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Abstract
Countless web cameras scattered about the UK help surfers decide which beach
to visit on any given day. Modern weather models predict the wave features
based on deep ocean readings but the underlying morphology of the beach and
weather based external factors vary the actual conditions substantially. No strong
method of feedback for the accuracy of these weather models, exists and with such
a chaotic system, the accuracy can vary substantially.

Using a selection of low resolution web cameras, this project is aiming to develop
the algorithms required to visually detect wave crests in a video stream and
subsequently track their movements. Furthermore, using this data, an estimation
of the physical height and speed of the wave can be made.
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Chapter 1

Introduction

As competition within the surfing market grows the necessity of web cameras as
advertisement to coax surfers to visit a certain beach and shop also increases. Us-
ing both a sample of beach web cameras streamed online and a sufficiently precise
wave feature detection algorithms one could provide feedback on wave forecast-
ing model predictions. This project aims to derive this detection algorithm and
investigate their use into improving the accuracy of any wave forecasting model.

This chapter introduces the reader into the sport highlighting the differences
between surf-able and unsurf-able waves, outlining the wave features of interest
that wave forecasting models generate and presents implementation concerns.

1.1 Formation of waves

The movement of the tides causes large ripples in the ocean. These ripples are
translated through the ocean in a circular trajectory where the water molecules at
the top of the crest move forwards with the direction of travel and the molecules
at the bottom move against it. A bulk of water with a single circular motion
as outlined is a wave. In the deep ocean there is very little friction therefore
the system may travel thousands of kilometers but never lose size. Once a wave
meets the shore the energy it holds dissipates as the backwards moving current
at the bottom comes into contact with the ground. This process pulls away at
the sediment on the beach, forming several variations of increasing slope profile.
The increasing slope forces the current at the top of the wave to protrude from
the water surface as it is pushed forward. The surface tension of water is enough
to hold the surface of the wave in a concave shape above the water level. The
sharpness of the concave shape is governed by the ground profile and external
factors such as the wind and temperature of the water. The wave height and
speed are also influenced by these factors as well as the wave energy.
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1.2 Detection Criteria

This investigation will predominantly focus on detecting surf-able waves through
improving the accuracy of surf forecasting model predictions. Figures 1.1 and 1.2
provided below show the contrast of this criteria.

The wave energy is the most important factor in deciphering how likely it will
be that the wave conditions will be surf-able. As outlined in the last section
a more powerful wave will have a sharper concave surface and be taller than
the average wave. Therefore, the likelihood of any given wave being surf-able
can be deciphered from the size and the gradient of the shadow caused by the
difference in angle between the sun azimuth and the normal wave surface. As the
sun azimuth varies periodically the shadow gradient can change over time but its
potential can still be approximated by experience of that beach and its visible
height. Hence the method of detection must allow for a shadow with a variable
light intensity and gradient of this type for all positions of the sun and profile
of sand. To follow this criteria a kernel convolution has been used to detect the
shadowed region.

The waves in the images on the left in figure 1.1 and figure 1.2 are unsurf-able as
they lack the required height and shape. As well as this the peaks don’t lie on
a straight edge meaning a lot more energy is lost to turbulence. The detections
shown in the right images in figure 1.1 and figure 1.2 contain wave matching this
criteria.

(a) Not Surf-able: zero detections will be
made in this image

(b) Surf-able: the 2 waves marked will be de-
tected in this image

Figure 1.1: Example images with no detection wanted on the left and detection
wanted on the right

The other important factor that is required to allow for valid detections, in the
interest of improving the accuracy of wave forecasting models, is wavelength. The
wavelength is perceivable to the human eye as the human brain understands per-
spective and can predict the dimensions of objects. The algorithm can decipher
these differences as smaller wavelengths tend to cause more remnant white water
and disturb the shape of those behind when broken, as shown in figure 1.1. Using
this we can filter these cases out by choosing only the output to the convolution
that resembles a straight edge. This report later outlines how this is done using
the Hough line algorithm in section 5.3.
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(a) Not Surf-able: zero detection will be made
in this image

(b) Surf-able: the wave marked will be de-
tected in this image

Figure 1.2: Example images with no detection wanted on the left and detection
wanted on the right

1.3 Swell Models

Both figures 1.3 and 1.4 show surf reports from different websites that report
on surf conditions. The key feature highlighted on the sites show the important
features in deciding whether the conditions are optimum or not. These features
are the height, period and direction. The reports make clear both the primary
wave propagation direction and the secondary propagation direction. The mea-
surements are predicted from tidal buoys and interpolated across the coastline to
allow for the estimation on any given beach. Predictions of the ocean temperature
allow the model to adjust to the density of water as it will affect its speed, whilst
external predictions on the wind strength help calculate the force in which the
waves accelerate. The near shore predictions are based on satellite imagery used
to understand the depth of the sand banks and help predict the near shore mea-
surements for the period, height and speed of the wave. As no current method to
validate the near shore predictions exist the reports in figures 1.3 and 1.4 are to
aid the predictions of the surfer as the actual height and wavelength could vary
by proportions similar to itself. The forecasting algorithm is far from perfect as
the profile of the beach is not deducible from satellite imagery, furthermore the
effect of cliffs, housing and headland on the local wind direction is very hard to
predict.
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Figure 1.3: Example Magicseaweed surf re-
port as seen here [9]

Figure 1.4: Example Surfline surf report as
seen here [12]

1.4 Project Work

This project provides the algorithms and calculations required to detect the wave-
length, speed and height of a wave on an arbitrary, low cost, low resolution web
camera positioned close enough to the beach for a person to make the above
three deductions. The resulting system will be able to take any web camera of
this description and extract the wave length, speed and height of every surf-able
wave in each frame. This will then be used to investigate its use in improving
the accuracy of modern forecasting models. Furthermore the system will be able
to time stamp the detections which look most promising for surfers and add a
probability to any given wave to allow the surfer to know the waiting time to a
wave with the quoted features.

The system is designed to make use of how a wave evolves over time by looking
at a time stack of images. Firstly by looking at how a time stack of frames can
decipher the wave breaking region and direction. This will then go on to explain
the use of a kernel convolution and Hough line algorithm in detection of the wave
shadowed region in order to find its peak. Through which one should be able
to evaluate and test the parameters in this algorithm before experimenting with
clustering techniques to group partial wave detections together and evaluating the
improved performance. Then going on to make further use of the time dimension
to discard outlying waves that did not appear in the frames before or after. the
algorithm will then use the detected surf-able wave peak lines to calculate the
speed, wavelength and height.



