyramid Pooling (ASPP) in DeepLabv2. The current network architec-

ture DeepLabv3+ (Chen et al. (2018b)), provides some of the best results in semantic

segmentation challenges. Furthermore, its use in remote sensing applications is auspi-

cious. For example, Liu et al. (2021) showed the network’s excellent performance in

classifying marsh vegetation in China. Accordingly, we will use DeepLabv3+ as the

network used in Chapter 4 to classify tree thinning regions.



Chapter 3

Materials

For training the deep net, we used data collected for the Lungau region through aerial

imagery, airborne laser scanning (ALS) as well as data from forest management plans.

This data was first cleaned and preprocessed before being used as input data for the

machine learning algorithms (ingested into the ml algorithms to train the models),

resulting in 5 distinct input types as illustrated in Table 3.1. This chapter defines what

kind of thinning is used in this study, describes the data and its acquisition, and the

data preprocessing.

3.1 Study area

Located in the Lungau region (Tamsweg district), Austria (47°00’ - 47°13’N, 13°23’ -

14°0’E, UTM/WGS84 projection), the study area is managed by the Austrian Federal

Forests (ÖBF AG). As part of the Central Eastern Alps, the area is mountainous with

an altitude range 993 – 1906 m and has a distinct alpine climate with an average annual

temperature of 5.2 °C, mean annual precipitation ranging between 770 – 840 mm and a

snow cover minimum of 1 cm on 105 days per year. The study area illustrated in Figure

3.1 has an area of 21826.55 ha and is predominantly covered with forest (63.9% of the

area). The forest area is further divided into commercial forest and protective forest.

The commercial forest is managed to maximise the income from timber production

while minimising the risk of forest damage. In contrast, a protective forest objective

is to protect against avalanches, rockfall, erosion and floods. Although thinnings are

planned in both forest types, thinnings in the protective forest aim to ensure its pro-

tective function, whereas thinnings, as specified in section 3.2, are just planned in a

commercial forest. We are merely interested in the part where commercial thinnings

9
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are feasible. Hence we restrict the study area to the commercial forest. The commer-

cial forest has an extent of 9353.54 ha and is stocked with mainly coniferous forest.

The most frequent tree species are 81.0% Norway spruce (Picea abies, 81.0%) and

European larch (Larix decidua, 17.6%). The remaining 1.4% of the area are stocked

with deciduous forest.

Figure 3.1: Study area of Lungau, Austria. Austrian Federal Forest area is coloured in

orange, includes commercial and protective forest as well as non forest areas. Shown

in red are the tiles that are used to create the data set. The background image is a true

colour orthophoto from airborne photography (basemap (2021)).

3.2 Thinnings

As discussed in section 2.1, thinnings are a crucial technique to foster forest stands.

However, optimal thinning schemes differ by the tree species present, the previously

executed measures, as well as the density of the standing trees. Due to this variation,

it is essential to define the type of thinning that is being used throughout this study.
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The study area is predominantly stocked with Norway spruce dominated coniferous

forest. Abetz (1970) and later Hein et al. (2008) found that the highest economic

return on investment is produced by selective crown thinning with a selection of target

trees for this typical forest type. Furthermore, the Austrian Federal Forest adopted

this thinning type as the standard thinning scheme and thus, nearly all thinnings are

planned as such. Therefore, when we refer to thinning in this study, it is equivalent to

this specific thinning type. In practical terms, thinnings in Norway Spruce stands of

the Austrian Federal Forest are executed 2-3 times during a lifetime of a stand, where

1/4 to 1/3 of the actual stocking volume is being harvested each time. The first thinning

is carried out typically at around 13-19 m top height, followed by a second thinning

at approximately 20-30 m top height and a third thinning on good-growing sites. The

exact timing of the procedure depends on the density of the standing trees, which

is related to conditions such as the timing of the previous thinning and the growth

performance on the site.

3.3 Data acquisition

As shown in Table 3.1, all data came from three sources and was acquired at three

disparate points in time.

Table 3.1: Data sources. NIR: near infrared, CHM: Canopy height model, DTM: digital

train model, AI: aerial imagery, ALS: airborne laser scanning, RD: reference data, Res.:

spatial resolution, S.E.: standard error and Year: acquisition year.

Name Source Format Bands Res. [m] S.E. [m] Year

RGB + NIR AI GeoTIFF 4 0.2 - 2018

CHM AI GeoTIFF 1 1 1 2018

DTM ALS GeoTIFF 1 1 0.15 2013

Slope ALS GeoTIFF 1 1 - 2013

Ground Truth RD Shape 3 - - 2017

3.3.1 Aerial imagery

The acquisition of the aerial imagery is performed by the States of Austria, where one-

third of Austria is updated every given year, hence every three years, the whole of Aus-
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tria is updated. All aerial imagery for the study site was recorded during the two days

11.09.2018, and 12.09.2018 with an UltraCam Eagle Mark 3 431S61680X916102-

f100 mounted on a Beechcraft Super King Air B200 D-IWAW. Four bands were ac-

quired with a spatial resolution of 20 cm, the three bands for RGB and one band in

the near-infrared (NIR) spectrum (Table 3.1). After the acquisition, the raw data was

geometrically and radiometrically corrected with the corresponding calibration data of

the camera and the four channels were stitched together using the monolithic stitching

method (Gruber et al. (2012)). The second product that was derived from the aerial

photos is the canopy height model (CHM). To obtain the CHM, first, the digital sur-

face model (DSM) is calculated using photogrammetry from overlapping air images.

Then, the CHM is calculated by subtracting the DSM from the DTM. For this study,

the Federal Forest Office (BFW) calculated the CHM.

3.3.2 Airborne laser scanning

Acquisition of the utilised digital terrain model (DTM) was performed by airborne

laser scanning (ALS) in 2013 as part of the EU project INTERREG. The slope was

calculated from the DTM using the Horn algorithm (Horn (1981)). The Austrian Fed-

eral Forests provided all data.

3.3.3 Reference data

Reference data collection in the field was performed by forest engineers from May

2017 until November 2017 and subsequently digitalised by April 2018. This data

acquisition was made as part of the forest management plan update for this region

by the Austrian Federal Forests. In particular, forest engineers assess every forest

stand by measuring the basal area and tree heights to derive the most important key

figures such as tree species composition, yield class and stocking volume. Another

part of the elicitation is the planning of thinnings that need to be executed to ensure the

optimal growth of the trees and maintain healthy forest stands with high-quality wood.

Thinnings are planned in three urgency levels:

• urgency 1 - forest stand needs thinning during the next 0 to 3 years

• urgency 2 - forest stand needs thinning during the next 3 to 10 years

• urgency 3 - forest stand can be thinned at the end of the decennium or can be

postponed until the next management plan
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The acquired data was populated into a Database, and the spatial information of the

forest stands was drawn in a GIS. Subsequently, both data sources were synchronised.

Table 3.2: Reference data classes, their definitions and occupied area.

Class Definition Area [ha] Area [%]

thinning 1 Forest, thinning within 0-3 years 958.95 9.3

thinning 2 Forest, thinning within 3-10 years 1404.88 13.6

thinning 3 Forest, thinning within 9-15 years

no thinning Forest, no thinning 7245.62 70.3

other Non forest (buildings, roads, water bodies) 696.19 6.8



Chapter 4

Methods

Our objective in this study is to predict where and when thinnings are necessary. For

this problem statement, we employ deep convolutional neural networks (DCNNs) to

generate classifications based on pixels, also known as the semantic segmentation task.

