
IST – 257024 – Fish4Knowledge Deliverable D2.5

Fish4Knowledge Deliverable D2.5

UI components integrated into end-to-end system

Principal Author: E. Beauxis-Aussalet, T. Perrucci, L.
Hardman

Contributors: CWI
Dissemination: PU

Abstract: This document describes the integration of the Fish4Knowledge
user interface.

Deliverable due: Month 36

Version 1; 2013-10-30 Page 1 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

Figure 1: The Model-View-Controller architecture of the Public Query Interface.

1 Architecture of the Public Query Interface
The Fish4Knowledge User Interface (UI) deals with 4 main interactive processes: brows-

ing videos (through the Video tab, Fig. 2), exploring the video analysis results (through the
Visualization tab, Fig. 4), grouping visualizations of interest for a particular study (through the
Report tab, Fig. 6) and requesting high priority video processing (through the Workflow tab,
Fig. 8). The other functionalities of the UI are implemented in a static manner, e.g., html, css,
and images, without interactive access to the F4K data. Their description is not of relevance to
the public delivery of the UI, which open source code is available on sourceforge1.

The architecture chosen for the Fish4Knowledge project uses the Model-View-Controller
paradigm2 (Fig. 1). Our architecture includes state-of-the art web-based visualization libraries
(D3, d3js.org). The User Browser (e.g., Chrome or Firefox) displays the information to users.
The Web Server receives user queries and updates the views (i.e., the displayed UI tabs). The
web server interacts with the Database Server to retrieve the information needed to address
user queries.

2 Video Browser
The functionality for browsing videos uses the Video Controller, the Filter Controllers, the

Summary Tables, and the Video Tables. The Filter Controllers are in charge of storing and

1http://sourceforge.net/projects/fish4knowledgesourcecode/
2en.wikipedia.org/wiki/Model-view-controller

Version 1; 2013-10-30 Page 2 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

Figure 2: The Video tab.

Figure 3: The components involved for browsing videos.

Version 1; 2013-10-30 Page 3 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

updating the parameters specifying the dataset of interest for the user, and the filter widgets3 that
must be displayed. The Video Controller retrieves the urls of the videos to display, depending
on the filters set by users (e.g., videos from specific cameras and periods). These processes,
illustrated by Fig. 3, are handled by the following pieces of software:

• The file /f4k ui/service/video.py contains code to queries to the database. It retrieves the
urls of videos to display. It queries the database table named video.

• The file /f4k ui/service/filter.py contains code to query the database. It retrieves data for
updating the filter widgets (e.g., the histograms of the widgets Camera, Year and Type
of Video on the bottom part of Fig. 2). It queries the Summary Tables. There is one of
them for each camera, and their name starts with summary table [...]. In some cases, the
number of processed videos is queried from a Video Table named processed video.

• In the repository static/js/controller/, the files filter.js, dimension.js, and video.js are ex-
ecuted on the web browser. They serve to send user requests to the web server, and to
receive the response from the web server. The file video.js handles user inputs related
to the specification of the videos to display, and filter.js handles user inputs related to
the specification of filters. The file dimension.js handles user inputs specifying what is
represented by the histograms of the filters (e.g., fish counts, species counts, video counts,
as defined for the current visualization displayed in the Visualization tab).

• The functions filter data() and video data(), in the file f4k ui/views.py, receive user re-
quests and execute the corresponding mechanisms on the web server (i.e., the functions
contained in filter.py and video.py.

3 Data Visualization
The functionality for visualizing the video analysis results uses the Filter Controllers, the

Visualization Controller, the Summary Tables, and the Video Tables. The Filter Controllers is
in charge of storing and updating the parameters specifying the dataset of interest for the user.
The Visualization Controller is in charge of storing and updating the parameters specifying
the main graph (Zone A in Fig. 4). These processes, illustrated by Fig. 5, are handled by the
following pieces of software:

• The files /f4k ui/service/viz.py and /f4k ui/service/filter.py contain code to query the database.
The file viz.py retrieves data for updating the main graph (Zone A of Fig. 5), and fil-
ter.py retrieves data for updating the filter widgets (Zone C of Fig. 5). Both query the
Summary Tables. There is one of them for each camera, and their name starts with
summary table [...]. In some cases, they query a Video Table named processed video.

• In the repository static/js/controller/, the files filter.js, dimension.js, and viz.js are executed
on the web browser. They serve to send user requests to the web server, and to receive
the response from the web server. The file filter.js handles user inputs related to the
specification of filters. The file dimension.js handles user inputs specifying what is

3The filter widgets are boxes displayed in the UI on user demand, and containing functionalities for filtering
data. Fig. 2-4 show 3 filter widgets displayed in the bottom part of the UI part.

Version 1; 2013-10-30 Page 4 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

Figure 4: The Visualization tab.

Figure 5: The components involved for visualizing the video analysis results.

Version 1; 2013-10-30 Page 5 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

represented by the histograms of the filters (e.g., fish counts, species counts, video counts,
as defined for the current visualization displayed in the Visualization tab). It also handles
the specification of what is represented by the Y axis of the main graph. The file viz.js
handles user inputs related to the specification of the main graph.

• The functions filter data() and viz data(), in the file f4k ui/views.py, receive user requests
and execute the corresponding mechanisms on the web server (i.e., the functions con-
tained in filter.py and viz.py.