Chapter 2

Background

2.1 Ocean Analysis Methods

Optical sensors have been used on the coast for a range of purposes from the
surveillance of eroding coastline to analysing beach safety over the day. A con-
siderable amount of work has been done in regards to time stack images. With
a large amount of sampling and averaging one is able to remove irregularities
leaving only what is wave induced. S.G.J Aarninkhof et al [1] were able to re-
move the contribution of remnant foam to the image’s intensity by looking at
the frequency of the contribution over time. Through this one then gains the
ability to scale the intensity peaks at the breaking points of the wave to a more
reasonable size, resembling rolling waves with no remnant foam persisting. They
achieved this by first removing the background intensity approximated as the
average leaving the remaining intensity resembling Gaussian distributions about
the breaking positions of the waves. Based on the idea of the persistent foam
appearing periodically and persisting with an exponential decay, the factor by
which the intensity at time t was enhanced could then be computed using a
time integral. Furthermore by using the width and position of the scaled down
Gaussians, S.G.J Aarninkhof et al [1] were able to extract the average height and
wavelength corresponding to that time stack. Further methods were developed by
P.A Catalan et al [6] using a combination of optical and radar sensors. Aided by
the method of scaling the image intensity as described in [1] they were able to par-
tition zones of the wave evolution. They discovered that the evolution of the wave
could be quantified to a specific row index in the image by isolating regions of in-
tensity about the thresholds I t for intensity and the σt0 for the intensity deviation.

Non Breaking

I(x, y, t) < I t

σO(x, y, t) < σt0

Breaking

I(x, y, t) ≤ I t

σO(x, y, t) ≤ σt0

Foam

I(x, y, t) ≤ I t

σO(x, y, t) < σt0

Steep Waves

I(x, y, t) < I t

σO(x, y, t) ≤ σt0

11
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P.A Catalan et al [6] then calculated the dissipation of the wave by analyzing
the time taken for the evolution. Efforts at running particular analysis over
several waves at the same stage in its evolution was later trialled by R Almar
et al [2]. Using a wave machine, efforts to pinpoint the break-point position
as it moves across the face of the wave gave an insight into extracting a more
reliable estimate of the height of the wave at breaking point. Using a running
average time stack image across a single time period, they grouped the pixels into
a proximity by threshold and marked the breaking zone for each column xb, tb.
They then took the standard deviation of the intensity peak at tb over the row
numbers and computed its width L by fitting a Gaussian to the data. They then
used geometry to calculate the physical wave height Hb where the parameters ab
and β change with the position of the breaking wave.

Hb = (L− L

tan(ab)
).tan(β)

This gave rise to some long term wave height monitoring software [7]. They used a
similar method to that of R Almar et al [2] on live coastal conditions to monitor
the near shore wave height. They first pre-processed the time stack of images
by reducing the color channels to one single channel, then selected the columns
making up the lowest 10% of the overall variance and normalized each one.

I(t, v) = 0.35R(t, v) + 0.5G(t, v) + 0.15B(t, v)

They performed breaking zone detection by constructing two secondary images.
The first was a collective sum of the intensity of that pixel over time divided by
the largest overall sum of intensity over time for a pixel in that column. And
the second image was the difference in the 95th and 5th percentile of the pixel
intensity over time divided by the maximum pixel intensity over time chosen
from all its pixels intensities that were in the top 20th percentile. The algorithm
then finds the top and bottom of the breaking zone by decrementing the top
boundary down until the two secondary images stop increasing and decrementing
the bottom boundary until the second secondary image is half as bright as the
first. The next part of the algorithm applies a convolution and thresholds the
image as such to maximize the entropy within and removed. Finally using N8
connectivity they constructed a path from the top to the bottom boundary along
the intensities left after the thresholding which obtained a horizontal location to
the breaking edge of the wave. They then computed the wave height using a
similar geometric method to [2] outlined in 7.

2.2 Swell Models

As outlined in [5] waves are modeled using a wave energy scalar field E(f) where f
is the frequency. The energy density spectrum can be modeled by the combined
components of 2 Fourier series as the surface is in 2 dimensions where T is the
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time period and φ is the surface elevation.

E(f) = lim
∆f→0

1

∆f
E{1

2
a2} ai =

√
A2
i +B2

i

Ai =
2

T

∫
φ(t)cos(2πfit)dt Bi =

2

T

∫
φ(t)sin(2πfit)dt

The significant wave height is the measurements used in surf reports and is equal
to the largest height of 3 waves. To generate the expected wave height we can in-
tegrate E(f) across all possible frequencies fi to obtain the mean of the amplitude
in frequency space. For any Gaussian and its Fourier transform the mean and
standard derivation swap roles so this value equates to the standard derivation of
the amplitude in time. Therefore the height of the wave is directly proportional
to the standard derivation of the surface elevation with a coefficient of 4 as its
max height is twice its amplitude [14].

H = 4σφ





Chapter 3

Data Acquisition

3.1 Methodology

For this investigation 16 web cameras were used, showing a variety of beaches
often used by surfers, shown in figure 3.2. The majority of cameras use IP camera
software and therefore could be streamed straight into python. This was done
using urllib2 to open a network connection to the motion jpeg at that url. The
stream could then be read at 1024 bytes at a time continuously iterating over
the whole motion jpeg. Once the endpoints of the serial message were found
the numpy fromstring method was used to decode the serial message into a
3D array. The algorithm speed is predominantly affected by the opening of the
browser reader and therefore each camera was run in parallel so the opener only
has to run once per camera. The code for this process is shown in figure 3.1.
Another method used to collect data was to successively print screen a browser
as the camera was playing. This process was implemented on a raspberry pi using
x11grab to capture the screen output and ffserver to forward the stream again.
To start ffserver was used ffserver -d /ffserver/ffserver.conf in one screen
session. The default config file and set accordingly as was the width and height of
the camera. To stream my own display I used alsa for conversion to a motion jpeg
and set the frame rate and frame size according with this command in another
screen session. the command was ffmpeg -f alsa -i pulse -f x11grab -r
25 -s 1024x768 -i http://localhost:80/pipeline.ffm.

3.2 Data Sources

The web cameras used in the project are shown in figure 3.2 along with their name
and resolution taken by converting the image to a numpy array and calculating
the shape. The locations and source of each web camera used can be found in
appendix entries 1 and 2.

15
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# Opens connection to the webcam
opener = urllib2.build_opener()
if referer:

opener.addheaders = [("Referer",referer)]
stream=opener.open(url)
bytes=''
# Unserialises the motion jpeg stream
while True:

bytes+=stream.read(1024)
a = bytes.find('\xff\xd8')
b = bytes.find('\xff\xd9')
if a!=-1 and b!=-1:

jpg = bytes[a:b+2]
bytes= bytes[b+2:]
fromstr = np.fromstring(jpg, dtype=np.uint8)
frame = cv2.imdecode(fromstr,cv2.IMREAD_COLOR)
yield frame

Figure 3.1: Code used to extract web camera feed to a numpy array from [16]

Figure 3.2: Randomly sampled image from each camera
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Bedruthan Kursaal Coldingham Tynemouth
1280× 960 768× 576 1280× 720 1280× 720
Tramore Lahinch Los Angeles 1 Los Angeles 2
768× 576 640× 480 640× 400 1920× 1080
Cornwall Los Angeles 3 Rhode Island Florida
640× 480 800× 450 1920× 1080 704× 480
Penbrokeshire Northdakota Shallotte Pipeline
640× 480 704× 480 640× 480 1280× 720

Figure 3.3: The key for figure 3.2 with name and resolution of each camera

The detection will be subject to the following difficulties. Firstly the region
in which detections would want to occur lie in different positions and different
orientations for all web cameras. The algorithm would therefore be required to
detect a region of interest before any detection of a wave can be made. This
would entail looking for the area in which surf-able waves occur and confining the
search to that region. Secondly the lense on each web camera provides different
lighting conditions and therefore causes the shade of water to make up a large
proportion in most color spaces. Therefore the region of interest for detection
must occur independently of the color and detection methods must work on a
gray scale image.