This chapter provides information about the data preprocessing, outlines the exper-

imental design we designed to attain our research objectives, describes the training

procedure and presents the evaluation criteria applied in this study.

4.1 Data preprocessing

Figure 4.1: Data preprocessing workflow with all data manipulation steps (see text).

14
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Due to different spatial and temporal resolutions (Table 3.1), the described data

needed preprocessing in order to apply it as input for the DCNN. The workflow is

shown in Figure 4.1 and described in this section in more detail.

4.1.1 Cleaning of outliers

The provided canopy height model (CHM) contained values ranging from -73.9 to 138.

Since values below 0 are physically impossible and tree heights above 45 m are im-

probable in Austria, these values need adjustment. Therefore, values below 0 and over

40 m were highlighted, visually inspected and classified in GIS. The analysis showed

that highlighted pixels higher than 47 m and negative values were predominantly rocky

steep slopes. Consequently, all pixels with a value beneath 0 and above 47 m were set

to 0.

4.1.2 Synchronisation of spatial resolution

The next step in preparing the data was to synchronise the spatial resolution for all

input data. As shown in Table 3.1, the orthophotos have a spatial resolution of 0.2

m as opposed to all other raster data having a spatial resolution of 1 m. There are

benefits and drawbacks to using either as the standard spatial resolution. Using 0.2 m

as the standard results in more detail in the four orthophoto layers. Greater detail can

be beneficial for the deep learning algorithm to recognise individual tree crowns and

thus help it determine the density of the forest. In contrast, the resolution of 1 m would

provide a broader field of view when maintaining the same input image size to the

DCNN. We decided to use the resolution of 0.2 m as the standard for all input data as

we anticipated the information loss would be too high when using the 1 m resolution.

Consequently, all data with a spatial resolution of 1 m was converted using the GDAL

library.

4.1.3 Tile size

Furthermore, the data need to be clipped into square tiles as it is the input type of

the neural networks used in this study. Accordingly, an image size of 512x512 pixels

seems a favourable choice due to the possibility of processing such size with modern

GPUs with a decent batch size while maintaining a large field of view. Ultimately

the image size could be easily reduced by quartering the dataset without considerable
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effort, thereby increasing the batch size accordingly. The image size of 512x512 pixels

corresponds to 102.5m x 102.5m in reality. Since one adult tree crown (Norway spruce)

has a diameter of 5-6 m, 300-400 adult tree crowns can be represented on one tile.

4.1.4 Tile creation

Considering that only commercial forest is relevant for our study since solely thin-

nings in a commercially used forest are regularly planned and executed as described

in Subsection 3.2, we consequently laid a regular grid of 102.5m x 102.5m over the

entire study area to create polygons that we intersected with the reference data. Only

polygons that contained over 25% commercial forest area were selected, while the re-

maining polygons were removed. Finally, we utilised the selected polygons to clip all

input raster data into tiles of 512 x 512 pixels.

4.1.5 Reference data adjustment

Considering that the aerial imagery acquisition was recorded in September 2018 and

the reference data in May to November 2017, the provided reference data needed to be

adjusted. Between the two points in time lies a whole year where cuttings in the study

area were executed. We resolved this inconsistency by using data from the Austrian

Federal Forests database, where all cuttings are registered, to identify already carried

out thinnings and cleaned calamities. Additionally, all commercial forest stands were

visually inspected in GIS, and any noticeable errors were corrected.

4.1.6 Masking

Since the reference data is restricted to the study area and we use square tiles, part of the

tile frequently contains no information about the reference data (ground truth). Having

these parts of the tile with no ground truth information while orthophoto and DTM data

is available would be misleading for the machine learning algorithm. Hence, we had

to remove any data that was outside the boundaries of the study area. To accomplish

that, we created a binary mask from the reference data for every tile and multiplied it

with the tiles. In the resulting tiles, all information beyond the boundaries of the study

area was set to 0.
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Table 4.1: Allocation of the reference data to ground truths Base, UR12 and UR1 as

well as the proportions of pixels representing each class. UR is an abbreviation for

urgency. The definitions of the reference data classes are explained in Table 3.2

.

Reference data Base UR12 UR1
Class Class [%] Class [%] Class [%]

void void 8.5 void 8.5 void 8.5

thinning 1

thinning 21.0

thinning ur1 8.5 thinning ur1 8.5

thinning 2
thinning ur2 12.5

merged 76.8thinning 3

no thinning no thinning 64.3 no thinning 64.3

other other 6.2 other 6.2 other 6.2

4.1.7 Creation of ground truth

Since the creation of the ground truth is firmly connected to our experimental design,

we describe both parts of the experimental design and the creation of the ground truth

in this subsection. In Table 3.2, we can see the classes of the reference data, their

definitions, and the representation in the data set and Figure 4.1 shows the main steps

to create the data set.

The first objective we defined in the Section 1 is stating if it is feasible to detect

forests in need of thinning from remote sensing data. In order to answer this question,

it is simply necessary to distinguish between a forest that needs to be thinned and ev-

erything else. When looking at Table 4.1, we can see six unique data classes. Thereby

”void” represents simply the absence of information as described in Subsection 4.1.6.

The other five classes are defined in Subsection 3.3.3, of these three are related to thin-

ning. Since we are not interested in the acuteness of the thinnings for this objective, we

summarised thinning 1, thinning 2, and thinning 3 into one class called thinning. This

ground truth is called Base and it differentiates between the classes void, thinning, no

thinning and other (Table 4.1).

To address the second objective that states if the urgency of thinnings can be as-

sessed, we created two types of ground truths named UR12 and UR1 (Table 4.1).

The ground truth labelled UR12 was designed to differentiate between urgent thin-

ning (thinning ur1), not urgent thinning (thinning ur2), no thinning, other, and void.

Hence, thinning ur1 was set equivalent with class thinning 1 of the reference data,
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Table 4.2: Allocation of the reference data to masked ground truths masked Base,

masked UR12 and masked UR1 as well as the proportions of pixels representing each

class. UR is an abbreviation for urgency. The definitions of the reference data classes

are explained in Table 3.2

.

Reference data masked Base masked UR12 masked UR1
Class Class [%] Class [%] Class [%]

void void 44.2 void 44.2 void 44.2

thinning 1

thinning 20.4

thinning ur1 8.4 thinning ur1 8.4

thinning 2
thinning ur2 12.0

merged 47.4thinning 3

no thinning no thinning 35.4 no thinning 35.4

along with thinning ur2 being defined as thinning 2 and thinning 3 grouped together.

Subsequently, another ground truth (UR1) was created to simplify the problem, thus

trying to enhance the model’s performance. This ground truth is similar to ground

truth UR12, with the only difference that the classes thinning ur2 and no thinning are

merged into one class named merged. As a result, the model can concentrate on finding

urgent thinnings by reducing from 5 classes to 4 classes.

