
IST – 257024 – Fish4Knowledge Deliverable D1.3

Fish4Knowledge Deliverable D1.3

Fish Recognition and Clustering

Principal Author: Phoenix X. Huang, Bastiaan J. Boom,
Robert B. Fisher

Contributors: UEDIN
Dissemination: PU

Abstract: This document describes the fish recognition and clustering
methods, which makes use of the fish detection and fish description
described in respectively Deliverable D1.1 and D1.2. The document is
divided into two parts: fish recognition and fish clustering. In both parts,
a small literature study is performed looking at related work. Afterwards
the methodology that is used in this project is explained and experiments are
performed to show that this methodology works on the obtained dataset (see
also Deliverable D2.3). At the moment, the fish recognition methodology
is already being used in our first prototype, where it classified around 18
million fish images. The fish clustering methodology has been actively used
for annotation where around 300 thousand fish are currently clustered to
speed up the fish annotation and groundtruth production process.

Deliverable due: 24 Month

Version 1.0; 2012-11-01 Page 1 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 1: Embedded camera in Fish4Knowledge

1 Introduction

1.1 Why We Want To Recognize Fish?
Human activities have altered the fish distribution around the world. Measuring the number of
fish by recognizing the species and their number is valuable for applications such as fisheries
management, commercial purposes such as fish farms and shops, and ecological benefits such
as evaluating the impact of water related constructions [10]. Statistics about the specific species
distribution of fish besides an aggregate count of aquatic animals can assist biologists resolving
issues ranging from food availability to predator-prey relationships [40].

1.2 Recent Underwater Surveillance Approaches
Traditionally, marine biologists have employed many tools to examine the appearance and
quantities of fish. For example, they cast nets to catch and recognize fish in the ocean. They also
dive to observe underwater, using photography [7]. Moreover, they combine net casting with
acoustic (sonar) [6]. Nowadays, much more convenient tools are employed, such as hand-held
video filming devices [46]. There are two main disadvantages using this equipment. Firstly,
these activities disturb fish swimming and habits, and thus giving rise to abnormal situations.
This drawback is apparent: the fish are sensitive to their surrounding environment. Secondly, the
small amount of acquisition data could not meet the demands for extensive underwater animal
analysis, and the recorded data also could be considered as sampling at a very low rate, which
leads to a Picket Fence Effect and omits valuable information. To resolve these issues, some
researchers implement automatic analysis by using a Digital Signal Processor (DSP) chipset
with camera onboard [13]. It is cost-effective and easy to program (using standard C code).
The DSP calculates image processing algorithms and records data to its flash memory. A more
popular and practical equipment is Remotely Operated Vehicle (ROV) [3, 18] with standard
PC computation [43, 52]. This equipment obtains video from mid water and produces high-
resolution images of different fish species. The use of an ROV has achieved great success in
collecting such data. They generate huge amounts of video containing animals from underwater
cameras [46]. However, these techniques have their own shortcomings. A DSP chip with an
embedded program cannot perform rapid calculation and an ROV can only stay underwater for
a limited time. In the Fish4Knowledge project, embedded video cameras such as in Figure 1

Version 1.0; 2012-11-01 Page 2 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

are used to record underwater animals (including insects, fish, etc.) at the Third Taiwanese
Power Station as well as three other locations, and observe fish presence and habits at different
times [35]. The Fish4Knowledge project investigates methods for capture, storage, analysis
and query of multiple videos. The project goal is to analyze large amounts of data using a
combination of computer vision, semantic web, database storage and query and work flow
methods. Figure 2 shows a video acquisition system that is deployed at the HouBiHu station.

Figure 2: Surveillance System in Fish4Knowledge

1.3 Why Using Automatic Image Processing?
Limitation of manpower Nowadays, underwater videos are mostly analyzed by biologists
[47], but it is an exhausting procedure. The difficulties are mainly two-fold.