The majority of the waves in figure 3.2 are subject to good weather conditions
whereas on this particular day beaches Lahinch and Bedruthan had poor weather
conditions. This is visible by the abundance of white water and very limited
amount of unbroken waves. Therefore the algorithm cannot be sensitive to large
intensities as it must be able to detect a surf-able wave given it exists whether
surrounded by white water or not as seen in figure 3.4.

Figure 3.4: Examples of conditions where detection will be difficult as the ocean is
covered in remnant foam

As all previous attempts at a tracking algorithm have required the intensity to
be above a certain threshold it seems implausible to take measurements after
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sundown giving only a small 8-10 hour window to collect data. Also each camera
allows for different resolutions so the kernel used must be invariant of variations
in pixel sizes for each beaches wave.

A large amount of research on the tracking of ocean waves has focused on analyz-
ing time stack images rather than still images to remove ambiguities by averaging
over time. The time period and wave speed have been abstracted using a time
stack with a frame rate of 2 frames per second [6, p.1882] with additional use of
microwave measuring instruments. Most recently period, speed and also breaking
height have been extracted using a time stack on live conditions at a frame rate
of 15-30 frames per second [7, p.3413]. As the cameras in use over this project
stream over the internet, scalable analysis of a time period of images would not
be as granular as the data used in the methods above. Therefore a method of
extracting the wave features must work with an arbitrary frame rate.

3.3 Algorithm Requirements

As outlined in section 1.2

• The detection algorithm is biased to the size of the wave and shape of the
shadow created by the difference in angle between the water surface and the
sun azimuth, to only detect surf-able waves with features above the size and
curvature thresholds. These thresholds will be trained through exhaustive
testing of labeled data where only marked waves that appear large enough
and have enough power are detected.

• The detection algorithm will also focus on surf-able waves by detecting only
the most triangular of waves in the plane of movement. This will be visible
by a sharp edge at their top seen as a straight line in the camera plane of
view.

As outlined in section 1.3

• The detection algorithm will output the height, wavelength, count, speed
and time stamp of every surf-able wave in each frame.

As outlined in section 3.2

• The detection algorithm will be invariant of the distance between the camera
and the water if within the maximum distance of 400 meters exhibited in
the Bedruthan camera.

• The detection algorithm will be invariant to image color.

• The detection algorithm will be invariant to sunlight on the condition that
the sun is always up when the algorithm is running.

• The detection algorithm will be invariant to the time difference between
frames as to cope with the randomness in the network traffic.
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• The detection algorithm will be invariant to the abundance of remnant
white water given the detected waves follow all the previous conditions and
have been detected before they have broken.

• The detection algorithm must be invariant to resolution so that it can work
on any arbitrary web camera.





Chapter 4

Break Zone Detection

4.1 Overview

In this section we are interested in detecting the area in which waves are visible
otherwise known as the break-zone. In order to detect only breaking waves each
webcam image must be treated to remove the objects surrounding the sea that
could be incorrectly detected as a wave allowing for more accurate results. Due
to the movement of the tide the lower half of the removal of the beach would
have to be variable and adjust over time. Furthermore a applying a stationary
binary mask [16] would not work in the case of a moving camera such as the
camera in Cornwall and Kursaal. The final algorithm adjusts to these problems
and obtains the upper limit and lower limit of the break zone boundary in the y
axis for every ten frames. As the ocean will be the most active thing in the image
we can use the contrast between adjacent frames to our advantage as explained
in the next section.

4.2 Breaking Direction

In order to calculate the break zone perfectly the dominant vector in the direction
that the incoming waves move in is required. This value influences how the
detected waves are clustered later on on the detection process but is also used to
orient the break zone boundary. The algorithm uses a series of frames to calculate
the cross correlation between the series of frames columns and rows. The cross-
correlation between adjacent frame rows give the x component of the direction
of movement and the same method on the columns give the y. Letting x be the
row in the preceding frame and y be the current frame row the cross correlation
is a measure of similarity between these two series and is defined by the formula
below:

crosscorrelation =

∫ ∞
−∞

x∗(τ)y(t+ τ)dτ = x∗(−t) ∗ y(t)

21
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As the product of the series and its complex conjugate is its magnitude the
maximum of this distribution will be at the value of τ in which x and y are most
similar which is the phase shift in the row. The following calculation can be done
using a fast Fourier transform as a convolution in real space is a multiplication
in Fourier space.

x ∗ y∗ = F−1{F{x} × F{y}∗}

This calculation was done using the opencv method phaseCorrelate which
gave the size of the phase change in x and in y. I then normalized the phase
change as a vector to give me the dominant direction of travel for the waves.

4.3 Break Zone Boundaries

To allow the threshold boundaries to lie directly above and below the breaking
region the break zone detection algorithm used implemented by R Almar et al [7].
For this method a time stack of ten images where used, five before the current
image and four that were taken after. Firstly the time stack was converted to
gray scale using the ratio quoted in the paper shown bellow.

I(t, v) = 0.35R(t, v) + 0.5G(t, v) + 0.15B(t, v)

The current image was normalized over the time dimension so that every pixel
added up to one over time. This has the affect of emphasizing the active features
in the image and normalizing the stationary ones. To further blur any stationary
areas in the image the openCV method Gaussian blur was applied. The code
for the operation is shown below. A sample of normalized images are shown in
figure 4.1 for three different beaches.
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Figure 4.1: The break zone region and the normalized images plotted for 3 cameras

The next step used by R Almar et al [7] is construction using 2 more images f1
and f2 from this normalization.

f1(x, y) =

∑
t I(t, x, y)

maxt{
∑

t I(t, x, y)}

f2(x, y) =
percent95{I(t, x, y)} − percent5{I(t, x, y)}

maxt{I(t, x, y)|I(t, x, y) > percent95{I(t, x, y)}}

The figure 4.2 shows how the algorithm has been adapted to work on multiple
beaches with a variety of wave directions. The original algorithm identifies the
upper boundary progressively higher in the image allowing for the intensity to
be darker in both intermediate images marking the point that activity ceases.
The lower boundary is moved progressively higher till the f1 image pixel value is
twice the size as the f2 image pixel value. This identifies the starting of breaking
white water. The code for this is shown in figure 4.2.
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# The initial predictions for the starting of noticeable waves v0
# and the ending of the white water region v1
v0 = np.argmin(f2[f2 > TH], axis=0)
v1 = np.argmax(f1[f1 > TH], axis=0)

# Iterate downward to the first wave crest
while change(v0):

v0-= np.all([f1[v0] > f1[v0-1],f2[v0] > f2[v0-1]])

# Iterate downward to where the white water stops
while change(v0):

v1 -= (f1[v1]/f2[v1] > 2)

return np.average(v0), np.average(v1)