Furthermore, we adopt this strategy of addressing the deterioration of performance

by reducing the complexity of the problem in the second set of ground truths (masked

Base, masked UR12, masked UR1). This second collection of ground truths was cre-

ated exactly like the first one, except that instead of masking everything beyond the

boundaries of the study area as described in subsection masking, we masked every-

thing outside the boundaries of the commercial forest area. The resulting distribution

of the classes is presented in Table 4.2. In contrast to the first set of ground truths

(Base, UR12, UR1), the masked ground truths (masked Base, masked UR12, masked

UR1) contain no class other, and there has been a substantial shift in the distribution

of the classes towards the class void.

Finally, all ground truth data was created by rasterising the reference data (vector

data) with the GDAL library into images of size 512x512x1.
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Figure 4.2: Input data tile as used in the final data set (non masked). RGB: true colour

orthophoto, CIR: the colour infrared orthophoto, CHM: crown height model, DTM: digital

train model, Slope: slope and Ground Truth: ground truth Base. Ground Truth classes

are coloured where green represents forest not to be thinned (class: forest), red repre-

sents forest thinning is necessary (class: thinning) and blue represents everything else

(class: other)

4.1.8 Creation of data set

All the preprocessed input data and the generated ground truths were stacked into two

data sets. Two separate data sets were needed since the input data corresponding to

ground truths Base, UR12 and UR1 was masked different to the input data of ground

truths masked Base, masked UR12, and masked UR1. Hence, we created the data sets

by stacking all preprocessed data into two hdf5 files. Each file consists of all tiles

created inside the study area, as shown in Figure 3.1. Every tile is composed of the

orthophoto (RGB+NIR, 4 layers), the CHM (1 layer), the DTM (1 layer), the Slope

(1 layer) and the Ground truths (3 layers), thus summing up to 10 layers (Figure 4.2).

Thus, in total per data set, 10250 tiles were created, each of size 512x512x10 pixels

resulting in an array with the dimensions 10250x10x512x512.

Subsequently, two more data sets were generated holding the same data, only that
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every tile was quartered. Hence, for every 512x512 tile, we produced four 256x256

tiles, which resulted in two data sets with the dimensions 40250x10x256x256. These

data sets were generated to accelerate the training process since the smaller tiles can

be trained with larger batch size and help the Deep Net to converge quicker.

4.2 Experimental design

Our experimental design can be divided into three major parts and is illustrated in Fig-

ure 4.3. In the first part called Architecture Selection, we perform a search for the best

performing DCNN-architecture. We then analyse the results of the models predicting

the necessity of thinning (Thinning Necessity) and the urgency of thinnings (Thinning

Urgency). Finally, we perform an ablation study (Ablation Study) to determine the

impact of the various input data sources.

Figure 4.3: Model training workflow with all processing steps to obtain the final models.

First stage is the Architecture selection to find the best performing DCNN-architecture.

The second stage is the training of the final models to answer the research objectives

(Thinning Necessity, Thinning Urgency, Ablation Study ).

4.2.1 Architecture selection

The exploration to find the best performing DCNN-architecture was conducted exclu-

sively on the data set with the ground truth Base (Table 4.1). The other ground truth

types, UR12 and UR1, are later used for clarifying if deep nets can determine thinning

urgency. Nonetheless, they are not employed in the search for the best model. From
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our literature research outlined in section 2.3, we found the following three DCNNs as

the most promising architectures for solving our semantic segmentation problem.

• UNet (Ronneberger et al. (2015))

• FC-DenseNet (Jegou et al. (2017))

• DeepLabv3+ (Chen et al. (2018b))

The exact architectures utilised in this study are illustrated in Appendix C. All

DCNNs were modified to accept the tiles from the data set with the dimensions 512 x

512 x 7 (or 256 x 265 x 7) as input and output the predictions as a 512 x 512 x 1 (or

256 x 265 x 1) array.

We search for the optimal architecture by evaluating the three DCNNs defined in

n Appendix C on the data set (Base). The DCNN achieving the best result is then

chosen for further optimisation experiments. This optimisation consists of manipu-

lating individual parts of the architecture to further optimise the model’s performance

by applying the Bayesian optimisation method (Snoek et al. (2012)). This method

is an alternative to an exhaustive full grid-search, which is computationally very ex-

pensive. Instead, it efficiently searches for the optimal hyper-parameters based on the

Bayes Theorem. In practice, that means we sequentially alter critical structures in the

DCNN-architecture and always adopt the structure that provides the best results.

All DCNNs are implemented in PyTorch and all supplementary code was writ-

ten in Python. All code is freely available at https://github.com/satlawa/edin_

thinning_necessity. The experiments were performed on a system with Ubuntu

20.04 as the operating system equipped with an I7 6700K CPU, 32GB of RAM and an

Nvidia RTX 3090.

4.2.2 Thinning Necessity and Urgency

After finding the best architecture, we train the final models on the two data sets with

all six ground truths (Base, UR12, UR1, masked Base, masked UR12, masked UR1).

These final models are then evaluated on the test set to estimate the actual performance

on unseen data. Subsequently, we analyse the results and determine whether the mod-

els can satisfactorily fulfil the intended task. In the case of the ground truth Base and

masked Base, we examine if the necessity of thinnings can be detected by a DCNN

using solely remote sensing data. Furthermore, we employ the ground truths UR12,

https://github.com/satlawa/edin_thinning_necessity
https://github.com/satlawa/edin_thinning_necessity
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masked UR12, UR1, and masked UR1 to investigate if the urgency of thinnings can be

determined in addition to detecting the necessity of thinnings.

4.2.3 Ablation study

Finally, we perform an ablation study by omitting different types of input data based

on our data set with ground truth Base. The primary purpose of this experiment is to

determine the importance of the individual input data types as shown in Table 3.1.

4.3 Training

Before training, we randomly shuffle the data set and use 70% of the data for training,

10% for validation and the remaining 20% for testing. Accordingly, we employ this

split for training and evaluating all models. Thus, the test set is exclusively applied to

the best performing model chosen by evaluation on the validation set. Furthermore,

all input data were standardised by subtracting the mean and dividing by the standard

deviation for each value of each input channel (3.1).

All models are trained from scratch due to the dissimilarity of the input data com-

pared to the data sets used on pre-trained models. For initialisation of the weights, we

employ the Kaiming uniform initialisation (He et al. (2015a)). For all our experiments,

we used the Adam optimiser as in Kingma and Ba (2015), with an initial learning rate

for (1) UNet of 0.01, (2) FC-DenseNet of 0.003 and (3) DeepLabv3+ of 0.001. After

every epoch, we applied a decay rate of 0.995 to the learning rate. Since loss functions

play a decisive role in training models, choosing a suitable loss function is essential

(Jadon (2020)). In our case, the distribution of the classes is skewed. Therefore we

implement and apply the dice loss as our loss function. The dice loss is defined as 1 -

F1 score (defined in Equ. 4.5). The batch size was chosen to be as large as possible,

with the constraint being the memory of the GPU. Depending on the DCNN archi-

tecture, the batch size was ranging between 16 and 72. Due to long training times

(up to 40 minutes for one epoch), only one 5 fold cross-validation on the model Base

was carried out. The models were trained until convergence, however at least for 50

epochs. Data augmentation in the form of horizontal flips was performed only on the

previously chosen best-performing architecture. We restricted the data augmentation

to horizontal flips due to the different growing conditions on north and south slopes.
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4.4 Evaluation

To evaluate the performance of the trained models thoroughly, we use five evaluation

metrics. The first criterion is the overall accuracy (Acc) which is determined by divid-

ing the number of all correctly classified pixels by the total number of pixels (Equation

4.1).