4 Grouping visualizations in reports
The functionality for grouping visualizations of interest uses the Report Controller, the

Summary Tables, and the Video Tables. The Report Controller is in charge of collecting and
updating the parameters specifying the group of visualizations of interest for the user. The
display of visualization thumbnails use the same mechanisms as for the Visualization tab. These
processes, illustrated by Fig. 7, are handled by the following pieces of software:

• The file /f4k ui/service/report.py contains code to retrieve and store data in the user
session, a memory space managed by the web server. It handles the data specifying the
visualizations grouped in the Report tab. The web server memorizes one configuration of
the Report tab for each user.

• The file /f4k ui/service/viz.py contains code to query the database. It retrieves data for
displaying the grouped visualizations. It queries the Summary Tables. There is one of
them for each camera, and their name starts with summary table [...]. In some cases, it
queries a Video Table named processed video.

• The file static/js/controller/report.js, executed on the web browser, serves to send user
requests to the web server, and to receive the response from the web server. It handles
user inputs related to the specification of the visualizations to insert or remove from the
Report tab.

• The function user report(), in the file f4k ui/views.py, receive user requests and execute
the corresponding mechanisms on the web server (i.e., the functions contained in re-
port.py and viz.py).

5 Requests to the Workflow
Users can request the workflow to schedule high-priority video processing. This function-

ality uses the Workflow Controller and the Workflow Table. The Workflow Controller is in
charge of storing and updating the parameters specifying the high priority video processing to
perform, and to list the high-priority video processing that were previously requested. These
processes, illustrated by Fig. 9, are handled by the following pieces of software:

• The file /f4k ui/service/workflow.py contain code to query the database. It retrieves the
list of previous request to the workflow, and adds new requests. It reads and writes the
Workflow Table named query management in the database.

Version 1; 2013-10-30 Page 6 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

Figure 6: The Report tab.

Figure 7: The components involved for grouping visualizations in the Report tab.

Version 1; 2013-10-30 Page 7 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

Figure 8: The Workflow sub-tab.

Figure 9: The components involved for requesting the workflow to execute high-priority video
processing.

Version 1; 2013-10-30 Page 8 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

• The file static/js/controller/workflow.js, executed on the web browser, serves to send user
requests to the web server, and to receive the response from the web server (e.g., the
updated list of requests to the workflow).

• The function user query data(), in the file f4k ui/views.py, receives user requests and
execute the corresponding mechanisms on the web server (i.e., the functions contained in
workflow.py.

6 The Summary Tables
The F4K database contains an extensive amount of data, spread over several tables. To

address user information needs, we need data from several of these large tables. This triggers
issues regarding the latency of database queries. We implemented views that gather information
into the same table, thus suppressing relations between tables, and time-consuming joints in
SQL queries. To reduce further the latency, and we reduced the size of the tables that are
queried, and implemented one view per camera. These views are the Summary Tables, which
names start with summary table [...] followed by the camera id.

Each row of the Summary Tables represents a single fish occurrence and its characteristics,
as described by both Fish Detection and Species Recognition components. Fig. 10 gives exam-
ples of fish description in the Summary Tables. The fields provides the following information:

• fish id: unique identifier of the fish occurrence (i.e., after tracking unique fish), originat-
ing from the table named fish.

• species id: identifier of the fish species, originating from the table named fish species cert.

• video class: identifier of the type of video quality (e.g., Normal, Algae, Blurry, ...),
originating from the table named video class.

• best video id: identifier of the video in which the fish occurs, originating from the table
named fish.

• det certainty: average certainty score of all fish images along the fish trajectory, originat-
ing from the table named fish.

• tracking certainty: certainty score of the fish trajectory, originating from the table named
fish.

• rec certainty: certainty score of the species recognition, originating from the table named
fish species cert.

• det component id: identifier of the version of the Fish Detection component that detected
the fish, originating from the table named fish.

• rec component id: identifier of the version of the Species Recognition component that
recognized the fish species, originating from the table named fish species cert.

• date: identifier of the 10-minute time period when the fish occurred, originating from the
table named video.

Version 1; 2013-10-30 Page 9 of 10 c© Fish4Knowledge Consortium, 2013



IST – 257024 – Fish4Knowledge Deliverable D2.5

Figure 10: Examples of the information stored in the Summary Tables. Each row represents a
single fish occurrence.

The Summary Tables need to be updated as long as the videos are being processed by the
workflow (both for automatic processing or on-demand user requests). The file /database/sum-
mary camera proc.sql is a script able to update the Summary Tables. It can be executed au-
tomatically at regular interval, or manually, if needed. The update of the Summary Tables is
important for the UI to display accurate data. In particular, the visualization of average fish
counts per video is biases if the tables are not up-to-date. The numbers of videos are extracted
from the table processed videos, which is constantly updated after each video is processed. But
the numbers of fish are extracted from the Summary Tables, which are not guaranteed to be up-
to-date anytime. Thus the average number of fish per video can be artificially under-estimated.

The first users of our system must be aware of this inconvenience. They have to make
sure the Summary Tables are up-to-date before performing data analyses. They must be able to
trigger the update of the tables if needed (e.g., launch the .sql script). For a more intensive use of
the system, it is recommended to implement a consistent mechanism for updating the Summary
Tables. Updates would take place either after automatic batch video processing, or after user
requests to the workflow are completed. The processed videos and the Summary Tables should
be updated synchronously.

Version 1; 2013-10-30 Page 10 of 10 c© Fish4Knowledge Consortium, 2013