Figure 4.2: Code for finding the break zone region

In addition to the method in R Almar et als [7] the algorithm in figure 4.2
returns the boundary values as an average over each column. Assumes that this
boundary exists in the center of the image therefore it is rotated about the center
to the vector perpendicular to the motion of the sea. Below is the output for the
algorithm on every web camera with the angle to the vector perpendicular to the
movement of the waves and the upper and lower boundary of y.
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Figure 4.3: Break zone calculated and plotted for each web camera
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4.4 Results

bedruthan kursaal coldingham coldingham1
0.0523598775598 0 0 0
517 277 400 200
750 386 750 450
tynemouth tramore lahinch losangeles1
−0.0872664625997 0.13962634016 0 0.209439510239
20 133 120 0
300 419 370 max
losangeles2 cornwall losangeles3 rhodeisland
0 0 0.157079632679 0
313 0 185 477
770 max 300 862
florida pembrokeshire shallotte pipeline
0 0 −0.0698131700798 0.0174532925199
0 427 0 247
max 476 max 541

Figure 4.4: The key for figure 4.3 with the result for (tan(θ) to the vector perpen-
dicular to the movement of the wave, upper boundary for the break zone in the y
dimension, lower boundary for the break zone in the y dimension)

North Dakota has been excluded from the results shown above in figure 4.4
as its dominant direction could not be calculated due to poor resolution and
damage to the lens. The break zone region detection was only correct in 10/15
cases due to low resolution web cameras and minimal ocean activity forcing the
break zone region to be over estimated. Although Cornwall , Shallotte and
Pembrokeshire were misclassified there were waves on these beaches that fol-
lowed the detection criteria and therefore the resolution of the output made it
impossible to continue experimentation with these web cameras. Therefore, the
cameras where the break zones were incorrectly positioned were discarded from
the experimental data set from this point onwards.



Chapter 5

Crest Detection

5.1 Overview

In the interest of extracting the speed and wavelength of a wave the same exact
point must be identified on each wave to represent an accurate representation
for its position. The top edge of the wave was used as this position reference as
either side of this mark there are well defined patterns that could be detected by
applying a specific kernel shape. The front side of the crest exhibited a gradient
of dark to light moving away from the top edge. On the opposite side of the top
edge was a sharp change in intensity as the dark shadowed area became just the
water behind. As variations of this pattern were universal for all the web cameras
used it would be beneficial to use kernel convolution for detection.

5.2 Kernel Convolution

The first step was to normalize the variety of light intensities across the cameras
as this could cause results to be skewed. Therefore, all images were converted
to gray scale using the same ratio from the previous chapter. The convolution
between the image and each kernel was then used to construct an edge plot of
the locations of the maximum turning points of the smoothed convolution output.
For any input image c the output image v will be constructed using the following
formula where m(t) is the kernel.

v(i, j) =
2∑

h=−2

n
2∑

t=−n
2

c(j + h, i+ t)m(t)

The process of choosing the correct kernel involved sampling cropped images
of waves from all the beaches and by then evaluating their accuracy of wave
detection by eye. As the aim was to detect surf-able waves the detection methods
used were subject primarily to occasions where the ocean wave is stretched to the
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limit of its surface tension. With limited surface disturbance by wind and other
external factors which narrowed down the cropped wave shapes I could be used.
The major three shapes chosen are shown in figure 5.1. In addition to these three
a Sobel kernel [15] which resembled the second half of kernelA was used also.

(a) Kernel A (b) Kernel B (c) Kernel C

Figure 5.1: The major 3 kernel shapes and the snapshots they were derived from

After the convolution was obtained the ndimage method Gaussian_filter [11]
was used as a low pass filter to smooth convolution output to resemble a an array
of Gaussian centered on wave peaks. The ndimage method works by taking a
convolution with any order derivative of a 2d Gaussian kernel. The kernel for
this obeys this formula where σx and σy are inputs to the function.

f(x, y) =
1

2πσxσy
exp

−(
(x−x)2

2σ2x
+

(y−y)2

2σ2y
)

This had the effect of smoothing the active regions in the convolution image
into more defined gradually increasing and decreasing peaks with less noise. The
output is shown in figure 5.2.

Figure 5.2: The output from the kernel convolution on the Pipeline web camera

Next the algorithm infers the peak of each potential wave and plots it onto a
binary image of these edges. The contribution to every kernel is added to this
image in order to attain the entire waves peak. This is done by calculating
the maximum turning points of each column that lie above a threshold value.
Each turning point is then plotted on the binary edge plot at its corresponding
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location. Due to the nature of the convolution method the highest output lies at
the center of the kernel. In some cases this requires a detection which is offset
from the center of the chosen kernel as the aim is to detect the wave peak. This
is accounted for when the edges are drawn by applying that offset, the resulting
edge plotted is shown in figure 5.3

Figure 5.3: The image of edges on the right plotted from the maximum turning points
of each column in the convolution image on the left

5.3 Hough line Algorithm

Following on from the image of edges calculated in section 5.2 the Hough line
algorithm is applied to the image of edges to uncover a potential wave peak.
The Hough line algorithm is more likely to detect straight edges than deformed
ones therefore, the condition for the algorithm that the wave lacks turbulent flow
stated in section 1.2 is met. The output is ordered from longest to shortest and
filters by a minimum length parameter. The tuning of the hough line parameters
are outlined in the next section. The lines are also filtered to lie within the break
zone boundary as calculated in section 4.

The Hough line algorithm is used for detecting straight lines in binary plots. As
described in [10] this works by representing a line as a point in a new vector
space which hence fourth will be referred to as linespace. In this instance the
linespace used was ρ by θ coordinates where θ and ρ are the polar coordinates
of the vector which is both a position vector and a normal vector of the line. As
a line is represented as a point in linespace equally a point is represented as a
line in linespace, therefore a line passing through two points is equivalent to an
intersection of two lines in linespace. Due to this the confidence of any given line
existing will be equal to the number of times the point representing that line is
intersected. The confidence values for each line can be represented by a matrix
incremented every time a point is plotted at the ρ and θ which corresponds to
two or more pixels lining up in the original image. The output lines are just the
indices with values above the confidence threshold.

Lastly the vector perpendicular to the wave trajectory calculated in section 4
was used to check to see whether the orientation values for each wave had any
outliers. Using a parameter for the number of multiples of the standard deviation
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Figure 5.4: The output detections on the original image on the right with the image
of edges the detections were calculated from on the left

each orientation can be away from the perpendicular vector to the wave trajectory,
the resultant Hough lines are filtered. The top twenty results from the algorithm
are drawn in figure 5.4 in red, ordered from most likely to be a wave to least
likely to be a wave. This was done using the houghlinesP method in opencv
which confines its search algorithm with two additional parameters: minimum
line length and maximum line gap. The values of these parameters used will be
outlined in section 6.4.

It is clear from 5.4 where the wave crests have been missed as the edges are
too fragmented in places and do not resemble a straight line. The Hough line
algorithm parameters were later optimized to ensure the edge plot uncovered
every surf-able wave.