Acc =

n

∑
i=1

(T Pi +T Ni)

n

∑
i=1

pi

(4.1)

Where n is the number of images; T Pi is the number of true positive pixels in image

i; pi is the number of pixels in image i.

Although Acc is a very intuitive and thus common evaluation criteria, it is not very

meaningful in cases where the distribution of classes is highly skewed, as is the case

with the data set we utilise (Table 3.2). Therefore, we apply the metrics precision

(Equation 4.3), recall (Equation 4.2), IoU (Equation 4.4) and F1 score (Equation 4.5).

recall j =

n

∑
i=1

T Pi j

n

∑
i=1

(T Pi j +FNi j)

(4.2)

precision j =

n

∑
i=1

T Pi j

n

∑
i=1

(T Pi j +FPi j)

(4.3)

IoU j =

n

∑
i=1

T Pi j

n

∑
i=1

(T Pi j +FPi j +FNi j)

(4.4)

F1 −Score j = 2∗
precision j ∗ recall j

precision j + recall j
(4.5)

Where n is the number of images; T Pi j is the number of pixels in image i, which

are correctly predicted as class j; FPi j is the number of pixels in image i, which are

incorrectly predicted as class j; FNi j is the number of pixels in image i, which are

incorrectly predicted as any class other than class j.
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Since we have a multi-class problem statement, we first calculate the proposed

metrics per class and determine the mean among all classes as illustrated in Equation

4.6.

mX =
1
m

m

∑
j=1

X j (4.6)

Where m is the number of classes; X j is one of the metrics (precision, recall, IoU,

F1) for class j.

Despite providing all the above metrics for a holistic evaluation of the models, we

adopt the F1 score as the sole decisive evaluation score. Even though the ground truth

contains the class void we omit this class from the calculation of all metrics since it

is of no use for our problem. Furthermore, the void class is very easy to learn for the

classifier, hence its presence in the metrics would distort the results and indicate a better

model performance than the particular model can achieve in reality. All evaluation on

the test set was performed on the 512x512 data set.

Despite providing all the above metrics for a holistic evaluation of the models, we

adopt the F1 score as the sole decisive evaluation score. Furthermore, class void carries

essentially no information. However, it is still necessary as the data outside the study

area boundaries of the commercial forest boundaries (in the case of masked ground

truths) must be represented. Nonetheless, although we require class void for training

the DCNNs, we omit it in the presentation of the results as it was nearly perfectly

classified and carried no valuable information. Besides, its presence in the metrics

would distort the results and indicate a better model performance than the particular

model can achieve in reality. Finally, all evaluation on the test set was performed on

the 512x512 data set.
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Results

This chapter outlines and interprets the results of the performed experiments based on

the previously described methods in Chapter 4. In particular, we present the selection

of the best performing model. In addition, we demonstrate the feasibility of using

DCNN for classifying the urgency of thinnings as well as the ablation study.

5.1 Architecture Selection

5.1.1 DCNN Selection

We start by comparing the performance of the three DCNN architectures UNet, FC-

DenseNet and DeepLabv3+. Subsequently, we select the architecture based on its

achievement on the ground truth Base. We can see in Table 5.1 DeepLabv3+ performs

best with an F1 score of 80.38%. It seems that the atrous convolutions of DeepLabv3+

capture the best contextual information. Hence, we chose DeepLabv3+ as the default

network architecture and perform the hyper-parameter tuning on this DCNN.

Table 5.1: Performance of three selected DCNN-architectures on the validation set of

ground truth Base. Detailed information about the architectures is provided in Appendix

C. Acc: overall accuracy, mIoU: mean intersection over union and F1: F1 score

DCNN Acc Precision Recall mIoU F1

UNet 85.78% 82.39% 78.11% 67.05% 79.82%

FC-DenseNet 80.03% 76.33% 70.82% 57.91% 72.62%

DeepLabv3+ 85.83% 81.88% 79.47% 67.76% 80.38%

25
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5.1.2 Hyper-parameter tuning

Figure 5.1: Modification parts of DeepLabv3+. Parts represent by letters.

After determining the best performing DCNN trained with the standard hyper-

parameters, we optimise the hyper-parameters of DeepLabv3+. Although the DeepLabv3+

architecture is already tuned on the PASCAL VOC 2012 data set, the data set we use

is considerably divergent from the PASCAL VOC 2012. That is why we optimise

the hyper-parameters by applying the Bayesian optimisation method. In particular,

we examine the performance of the DCNN by modifying five critical parts of the

DeepLabv3+. Figure 5.1 illustrates the experimental design employed to obtain the

best model.

Table 5.2: Effect of backbone (part a) on the validation set performance (ground truth

Base). Acc: overall accuracy, mIoU: mean intersection over union and F1: F1 score

Backbone Acc Precision Recall mIoU F1

Xception 85.83% 81.88% 79.47% 67.76% 80.38%

ResNet 101 86.81% 82.94% 79.85% 69.00% 81.26%

We begin the optimisation process by exchanging the modified Xception architec-

ture for the Resnet 101 architecture as the backbone module of the DCNN (part a).

This module is responsible for encoding the features from the initial images until they

are passed to the ASPP module. As Table 5.2 shows, replacing the backbone mod-

ule to the Resnet 101 architecture results in an F1 score of 81.26%, which is a 0.88%

gain compared to the 80.38% achieved with the Xception architecture. Hence, we fix

Resnet 101 as the backbone for our DeepLabv3+ net for all further experiments.

We further alter the [1 x 1, 48] convolution (part b), responsible for providing the

low-level feature map information of the encoder to the decoder. Correspondingly, we

modify the number of channels as shown in Table 5.3. From the results in Table 5.3,

we deduct that neither increasing nor decreasing the number of filters is helping to
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Table 5.3: Effect of the convolution connecting the encoder to the decoder (part b) on

the validation set performance (ground truth Base). Acc: overall accuracy, mIoU: mean

intersection over union and F1: F1 score

Connection Acc Precision Recall mIoU F1

[1 x 1, 32] 86.77% 83.71% 79.19% 68.80% 81.11%

[1 x 1, 48] 86.81% 82.94% 79.85% 69.00% 81.26%
[1 x 1, 64] 86.53% 82.04% 80.53% 68.73% 81.07%

improve the scores. Thus we retain the initial 48 filters.

Subsequently, we experiment with the upsampling convolution (part c), which is

accountable for upsampling the encoded features from the ASPP module to the de-

coder by doubling the number of filters from 256 to 512 for successive convolutions.

We report the findings in Table 5.4 and show that increasing the number of channels

degrades performance. Hence, we leave the network architecture with its original [1 ×

1, 256] x 2 upsampling convolution.

To evaluate the effect of the decoder (part d), we perform manipulations on the

number of channels and the number of convolutions. All variations of the decoder and

their performance are reported in Table 5.5. As a result, we can conclude that applying

convolutions with 256 channels provides the best results, whereas adding or removing

channels results in performance deterioration. Similarly, the experiment of adding

additional convolutions brings no benefit and results in performance loss. Hence, we

leave the initial [3 × 3, 256] x 2 convolutions combination unchanged.