5.4 Clustering

To improve results, as the probabilistic houghline algorithm only returns line
segments of the wave and could not detect the complete wave peak, a clustering
algorithm was used to append segments associated with the same wave together.
A novel method was developed that used a kernel density distribution for un-
supervised clustering from Adelchi Azzalini et al [3]. This method was adopted
to model each single wave as a Gaussian distribution and cluster the detected
segments. This method is based on the assumption that the convolution outputs
a Gaussian as the kernel will output its highest value at perfect alignment with
the wave and increasing smaller values as the kernel is offset.

The kernel density estimator outlined in [8] works by constructing a continuous
density function f̂(x) built from a discrete number of Gaussians to match an in-
put series f(x). If f̂(x) = 1

2nh

∑n
j=1 I{x−h < Xj < x+h} is the probability that

a wave peak is centered on point Xj. Using a Gaussian kernel K = 1
τ
√

2π
exp

−x2
2τ2

with a fixed band width τ the density f̂ becomes 1
n

∑
j=1

1
h
K(x−Xi

h
).

The algorithm then randomly trials different value for Xj and n such that the
mean square error is minimized. The mean square error is given by:
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MSE(f̂(x)) = E

[∫
(f̂h(x)− f(x))2

]
= V ar(f̂(x)) + |f(x)−K ∗ f(x)|2

Figure 5.5: Figure showing how the kernel density estimator (in orange) fits to the
detected line segments (histogram in blue)
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Figure 5.6: Image of the clustering output where the original detected segments are
in black and the single clustered center lines are coloured separately

The clustering method is unsupervised so it relies on a constant bandwidth at
which to set the kernels. A good estimate for the parameter τ is (4σ5

3n
)1/5 where σ

is the variance of the sample and n is the number of modes. As n is also unknown
an estimation for the total number of waves which could be incorrect must be
made. After the clustering is complete a minimum cost function filters clusters
with too few detections to aid the choosing of clusters that reacted to the kernel
the most.

In figure 5.6 the black line at top and bottom of the image corresponds to the
boundary of the break zone calculated in 4. The colored centroid for each cluster
of detections do match the wave perfectly due to the fitting errors in the clustering
algorithm as the kernel convolution has reacted more in one horizontal region of
the wave but not as much in others. This clustering method would reduce our
false detections however may also reduce our true positives over the whole dataset.

The algorithm for the method and seen in figure 5.8 first rotates the detections
by the angle between the perpendicular to the trajectory of the wave and the x
axis. This operation is shown in figurerotation.
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W


cos(θ) −sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 cos(θ) −sin(θ)
0 0 sin(θ) cos(θ)

 = W ′

W = original list of detections as coded by their endpoints

W ′ = list of detections relative and separable by their y values

Figure 5.7: Equation by which the detected segments are rotated parallel to the x
axis so that clustering can be done in 1 dimension

Once rotated the detections are separable by their y value the kernel density
estimator is applied over the y dimension. The minimum turning points of the
density function are then estimated using the derivative and each list of detections
output in discrete clusters corresponding to the detections contained within a
single Gaussian kernel.



34 Chapter 5. Crest Detection

# detected lines are rotated to be parallel to the x axis
theta = dominantdirection
c, s = np.cos(theta), np.sin(theta)
r = np.matrix([[c, -s, 0, 0], [s, c, 0, 0], [0, 0, c, -s], [0, 0, s, c]])
a = np.array(np.squeeze(np.dot(a, r).astype("int")))

# detected lines are ordered from the top of the image to the bottom
a = a[a[:, 1].argsort()]

# The density distribution is calculated over the y dimension
# and the turning points are found
density = gaussian_kde(a[:, 1], bw_method=bandwidth)
xs = np.linspace(0, width, width)
dx = np.diff(density(xs))
dx2 = np.diff(dx)
result = np.argwhere(dx[1:] * dx[:-1] < 0)

# The array of lines are split into each mode of the kernel
# density estimation function
for p in result:
if dx2[p] > 0:
gr = a[a[:, 1] < p]
a = a[gr.shape[0]:]
if len(gr) >= tomakeawave:
output.append(gr)

if len(a) >= tomakeawave:
output.append(a)

# Each cluster is averaged to calculate a centroid line
for cluster in output:
ypos = np.mean([np.mean(cluster[:, 1]), np.mean(cluster[:, 3])])
wave = np.array([np.min(cluster[:,0]), ypos, np.max(cluster[:,2]), ypos])

# detected lines are rotated back into it original orientation
c, s = np.cos(-theta), np.sin(-theta)
r = np.matrix([[c, -s, 0, 0], [s, c, 0, 0], [0, 0, c, -s], [0, 0, s, c]])
wave = np.array(np.squeeze(np.dot(wave, r).astype("int")))
yield np.append(wave[0],id)

Figure 5.8: The algorithm for clustering the detection segments using a kernel density
estimator function and the rotation operation in figure 5.7



Chapter 6

Evaluation

The results for the overall detection algorithm on a subset of the web cameras is
presented in this chapter. The results will outline both the accuracy over every
training set and over the individual beaches. An accuracy value used to obtain
the accuracy for each beach will be recorded before and after the optimization for
each group of dependent parameters. A subset of parameter optimizations paired
with images of the resultant detections will also be given in the evaluation.

The chapter discusses the optimum values for all the parameters mentioned in
the: convolution process in section 5.2, the line detection process in section 5.3,
the clustering process in section 5.4.

6.1 Testing implementation

The testing method uses a set of labeled images to compare the position of the
detected peak of the wave against a manually annotated set of waves The images
were labeled by hand through clicking on the two end points of each surf-able
region of wave such that the segment it forms is along the wave crest. A surf-
able region follows all the criteria stated in section 1.2. Regions greater than the
maximum endpoint and smaller than the minimum endpoint were deemed not
surf-able in all cases except when these points lie at the edges of the image frame.
This could be due to several reasons highlighted in section 1.2. Table 6.1 identifies
the beach and day that the labeled images were taken. The days and the beaches
used were chosen as these days contained surf-able waves and allowed for a large
amount of labeling. The image data sets were recorded as a single time series up
to sizes of 4000 images. The twenty labeled images were picked randomly from
the entire set for that beach on that day.
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Beach # Labeled images per day # Days
Coldingham 20 2
Kursaal 20 1
Tramore 20 1
Tynemouth 20 2
Losangeles2 20 2
Losangeles3 20 2
Pipeline 20 1
Rhodeisland 20 1
TOTAL 240

Figure 6.1: Table to show the number of labeled images per day for each beach and
the number of days it was taken on

6.2 Evaluation Criteria

The following definitions were used for the calculation of the false positives and
false negatives:

TP = A detection matched with the wave and chosen out of all possible matches
to identify that ground truth wave

FN = |ground truth waves| - TP

FP = |detection waves| - TP

In order to compare different kernels I created curves using a range of detection
thresholds and match thresholds.
Detection Threshold = The maximum number of detections allowed in the
analysis of the image in order of most likely a wave to least likely a wave.

Match Threshold = The perpendicular distance threshold inside which a
detected wave matches to a ground truth wave.

To decide on a match threshold the images of different match thresholds were
compared to see which were intuitively a correct detection. Leading from the
discovery that any match threshold larger than 25 was independent of the actual
wave being there, therefore the following range of match thresholds where used:
[0 : 25 : 5]. To decide on the detection threshold the data was scanned for
examples where several detections needed to be made in order to find all the
ground truth waves. In rare cases this value was as large as 12 detections until
the resultant true positives converged so the detection threshold was varied in
the range of [0 : 12 : 1].

The true positives were counted by taking the maximal possible matching of the
ground truth waves and the detected waves. This ensured that every ground
truth wave had at most one match and that the true positive value is the best
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it could possible be. To construct the bipartite graph the following boolean tests
were used to construct the edges. Where φ is the match threshold and L the
length of a ground truth wave the boolean tests are the following:

test1 = di ‖ − φ < L ∧ d′i ‖ + φ > 0 test2 = di ⊥ < φ ∧ d′i ⊥ < φ

The dimensions involved are shown in 6.2 where the detection on the left d1 will
pass both tests whereas the detection on the right d2 will only pass test2.

d1′ ‖
d1 ‖ d2 ‖

d2′ ‖

d1′ ⊥
d1 ⊥

d2 ⊥ d2′ ⊥

Figure 6.2: The detection test dimensions on the ground truth wave shown in blue
and the detected waves shown in red

The above method measures the accuracy of the algorithm at detection of surf-
able waves. In order the calculate the features we require the following detections
and requirements:
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Physical Feature # Detections Requirements
Height 1
Speed 3:9 All detections must be in adjacent frames

and correspond to the same wave
Wavelength 2 The two detections must overlap to

give such that a perpendicular vector to
their direction can intersect them both

6.3 Kernel Optimization

Eighteen different kernels were sampled from all the web cameras. This was done
by either cropping the actual image about the intended detection then smoothing
the shape so that it didn’t over fit or by testing Sobel edge detectors of particular
gradients. Each of the eighteen kernels were tested on an identical set of labeled
images and keeping the Gaussian size in the blurring process before and after
the convolution constant. The summation of all false positive and false negative
values over all the beaches are normalized and plotted in figure 6.3 so that the
kernel size could be compared for each kernel shape. The graphs showed a rela-
tively poor accuracy over the entire set of web cameras as each kernel detected
less than 40% of the labeled waves. In order to look for the largest errors in the
detection process the best ksize for each kernel was also plotted for each beach
and day to determine whether detection was poor for all kernel shapes. After
testing with multiple value for the parameters for the Guassian Blur function
applied to the convolution image and the image of edges, it was discovered that
the results of false positives and false negatives did not change. Hence from this
point for all experiments the convolution image will be blurred with a Gaussian
kernel refereed to in 5.2 with parameters σx = σy = 9 and the image of edges will
be blurred with a Gaussian kernel refereed to in 5.2 with parameters σx = σy = 3.
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Figure 6.3: The plot of false positives against false negatives for the best five kernels
where each graph corresponds to a different shaped kernel and each color corresponds
to a different kernel size



40 Chapter 6. Evaluation

Figure 6.4: The plot of false positives against false negatives for each of the kernels
sizes producing the best curves in figure 6.3

The table 6.5 shows the best kernels at detecting wave peaks. The decision was
based on both figure 6.4 and 6.6. The best three kernels produced the three false
negative and false positive that lie closest to the origin in figure 6.4. The decision
was also certified as those selections lie closest to the origin for a least two of the
twelve beaches in figure 6.6. For clarity kernel 4 resembled the shape of KernelC
in section 5.1, kernel 8 resembles the shape of KernelA in section 5.1 and kernel
10 is a Sobel filter with a gradient of 1.

Kernel Size
4 80
8 50
10 20

Figure 6.5: Best kernels
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Figure 6.6: The plots of false positives against false negatives for each of the kernels
sizes producing the best curves in figure 6.3 for each beach

Varying the detection threshold allows for the optimization of the algorithm over
different ratios of false positive to false negative. As a simple approximation our
best accuracy is accounted by the data point that lies closest to the false positive
= false negatives line which has a match threshold in the range 3:5. The F1
accuracy is a value used to measure this and is equal to the F1 = 2 1

1
precion

+ 1
recall

quoted from Van Rijsbergen et al [13]. As out false positive and false negative
rates are already normalized, the F1 accuracy is equal to F1 = 2 1

1
1−FP + 1

1−FN
.

To analyse whether a combination of the best three kernels would improve the
accuracy a random frame from each training set was taken for each kernel using
a match threshold of 4. These frames are shown below for the best 3 kernels in
figure 6.7, 6.8 and 6.9.
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Figures 6.7,6.8 and 6.9 are the results of kernel 4, kernel 8 and kernel 10 consec-
utively on the same 12 sample images from each dataset. Henceforth any image
that is referenced specifically will be referenced using a grid like fashion where
the top left corner is the origin.

• The blue lines correspond to the labeled wave segments .

• The lines are yellow when they also pass both tests outlined in section 6.2
but has not necessarily been chosen to represent that labeled wave as each
labeled wave can only have one corresponding detection.

• The lines are red when the algorithm has made a detection but the detection
has either passed one or neither of the tests outlined in 6.2.

Figure 6.7: An image from each web camera for the detections made by kernel 4
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Figure 6.8: An image from each web camera for the detections made by kernel 8

Figure 6.9: An image from each web camera for the detections made by kernel 10

The first noticeable characteristic of all the kernels is they all identify similar
waves of certain characteristics. All correct detections have a noticeably large
contrast between the shadowed wave region and the water behind. They all lack
turbulent flow as the wave peak resembles a solid straight line. Any deviation from
a solid straight line has not been detected as is visible in images [2, 1] and [3, 2].
This implies that any convolution image using a combination of these kernels
would not increase the true positive rate but will increase the false positive rate.
False detections are visibly induced by one a highly concave wave crest where there
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is a sizable region of lighter intensity before the crest when traversing upwards
which is visible in [0, 3]. Two stand alone patches of water surface not covered by
remnant or breaking white water but surrounded by remnant and breaking white
water. This effect is noticeable in images [2, 1], [2, 2] and [3, 2].

With regards to the performance of each kernel 4 is clearly the worst in this set
of images although its F1 accuracy over all is better than kernel 10 as seen in 6.4
Both kernel 8 and kernel 10 have the same number of images with at least one
correct detection. Conversely kernel 8 manages to detect multiple grand truths
in a couple of images which reinforces the F1 accuracy being higher as seen in
6.4.

As all the kernels bias to false detection is different. kernel 4 tends to falsely
detect really dark regions as waves, kernel 8 tends to falsely detect lighter regions
as waves and kernel 10 tends to falsely detect small edges of high contrast as
waves. Because of this it makes sense to optimize all three to see which gives the
overall best F1 accuracy.

6.4 Hough line Parameters

To optimize the probabilistic Hough line algorithm I varied the following param-
eters.

• The minimum threshold above which a maximum turning point in the con-
volution image is drawn on the edge image.

• The confidence value for the probabilistic Hough line algorithm.

• The minimum line length for the probabilistic Hough line algorithm

As seen in figures 6.10. 6.11 and 6.12 the false negative against false positive
curve varied very little. By looking at the left most bottom points parameters the
optimum confidence value was chosen to be 100 the optimum threshold was chosen
to be 1 and the optimum minimum line length was chosen to be 50. Through
out all the experiments the maximum line gap for the probabilistic Hough line
algorithm was 3 as its value also gave little improvement to the algorithm.