Lastly, we alter the output stride (part e), defined as the ratio between input im-

age spatial resolution and final output resolution, and perform data augmentation. By

replacing the output stride 16 to 8, we remove one more block from the ResNet 101,

Table 5.4: Effect of the upsampling convolution (part c) on the validation set perfor-

mance (ground truth Base). Acc: overall accuracy, mIoU: mean intersection over union

and F1: F1 score

Up Sample Acc Precision Recall mIoU F1

[1 × 1, 256] x 2 86.81% 82.94% 79.85% 69.00% 81.26%
[1 × 1, 512] x 2 86.62% 82.64% 79.57% 68.63% 80.99%
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Table 5.5: Effect of the decoder (part d) on the validation set performance (ground truth

Base). Acc: overall accuracy, mIoU: mean intersection over union and F1: F1 score

Decoder Acc Precision Recall mIoU F1

[3 × 3, 128] x 2 86.55% 68.83% 82.50% 79.87% 80.94%

[3 × 3, 256] x 2 86.81% 69.00% 82.94% 79.85% 81.26%
[3 × 3, 256] x 3 86.74% 68.83% 82.80% 80.00% 81.13%

[3 × 3, 256] x 4 86.67% 68.44% 82.87% 79.24% 80.83%

[3 × 3, 512] x 2 86.60% 68.89% 82.87% 80.09% 81.19%

[3 × 3, 512] x 3 86.45% 68.73% 81.96% 80.46% 81.08%

[3 × 3, 1024] x 2 86.60% 68.49% 82.89% 79.19% 80.88%

employ atrous convolution with rate 4 instead, and gain a denser feature extraction. As

a result, applying output stride 8 helps achieve a better outcome of 81.59% on the F1

score (Table 5.6). Furthermore, by employing horizontal flipping on the input data, we

double the training data size and increase performance to 83.01%. Hence using stride

8 and applying data augmentation outperforms all other combinations.

Finally, we adopt the best performing hyper-parameters and employ this DCNN-

architecture to train all subsequent models. A detailed diagram of the final architecture

is provided in Appendix B.

Table 5.6: Effect of the output stride (part e) and data augmentation on the validation

set performance (ground truth Base). Acc: overall accuracy, mIoU: mean intersection

over union, F1: F1 score, OS: output stride, Flip: Adding horizontally flipped inputs.

Os Flip Acc Precision Recall mIoU F1

8 no 86.84% 82.77% 80.77% 69.43% 81.59%

16 no 86.81% 82.94% 79.85% 69.00% 81.26%

8 yes 88.17% 85.17% 81.20% 71.45% 83.01%
16 yes 87.69% 83.76% 82.01% 71.03% 82.74%



Chapter 5. Results 29

5.2 Thinning

After optimising the DCNN-architecture on the data set, we focus on the main research

objectives of this study. First, we evaluate the possibility of detecting the need for

thinning with the optimised DCNN exclusively with remote sensing data (subsection

5.2.1). Thereupon, we respecify the research objective to detect the need of thinning

with urgency and assess its feasibility (subsection 5.2.2).

5.2.1 Thinning necessity

Table 5.7: Class scores and mean class scores on the test set (ground truth Base)

with 5-fold cross validation. The model’s objective is to detect the necessity of thin-

ning. Class definitions, thinning: thinning within 1-10 years, no thinning: no thinning

necessary, other : non forest areas. std: standard deviation.

Score thinning no thinning other mean std

Precision 77.08% 91.58% 79.69% 82.78% 0.78%

Recall 80.32% 90.92% 74.15% 81.79% 0.52%

IoU 64.81% 83.89% 62.34% 70.35% 0.44%

F1 78.64% 91.24% 76.80% 82.23% 0.31%

Based on the network architecture from 5.1.2, we evaluate the model on the Base

test set (Table 5.7). With a mean F1 score of 82.23%, the model achieves a similar

score to the 83.01% on the Base validation set. Thus, we can conclude that the chosen

model is not overfitting to the validation set. Additionally, when focusing on the class-

specific scores, we see the model performing best on predicting the class no thinning,

whereas the scores of the other two classes are significantly lower.

Consequently, when examining the confusion matrix in Table D.3, we gain further

insight into the misclassifications of the model. Accordingly, we identify that the main

mistakes happen between the classes thinning and no thinning as well as between no

thinning and other, while misclassifications between the classes thinning and other

are insignificant. These results match our knowledge about the classes. Examples of

predictions are illustrated in Figure 5.2.

For instance, class thinning represents dense forest with a minimum top height of

around 13 m and thus contrasts to class other that often represents no vegetation or
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Table 5.8: Confusion matrix on test set (ground truth Base). The numbers represent

classified pixels in 106.

prediction
Class thinning no thinning other ∑

re
fe

re
nc

e thinning 89 26 1 116

no thinning 22 341 5 368

other 1 7 24 32

∑ 112 374 30 516

shallow growing vegetation like grassland or mountain pines. In contrast, it makes

sense to see the model misclassifying the class no thinning with both other classes as

it embodies forest in all ages. For example, a very young forest has almost identical

features compared to grassland, as presented in Figure 5.2 row 1. Therefore, it is chal-

lenging and sometimes impossible to distinguish between no thinning and other with

only remote sensing data. Equally ambitious are some classification cases between the

classes thinning and no thinning. In this situation, the model struggles to differentiate

between edge cases of dense forest (Figure 5.2 rows 5 to 8). These errors might arise

due to lacking information about the yield class of the forest. For instance, dense old

forest on less vigorous sites might appear similar to a dense middle-aged forest on pro-

ductive sites or vice versa (Figure 5.2 row 6). Likewise, young forest on very viable

sites might already require thinning during the planning period whereas similar forest

on less viable sites grows slower and should therefore not be planned for thinning.

Unquestionably, the model produces misclassifications, yet the results are excellent

for most cases. For example, it correctly classifies the recently thinned forest as not

to be thinned (Figure 5.2 row 2). Similarly, the model has no problems classifying

correctly the cut forest and the more sparsely standing forest as no thinning, whereas

the dense forest it accurately predicts as thinning (Figure 5.2 row 3 and 4). Finally,

the model was used on the entire study area to create a final map that we provide in

Appendix A.

As we are particularly interested in the differentiation between forest with and

without the necessity of thinning, we trained another model that discriminates just

among the classes thinning and no thinning. For accomplishing this, we employed

the data set containing the ground truth masked Base, which contains just information

about commercial forest while all other data was masked.
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(a) CIR (b) CHM (c) GT (d) Pred (e) GT-m (f) Pred-m

Figure 5.2: Examples of semantic segmentation on test set. Column (a) CIR are false

colour composites with near infrared, (b) CHM is the canopy height model, (c) GT is the

ground truth Base, (d) is the prediction of the model trained on the ground truth Base,

(e) GT-m is the ground truth masked Base, (f) is the prediction of the model trained on

the ground truth masked Base. In (b) the colour palette illustrates low heights as dark

(dark blue) and high heights as bright (yellow). The colours in (c) until (f) represent the

following classes, black: void, red: thinning, green: no thinning, blue: other.
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Table 5.9: Class scores and mean class scores on the test set (ground truth masked

Base).The model’s objective is to detect the necessity of thinning restricted to the com-

mercial forest.

Score thinning no thinning mean

precision 76.98% 92.27% 84.63%

recall 85.84% 86.82% 86.33%

IoU 68.31% 80.93% 74.62%

F1 81.17% 89.46% 85.32%

As reported in Table D.8 we obtain a mean F1 score of 85.32%. Hence, by focusing

on merely two classes, we raised the mean F1 score by 2.85% compared to the data set

without masking (Table 5.7). When concentrating on the class-specific scores, we see

that the mean F1 score’s gain is due to the more accurate classification of the class

thinning.

More detailed information of the misclassifications between the classes thinning

and no thinning is provided in the confusion matrix in Table 5.10. What is striking is

the lower number of categorised pixels due to the masking of non-commercial forest

areas and the much higher number of false positives compared to the true negatives.

This finding contrasts with the first model we evaluated (Table D.3), where the false

positives and the true negatives were relatively balanced. Precisely this behavioural

distinction can be observed in the examples of Figure 5.2. Particularly apparent is the

difference in sensitivity in the fifth example of Figure 5.2, where the prediction of the

non-masked data set (d) predicts no thinning on the entire tile while the prediction of

the masked data set (f) classifies the entire commercial forest as in need of thinning.

Table 5.10: Confusion matrix on test set (ground truth masked Base). The numbers

represent classified pixels in 106.

prediction
Class thinning no thinning ∑

re
f. thinning 97 16 113

no thinning 29 191 220

∑ 126 207 333
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5.2.2 Thinning urgency

Table 5.11: Class scores and mean class scores on the test set (ground truth UR12).

The model’s objective is to detect the urgency of thinnings. Class definitions, thinning

ur1: thinning within 1-3 years, thinning ur2: thinning within 3-10 years, no thinning: no

thinning necessary, other : non forest areas.

Score thinning ur1 thinning ur2 no thinning other mean

precision 55.17% 46.15% 92.35% 80.00% 68.42%

recall 32.65% 71.64% 88.59% 75.00% 66.97%

IoU 25.81% 39.02% 82.53% 63.16% 52.63%

F1 41.03% 56.14% 90.43% 77.42% 66.25%

The research question we are addressing here is whether it is possible to detect

the need of thinnings and predict their urgency accurately. Compared to the model in

subsection 5.2.1, this question adds another layer of complexity to the network since

it has to assess the thinnings urgency. For answering this question, we employ ground

truths UR12 and UR1 from the data set Base. The idea of ground truth UR12 is to pre-

dict thinnings and their urgency directly. Hence it differentiates between very urgent

thinnings (thinning ur1), less urgent thinnings (thinning ur2) and no need for thinning

no thinning. Moreover, the ground truth UR1 focuses solely on very urgent thinnings,

thereby trying to achieve better performance than UR12. A detailed description of the

ground truths is provided in the section 4.1.7.

Examining the results in Table 5.11, we instantly perceive the drop of the mean F1

Table 5.12: Confusion matrix on test set (ground truth UR12). The numbers represent

classified pixels in 106.

prediction
Class thinning ur1 thinning ur2 no thinning other ∑

re
fe

re
nc

e thinning ur1 16 24 9 0 49

thinning ur2 8 48 11 0 67

no thinning 5 31 326 6 368

other 0 1 7 24 32

∑ 29 104 353 30 516
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score from 82.23% achieved with the best model trained on Base to 66.25% trained on

UR12. However, when comparing the scores of the classes no thinning and other in

tables Table 5.7 and Table 5.11, we notice almost no change between the models Base

and UR12. Nevertheless, the F1 scores of classes thinning ur1 and thinning ur2 with

41.03% and 56.14%, respectively, are moderate compared with the 78.07% achieved

with the Base model on thinning.

The confusion matrix in Table 5.12 substantiates that the model struggles mainly

between the classes thinning ur1 and thinning ur2. Consequently, when we examine

the examples in Figure 5.3, we recognise that the model predicts the area with the

necessity of thinning rather well. However, although the model produces partially

excellent classifications (Figure 5.3 row 1 to 3), it frequently has difficulties classifying

the urgency of the thinning correctly (Figure 5.3 row 4 to 8) as anticipated from the

confusion matrix.

Accordingly, we can attribute this deterioration fully to the more arduous task of

identifying the urgency of thinnings. This finding coincides with the fact that assigning

the urgency of thinning is also a difficult task for the experts in the field and thus usu-

ally holds a subjective component. Furthermore, we can interpret the almost constant

performance on the classes other and no thinning on the models Base and UR12 as a

sign that the DCNN learned in both cases similar features and thus provides us with

confidence that the network is well-tuned.

When constraining the problem by just taking into account commercial forest, we

were able to increase the performance slightly in the case of ground truth masked Base

(subsection 5.2.1). Accordingly, we applied the same strategy on the model masked

UR12. However, the results show no significant overall improvement in the mean F1

Table 5.13: Class scores and mean class scores on the test set (ground truth masked

UR12). The model’s objective is to detect the urgency of thinnings restricted to the

commercial forest.

Score thinning ur1 thinning ur2 no thinning mean

precision 42.72% 50.32% 92.97% 62.00%

recall 64.74% 48.84% 83.19% 65.59%

IoU 34.66% 32.95% 78.27% 48.63%

F1 51.48% 49.57% 87.81% 62.95%
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(a) CIR (b) CHM (c) GT (d) Pred (e) GT-m (f) Pred-m

Figure 5.3: Examples of semantic segmentation on test set. Column (a) CIR are false

colour composites with near infrared, (b) CHM is the canopy height model, (c) GT is the

ground truth UR12, (d) is the prediction of the model trained on the ground truth UR12,

(e) GT-m is the ground truth masked UR12, (f) is the prediction of the model trained

on the ground truth masked UR12. In (b) the colour palette illustrates low heights as

dark (dark blue) and high heights as bright (yellow). The colours in (c) until (f) represent

the following classes, black: void, red: thinning ur1, yellow = thinning ur2, green: no

thinning, blue: other.
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(Table 5.13) over model UR12. Whereas the model masked UR12 achieves a higher

F1 score in class thinning ur1 (51.48%) compared to model UR12 (41.03%), all other

class scores achieve worse performance. Since we are particularly interested in predict-

ing the urgent thinnings well, model masked UR12 provides us with a slightly better

alternative than model UR12. Thus we can conclude that the restricted model masked

UR12 can gain an improvement in class thinning ur1 compared to the model UR12.

Table 5.14: Class scores and mean class scores on the test set (ground truth UR1).

The model’s objective is to detect very urgent thinnings. Class definitions, thinning ur1:

thinning within 1-3 years, merged : thinning within 3-10 years and no thinning needed,

other : non forest areas.

Score thinning ur1 merged other mean

precision 47.29% 93.03% 78.67% 73.00%

recall 54.97% 91.72% 73.98% 73.56%

IoU 34.09% 85.82% 61.62% 60.51%

F1 50.84% 92.37% 76.25% 73.16%

Finally, we reduce the problem even further by focusing on the urgent thinnings

(thinning ur1) in the ground truths UR1 and masked UR1. As in former cases, the

difference between UR1 and masked UR1 is the restriction of the latter to only the

commercial forest. Correspondingly are the results of UR1, displayed in Table 5.14

and the ones of masked UR1 in Table 5.15.