The small effect of these parameters could be due to a match threshold value
being to high or the edge image resembling very few straight edges for any given
convolution. Future work could be done into drawing a thicker edge for every
maximum turning point in the convolution image to see if it influences the Hough
line algorithm more.
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Figure 6.10: The false positive and false negative curve for kernel 4: Left varying the
minimum threshold to for finding a maximum from the convolution Middle varying
the confidence value for the probabilistic Hough line algorithm Right varying the
minimum line length for the probabilistic Hough line algorithm
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Figure 6.11: The false positive and false negative curve for kernel 8: Left varying the
minimum threshold to for finding a maximum from the convolution Middle varying
the confidence value for the probabilistic Hough line algorithm Right varying the
minimum line length for the probabilistic Hough line algorithm
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Figure 6.12: The false positive and false negative curve for kernel 10: Left varying the
minimum threshold to for finding a maximum from the convolution Middle varying
the confidence value for the probabilistic Hough line algorithm Right varying the
minimum line length for the probabilistic Hough line algorithm

6.5 Clustering Parameters

The clustering algorithm used two parameters kernel density bandwidth and the
clustering factor which corresponds to how many segments must lie in a cluster
before the result can be classified as a wave. The optimum value for the clustering
factor was found to be 1 and the band width to be 0.08.In figurebwcompare it
can be seen that the accuracy has improved slightly on every beach except from
9 and 11. As the kernel density estimation relies on the the detection threshold
it varies the number of detections the clustering is done on. Therefore we cannot
go further to plot a single curve unless there is a measure of how sure one can be
that any given cluster is a wave. As an equal number of beaches false negatives
increased as the false positives were reduced on the others the overall accuracy
remained the same for the detection as a whole. Further work could be done on
deriving a bandwidth from any given set of detections so that it not be a hard
coded parameter.
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Figure 6.13: Figure showing the false positive true negative curves for each of the 3
kernels with and without clustering

6.6 Complete Result

The best result for all the detections over all twelve data sets had a False Positive
and False negative value of 0.63 which is an accuracy value of 0.37 and is fairly
low. For some beaches detection was difficult for several reasons one was the low
resolution of the camera didn’t give the kernel enough room to gauge a similarity.
To certify this prediction the compared the table below which gives and accuracy
score for cameras with a a pixel dimension greater than 1000. These values are
taken from the point closest to the origin on the original kernels without clustering
and correspond to the highest F1 harmonic mean.
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Beach Dataset Accuracy
Coldingham 0 0.55
Coldingham 1 0.47
Los Angeles2 3 0.45
Los Angeles2 4 0.5
Pipeline 7 0.55
Rhode Island 8 0.38
Tynemouth 10 0.28
Tynemouth 11 0.34

Both Tynemouth and RhodeIsland have low accuracy with higher resolution. A
possible reason for this could be that their height above sea level. RhodeIsland
is considerably low down compared to the others therefore the crest shadow is
cast differently, as the waves surface normal takes a large reflectance angle for the
sunlight. With regards to Tynemouth as the conditions were a lot more turbulent
than other beaches the algorithm found it hard to detect the crests resembling
straight lines. This suggests that Hough lines may not be the best robust regres-
sion method. The accuracies for Coldingham, Pipeline and Los Angeles are all
fairly reasonable although as each use a different kernel for their highest accu-
racy. Furthermore Los Angeles and Coldingham have different kernels with the
highest accuracy for each separate day of data. The clustering method increased
the accuracy substantially for the beaches with accuracy over 0.44. This gives
an indication that the algorithm run before the clustering must be improved to
obtain a better effect by clustering.



Chapter 7

Wave Physical Parameters
Estimation

This section will outline the theory involved in calculating the physical parameters
of detected waves using values from the detection. This part of the project was
not completed and therefore the mathematics was only theoretical and has not
been tested against ground truth values.

7.1 Wave Tracking

To infer the speed of the wave a method was required to match particular segments
between frames. As the web camera stream was subject to buffering and the
detection algorithm was not prefect, an identical wave cannot be tracked between
adjacent images by looking for the wave beneath its last position in the previous
frame. To tackle this issue the detections for 20 waves were plotted over time to
see how visible the transition in time was.
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Figure 7.1: Wave segments plotted and clustered for a time stack of images where
the color corresponds to the specific cluster where the algorithm has decided that all
detection in that cluster are the same wave. The x axis corresponds to the x axis
of the web cam images. The y axis corresponds to the time dimension in which the
images are taken. The z axis corresponds to to the y dimension of the web camera
image. The range plotted corresponds to the break zone calculated for that beach.

After this the waves are plotted in a 3D meshgrid. Using the same method in
section 5.4 detections are rotated so that they are parallel with the x axis. The
RANSAC algorithm is used on the projection in the time and vertical axis to
uncover a detected wave progressing toward the shore in consecutive images. As
one wave is required to detect a speed the RANSAC algorithm is run as many
times as is required to capture a wave with orientation between the angle of π/6
and 5π/6 to the horizontal x axis. This orientation angle can then be used to
calculate the wave speed.

7.2 Wavelength

First the perpendicular distance to the blue detections in figure 7.3 from the
bottom of the image must be calculated by taking the bottom left corner as the
origin. If N̂ is normal to the detections and

−→
P j is a point on the bottom detection

such that there lies two points along N̂ ,
−→
P i on the top detection and

−→
Q on the

horizon then the image distances φi/j are as follows:

φi =
−→
P iN̂ φj =

−→
P jN̂ φt =

−→
QN̂

As the camera has an unknown physical angle θ from the vertical z dimension
with the camera at the origin the angles to the detections shown in figure 7.2 are
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given as:
θk = (φk + κ)/

π

2
We can also estimate the height of the camera H using the angle the at which the
horizon is positioned. As we know that the distance dw can be any value between
0 and 10 meters we know that the distance to the horizon is in the range:

dw(tan(π/2− θt))/(tan(θj)− tan(θi)) 0 < dw < 10

As we know the curvature of the earth we can estimate the camera height H
and use H to estimate our camera zoom constant κ. The H value for the ap-
proximation can be found in appendix entry 3. We can then finally calculate the
wavelength dw as:

dw = H(tan(θj)− tan(θi))

θi
θj

θt

dl

dw
−→
Q

−→
Pi−→
Pj

N̂

Figure 7.2: Diagram labeling the
measurements used in the calcula-
tion of the physical features
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Figure 7.3: The physical detec-
tions referred to in figure 7.2

7.3 Speed

The speed can be calculated using the angle between the x axis and the wave
trajectory in the time and vertical plane α. As the change in v = δs/δt where δs
and δt make up the hypotenuse and adjacent sides of a right angle triangle about
angle α. Therefore the speed v = A( 1

cos(θ)
) . The value of A gives the difference

in scale between the image dimensions and the physical dimensions. As the angle
at which the wave approaches the shore in time is small, our value of A is equal
to the distance between the camera and the wave in which you’re calculating the
instantaneous velocity on. Therefore A is given by:

H

cos{(yi + κ)/π
2
}

where yi is the position of that line segment in the vertical and κ and H are the
web camera specific constants calculated in section 7.2.