Table 5.15: Class scores and mean class scores on the test set (ground truth masked

UR1). The model’s objective is to detect very urgent thinnings restricted to the com-

mercial forest.

Score thinning ur1 merged mean

precision 44.64% 93.08% 68.86%

recall 61.98% 86.93% 74.46%

IoU 35.05% 81.65% 58.35%

F1 51.90% 89.90% 70.90%

By simplifying the problem hence merging the classes thinning ur2 and no thin-

ning, model UR1 and masked UR1 are capable of achieving similar performance on
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class thinning ur1 while eliminating the misclassifications between thinning ur2 and

no thinning. Even though models UR1 and masked UR1 produce a marginally better

performance than masked UR1, all models struggle to provide the performance needed

for placing them in production. The confusion matrices of models masked UR12, UR1

and masked UR1 are provided in Appendix D.

5.3 Ablation study

Table 5.16: Ablation study with F1 class scores and mean F1 class scores on the Base

test set. The various input features are abbreviated. O: Orthophoto, C: CHM (Crown

height model), D: DTM (Digital train model), S: Slope

Model Input thinning no thinning other mean

a O+C+D+S 78.07% 91.91% 77.42% 82.47%

b O+C+D 78.32% 91.14% 73.48% 80.98%

c O+C+S 78.65% 91.31% 77.78% 82.58%
d O+D+S 75.31% 90.69% 77.96% 81.32%

e C+D+S 74.12% 89.14% 73.93% 79.07%

f O+C 78.13% 91.38% 76.05% 81.85%

g D+S 45.78% 76.46% 73.03% 65.09%

h O 76.79% 90.84% 75.68% 81.10%

The ablation study investigates the importance of the individual input features by

training models with various combinations of input features removed. The perfor-

mance gains and collapses of the different models provide insight into what effect a

specific input feature has on the model. Table 5.16 shows the results of the ablation

study with all variants of input feature sets.

From the results, we can deduce that the DTM has no or a slightly negative impact

on the model’s performance. Models trained without DTM (model a and model b) per-

formed slightly better on the mean F1 score than the models where DTM was included

(model c and model f ). When examining the class scores for these models, it is appar-

ent that it is primarily in the class other where the DTM deteriorates the performance.

Thus, the input feature DTM appears not to contain any useful information that the

DCNNS can exploit.
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When examining the input feature Slope, we can identify a better performance of

models that include Slope (model a and model c) compared to the models that exclude

Slope (model b and model f ). In both comparisons, model a versus model b and model

c versus model f, the F1 class score of other increases, while all other class scores

remain nearly constant. Hence, we can infer Slope holds peculiar information about

the class other that no other input feature contains.

Since Slope is calculated from the DTM, hence they both share the same data basis,

and we expected that the DCNN could at least partially learn to extract some useful

information out of the DTM. However, it seems the DCNN is not capable of deriving

Slope out of the DTM. Furthermore, when exploring the class scores of model model

g, we see the model model g performing worst in the classes thinning and no thinning

of all the trained models. From this, we can reason that the input features Slope and

DTM hold no information about the forest, just information about the terrain, which

conforms with the knowledge we have about these input features. Furthermore, when

training just on DTM and slope as input features, we see a good performance in the

other class as well as a poor performance on the thinning, no thinning classes. That is

per the fact that DTM and CHM contain no information about the forest, just informa-

tion about the terrain.

Withholding the input feature CHM results in models (model d and model h) having

a lower score in the classes thinning and no thinning compared to the equivalent models

with CHM included (model a and model f ). Consequently, we can conclude that CHM

contains some unique information about the forest that the models can exploit to better

discriminate between forest with the necessity of thinning and forest that does not have

this necessity. Hence, the model can better separate since tree heights are essential

criteria for assessing the necessity of thinning, as section 3.2 briefly outlines.

By omitting the input feature Orthophotos (model e), we can see a significant de-

cline in performance compared to the full model (model a). As with CHM, the feature

Orthophotos increases the scores on classes thinning and no thinning. It moreover

improves the score of class other. Moreover, when training solely with Orthopho-

tos as an input feature (model h), we obtain excellent mean F1 scores, 1.37% worse

when compared with the full model (model a). Given these results, we can deduce

that Orthophotos contains most of the valuable information of all input features. The

results coincide with the finding that the input feature Orthophotos is also the most

informative for the forest manager when assessing the forest.
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Conclusion

Although on-time planning and execution of thinnings are crucial for maintaining a

healthy forest, minimal research has been performed to derive the need for thinning

directly from remote sensing data. Accordingly, we presented in this study the potential

of predicting the necessity of thinning with state of the art deep learning architectures

solely from very high remote sensing data.

Using multispectral orthophotos, canopy height model (CHM), digital train model

(DTM) and slope, and the reference data collected in the field by experts, we cre-

ated two data sets to answer the research objective. First, we explored three different

DCNN-architectures for semantic segmentation whereby the DeepLabv3+ architec-

ture was found to be the best-suited DCNN for the task of detecting the necessity of

thinnings. Then, after fine-tuning the DCNN-architecture, we employed the best per-

forming model on the test set, achieving an F1 score of 82.23% and proving that deep

learning algorithms are highly beneficial for detecting forests in need of thinning from

remote sensing data. In addition, we were able to increase the performance even fur-

ther by simplifying the problem and reducing the number of predicted classes from

three to two. Finally, we employed the masked data set, which is restricted exclusively

to the commercial forest and reached an F1 score of 85.32%.

From these results, we can deduce that the DCNN was able to retrieve critical in-

formation about the density of the forest from the remote sensing data to assess the

need for thinning. We can draw this conclusion since the necessity for thinning is de-

termined mainly by two criteria: tree heights and the standing density (basal area) of

a forest stand, and the tree heights are already part of the input data. Thus, the model

was capable of deriving the crown density and not the actual basal area. Therefore,

the crown density is sufficient for the target thinning type, which is crown thinning.

39
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However, for other thinning types, such as low thinning, the DCNN might struggle

to produce comparable results. Furthermore, the model would probably provide mod-

erate performance since only suppressed and sub-dominant trees are removed in low

thinning, which have no impact on the canopy.

Besides creating a model detecting forests in need of thinning, we additionally

tried to predict the urgency of thinnings. Nevertheless, the trained models struggled to

distinguish between urgent and not urgent thinning and provided unsatisfactory perfor-

mance. The poor performance is possibly due to inconsistency in the data and missing

crucial information that is not contained in the input data. Consequently, adding addi-

tional data such as yield class or age could improve the results.

By performing an ablation study, we examined/determined the importance of the

individual input features. The results show that particularly orthophotos contain the

most critical information for the model that assesses thinnings. Adding the CHM

further improved the performance predicting thinnings. Hence we conclude that the

CHM contains unique information that the model could not derive from the orthopho-

tos, whereas the input features DTM and Slope seem not to contain any additional

helpful information.