7.4 Height

Using our set of detected segments of the wave we can derive a maximum height
per segment and further derive the maximum height per single wave. As outlined
in section 2.2 the significant wave height can be derived from the 4 times the
surface elevation in the time dimension as seen in figure 7.1. As the wave is moving
at relatively constant speed the wave height can be derived from the surface
elevation in the dimension parallel to the wave movement and approximately
perpendicular to the plane of view. Therefore as half of our surface elevation is
visible as the shadow caused due to the difference in the water surface normal
and the azimuth of the sun you can infer the size of a wave by the variance of
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the convolution output about the detected wave peak. An example result from
which this value would be calculated from is given in figure 7.4. The formula for
doing this is shown below I(x, y) is the convolution output and

−→
P and N̂ is the

endpoint and perpendicular vector of a detected segment (shown in figure 7.4 in
red) is :

Hw = 4σelevation = maxx{A

√√√√∑y I(x, y)(((x, y)T −
−→
P ).N̂)2∑

y I(x, y)
}

. The estimated wave height for the whole wave can then be calculated from
the maximum of each segment maximum that lie in the same cluster outline in
section 5.4. As the angle between θi and θj is small, our value of A is equal to
the distance between the camera and the second wave. Therefore A is given by:

H

cos θi

Figure 7.4: The convolution output with the output detected line segments marked
in red





Chapter 8

Conclusion

This project aimed to provide the algorithms required to detect the wavelength,
speed and height of a wave on an arbitrary, low cost, low resolution web cam-
era positioned close enough to the beach for a person to make the above three
deductions. An algorithm was designed to make use of how a wave evolves over
time by looking at a time stack of images to decipher the wave breaking region
and direction. This worked to the correct effect by removing both the sand head-
land and horizon from the image. Some cameras failed to find the break zone
region mainly due to how the camera passes intensity which limited detail in the
normalization image. This made it difficult to notice activity in the sea.

An algorithm was designed to use kernel convolution and robust regression in the
detection of the wave shadowed region in order to find its peak. The shadowed
region was used and kernel convolution classified 5 out of 12 waves of all the
labeled data with an accuracy of 50%. The Hough line algorithm was also used
but further work could be done into detecting continuous boundaries rather than
straight edges to account for the variance in the positioning of the turning point
of the convolution. The algorithm was evaluated and used to test the parameters
using a dataset of 240 images. By testing parameters the algorithm reached a
detection accuracy of 38% calculated over all the web cameras.

Clustering techniques to group partial wave detections together were evaluated
to improve performance. Over the entire range of web cameras the clustering
method had as large of a detrimental effect as it was beneficial and therefore
gained no additional accuracy for detection. Further using the time dimension,
outlying waves were discarded that did not appear in the frames before or after.
This was experimented with on Coldingham but not validated and therefore
requires further work. The algorithm was then to use the detected surf-able
wave peak lines to calculate the speed, wavelength and height. This too was not
tested thoroughly but further work could also be done to evaluate the physical
measurements using equations outlined in section 7. Once data is collected a
graph of the detected measurements against predicted measurements sourced
from weather forecasting sites can be used to evaluate the correlation and hence
the algorithm itself. This process can be achieved through querying the longitude
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and latitude’s for each of the cameras found in appendix entry 2.

The task of investigating the feasibility of the use of low cost surf shop web
cameras as a source for validating the forecast predictions has been met. As
measurements of the wave length, height and speed need not be recorded for
every frame, to infer the three measurements of interest the algorithm does not
require a large hit rate. For an automatic wave monitoring system it is paramount
that there are no false detections in the extraction of wave features. This has not
been achieved in this projects but work has been done towards it.

After experiencing the issues involved in deploying a real time monitoring system
I would suggest the use of Convolution Neural Networks similar to that used by
Mesay Belete Bejiga et al [4] to carry this project further. Detection over a huge
variance in sea conditions, lightening and variation between features, position and
shape on different beaches is achievable using deep learning. A fully functional
monitoring system for extracting height, speed and wavelength would only be
achievable when the false positives rate is much low. By training a Convolution
neural Network on a set of correct detections and a set of incorrect detections to
recognize the wave crest edge. This would be done by sampling images such that
the segment representing that detected wave peak passes through the center. An
additional set of images as a counter example would need to be taken from areas
in the break zone region where there does not lie a labeled wave segment in the
proximity. Particular care would be taken to not under fit and build an average
edge classifier. Another approach would be to take the image on the end points of
a detected crest. This could be labeled through clicking on the wave peak where
it meets a white water section. As there are fewer of these in any image the
false positive rate will be lower meeting the criteria for an automatic monitoring
system using web cameras and closer to the dream of an accurate forecast.
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Location Source
Bedruthan http://82.153.141.73/mjpg/video.mjpg
Kursaal http://212.142.228.68/mjpg/video.mjpg
Coldingham http://67.205.163.71/coldingham.mjpg
Tynemouth http://81.149.2.82:8091/mjpg/video.mjpg
Tramore http://78tramore.home.dyndns.org/mjpg/2/video.mjpg
Australia http://114.72.112.23/mjpg/video.mjpg
Lahinch http://86.47.88.163/mjpg/video.mjpg
Cornwall http://217.41.31.74:4271/GetData.cgi
Losangeles1 http://63.138.85.84/mjpg/video.mjpg
Losangeles2 http://98.189.158.57/mjpg/video.mjpg
Losangeles3 http://98.189.156.36/mjpg/video.mjpg
Palma http://83.56.31.69/mjpg/video.mjpg
Rhodeisland http://108.34.179.41/mjpg/video.mjpg
Florida http://97.76.101.212/mjpg/video.mjpg
Pembrokeshire http://81.149.146.68/mjpg/video.mjpg
Northdakota http://67.205.163.71/northdakota.mjpg
Shallotte http://216.99.115.136:8080/mjpg/video.mjpg
Pipeline http://67.205.163.71/shallotte.mjpg

Figure 1: The source of each web camera used in this project
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Location Latitude Longitude
Bedruthan 50.46 -5.03
Kursaal 43.32 -1.98
Coldingham 55.89 -2.13
Tynemouth 55.03 -1.43
Tramore 52.16 -7.14
Lahinch 52.93 -9.35
Losangeles1 33.76 -118.15
Losangeles2 33.76 -118.15
Cornwall 50.22 -5.48
Losangeles3 33.76 -118.15
Rhodeisland 41.44 -71.45
florida 28.06 -82.83
Pembrokeshire 51.78 -5.10
Shallotte 33.89 -78.42
Pipeline 21.67 -158.05

Figure 2: The longitude and latitude of each web camera of each web camera used
in this project

Height (meters) Distance (km)
0 0.0
1 3.6
2 5.1
3 6.2
4 7.1
5 8.0
6 8.7
7 9.4
8 10.1
9 10.7
10 11.3
20 16.0
30 19.5
40 22.6
50 25.2

Figure 3: Horizon calculations
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