As stated earlier, the proposed model is specifically trained to detect the need of

selective crown thinnings in spruce dominated forest stands in the study area. Con-

sequently, further research should examine the feasibility of employing DCNNs for

other thinning types, additional tree species and other areas. Particularly the training

of a comparable model for deciduous forests seems challenging. The higher diversity

of tree species and the more difficult task of segmenting deciduous tree crowns make

it an ambitious problem to solve.

Moreover, the performance of assigning the urgency of thinnings was unsatisfying

in this study. Hence we propose to conduct further research on this objective by pro-

viding additional valuable data such as age or yield class. Another potential direction

of research can be the prediction of the volume of harvested wood for sales planning.

In this study, we showed the ability to detect the necessity of thinnings in spruce

forests through remote sensing data. Whereas the resulting model needs further tuning

for production, we showed the potential of using remote sensing data to plan thinnings

cost-effectively. Especially for small forest owners with limited funds, but also for for-

est management of companies as a quick help, this approach provides the opportunity

to receive critical information about the forest promptly.
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Appendix A

Final map

Figure A.1: Prediction of the necessity of thinning of the final model Base in part of the

study area of Lungau, Austria. The background image is a true colour orthophoto from

airborne photography.
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Appendix B

Final DCNN architecture

Figure B.1 shows the final DCNN-architecture tuned on the data set (ground truth

Base). We applied this architecture to train all models to resolve the research objectives

”thinning necessity” (Subsection 5.2.1), ”thinning urgency” (Subsection 5.2.2) and the

ablation study (section 5.3).

The diagram (Figure B.1) illustrates the overall structure of the network. However,

batch norm layers and relu activation functions are omitted due to space constraints.

A batch norm layer follows every convolution as well as atrous convolution. Whereas

the relu activation functions follow every Resnet-101 convolution block (fine dotted

violet lines), otherwise every convolution and atrous convolution. Furthermore, the

numbers on the right side of the ResNet-101 blocks express how many times the block

is repeated. The information flow into the Connection happens after the first Resnet-

101 block is repeated three times. The PyTorch implementation is provided at https:

//github.com/satlawa/edin_thinning_necessity.
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Figure B.1: Diagram of DeepLabv3+ with ResNet-101 as backbone (Chen et al.

(2018b)). This network architecture is the final deep convolutional neural network used

to train all models to detect the necessity and the urgency of thinnings. Green circles:

concatenations.



Appendix C

DCNN architectures

Figure C.1: Diagram of modified UNet used in this study. The architecture is composed

of Downsampling Blocks (DownBlock) and Upsampling Blocks (UpBlock). Table C.1

shows a detailed composition of the blocks. The number inside the blocks illustrates

the number of feature maps used in the conulution layers.
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Table C.1: Composition of the Downsampling and Upsampling Block of the UNet.

Downsampling Block (DownBlock)

Convolution 3x3, stride 1

Batch Normalisation

ReLU

Convolution 3x3, stride 1

Batch Normalisation

ReLU

MaxPool 3x3, stride 2

Upsampling Block (UpBlock)

Convolution 3x3, stride 1

Batch Normalisation

ReLU

Convolution 3x3, stride 1

Batch Normalisation

ReLU

Transposed Convolution 3x3, stride 2

Table C.2: Composition of the main building blocks of FC-DensNet.

Layer

Batch Normalization

ReLU

Convolution 3 x 3

Dropout p = 0.2

Transition Down (TD)

Batch Normalization

ReLU

Convolution 1 × 1

Dropout p = 0.2

Max Pooling 2 × 2

Transition Up (TU)

Transposed 3 × 3,

Convolution,

stride = 2
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Figure C.2: Diagram of FC-DenseNet56 (Jegou et al. (2017)) used in this study. The

architecture is composed of Dense, Transition Up and Transition Down Blocks. Table

C.2 shows a detailed composition of the blocks. The network architecture was not

modified (except for the input and output dimensions) and is exactly the same as in

Jegou et al. (2017) (FC-DenseNet56).Green circles: concatenations.
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Figure C.3: Diagram of DeepLabv3+ with Xception as backbone as originally proposed

in Chen et al. (2018b). The network architecture was not modified (except for the input

and output dimensions). Green circles: concatenations.



Appendix D

Additional results

Here we provide the confusion matrices and scores of selected models that were omit-

ted from the main part of this study.

D.1 Confusion matrices

Table D.1: Confusion matrix on test set (ground truth masked UR12). The numbers

represent classified pixels in 106.

prediction
Class thinning ur1 thinning ur2 no thinning ∑

re
fe

re
nc

e thinning ur1 31 11 6 49

thinning ur2 25 32 8 65

no thinning 17 20 183 220

∑ 74 63 196 333

D.2 Scores

Here we present the individual scores of the 5-fold cross validation in Subsection 5.2.1.
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Table D.2: Confusion matrix on test set (ground truth UR1). The numbers represent

classified pixels in 106.

prediction
Class thinning ur1 merged other ∑

re
fe

re
nc

e thinning ur1 27 22 0 48

merged 30 399 6 435

other 0 8 24 32

∑ 57 429 30 516

Table D.3: Confusion matrix on test set (ground truth masked UR1). The numbers

represent classified pixels in 106. ref: reference.

prediction
Class thinning ur1 merged ∑

re
f thinning ur1 30 18 48

merged 37 248 285

∑ 67 266 333

Table D.4: Class scores and mean class scores for fold-1 on the test set (ground truth

Base).The model’s objective is to detect the necessity of thinning.

Score thinning no thinning other mean

precision 75.97% 92.08% 77.35% 81.8%

recall 82.45% 89.76% 75.14% 82.45%

IoU 65.39% 83.32% 61.59% 70.1%

F1 79.08% 90.9% 76.23% 82.07%
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Table D.5: Class scores and mean class scores for fold-2 on the test set (ground truth

Base).The model’s objective is to detect the necessity of thinning.

Score thinning no thinning other mean

precision 75.26% 92.01% 79% 82.09%

recall 80.76% 90.36% 74.29% 81.8%

IoU 63.82% 83.78% 62.04% 69.88%

F1 77.91% 91.17% 76.58% 81.89%

Table D.6: Class scores and mean class scores for fold-3 on the test set (ground truth

Base).The model’s objective is to detect the necessity of thinning.

Score thinning no thinning other mean

precision 78.11% 91.3% 81.27% 83.56%

recall 79.83% 91.51% 73.35% 81.56%

IoU 65.24% 84.17% 62.75% 70.72%

F1 78.96% 91.4% 77.11% 82.49%

Table D.7: Class scores and mean class scores for fold-4 on the test set (ground truth

Base).The model’s objective is to detect the necessity of thinning.

Score thinning no thinning other mean

precision 77.3% 91.05% 81.42% 83.25%

recall 79.65% 91.15% 72.45% 81.08%

IoU 64.54% 83.65% 62.17% 70.12%

F1 78.45% 91.1% 76.68% 82.08%

Table D.8: Class scores and mean class scores for fold-5 on the test set (ground truth

Base).The model’s objective is to detect the necessity of thinning.

Score thinning no thinning other mean

precision 78.76% 91.44% 79.39% 83.2%

recall 78.89% 91.82% 75.5% 82.07%

IoU 65.05% 84.55% 63.13% 70.91%

F1 78.82% 91.63% 77.4% 82.62%
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