• The huge amount of data. As a camera produces 2 × 1012 bytes data in a year at
Fish4Knowledge, it may take 15 years for a marine biologist to analyze, recognize and
label fishes in these videos. In the whole project, 10 cameras have been recording for
the last six years, which entail about 900 years’ manpower to process this huge database.
It is sensible to employ some automatic image processing methodologies to help marine
biologists analyze them, as the task of video processing is monotonous and complex.

• Image distortion in the underwater environment. When light projects through the water,
it changes light’s physical attributes and affects underwater recording and image quality.
Firstly, impurities in water limit the range of light and water absorbs light. As a result,
distant structures in the video are blurred. Secondly, water changes light’s path which is
called scattering. This phenomenon affects relative positions of objects in video. Thirdly,
in the general computer vision model, light consists of three components: red, green
and blue. As these components have different wave lengths, they have distinct distortion

Version 1.0; 2012-11-01 Page 3 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

models. It has been observed that the blue light has the highest range in the water, which
makes blue a more dominant component in color distribution than normal situations. How
the underwater distortion model influences the video recording has been described in [44].

Normally, there are two ways to comprehend underwater image processing [43].

• The first way considers this phenomenon as an image restoration problem and tries to
use a degradation model. This method aims at recovering the original image from the
degraded one. The main disadvantage of this model is about the parameters. As this
method demands strict conditions, mass parameters (e.g. attenuation and diffusion coeffi-
cients [43]) are essential to accomplishing the computation. Another important parameter
required is the depth of an object in the scene [38].

• The second way pays attention to image enhancement and it uses qualitative standards to
produce a more visually useful image [21, 38]. This method is beneficial in that it does
not rely on any physical model for image formation, and therefore is usually easier to
implement and faster in performance than the former method.

Based on these two approaches, researchers have achieved many results in the field of under-
water fish analysis. [45] used stereo images to get the distance information of fish. However, as
suggested in [45], the underwater environment makes it difficult to find a solution. Variability
in water clarity and scatter particles can play an important role to affect image quality. Properly
triangulating and measuring objects [20,37] are also required in stereo video and laser scanning
systems to extract accurate information, such as length/height and girth, or estimate the overall
biomass of fish species in the recorded area. In a pertinent publication, [24] used stereo video
to chart the 3-dimensional position and movements of underwater animals (dolphins in this
case). Their goal, which achieved some success, was to extract complex positional information
from a video image clip with less manual effort [30]. They also discussed their approach of
using a photograph system that does not require the use of lasers or light grids. As discussed
above, Fish4Knowledge uses computer vision based automatic methodologies for underwater
fish processing. Nadarajan et al. in [35] proposed an integrated work flow system that aims at
helping marine biologists annotate fish in underwater videos. The component diagram [4] is
displayed in Figure 3. An image processing ontology is combined with work flow executions,
and each task has been designed as an algorithm component. This project focuses on the marine
biological video data, and the technology can also be applicable to other general purposes, e.g.
marine food farm investigation, public environment surveillance, etc. The research result should
be an example of co-operation between computer science and the marine biologist.

2 Fish Recognition

2.1 Introduction
Live fish recognition in the open sea has been investigated by [29, 37, 41, 50] for commercial
and environmental applications like fish farming and meteorological monitoring. The detected
fish are in 3D positions and against coral and sand as well as the open sea. Statistics about
the specific oceanic fish species distribution besides an aggregate count of aquatic animals can
assist biologists resolving issues ranging from food availability to predator-prey relationships

Version 1.0; 2012-11-01 Page 4 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 3: Fish4Knowledge UML component diagram overview [4]

Version 1.0; 2012-11-01 Page 5 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

[40, 55]. However, the recognition task is fundamentally challenging because fish can move
freely and illumination levels change frequently in such environments [48,51]. As a result, this
task remains an outstanding research problem. Prior research is mainly restricted to constrained
environments (e.g., fish tanks [29], conveyor belts [49]). Strachan et al. [50] achieves the scores
of 73%, 63% and 90%, respectively, on three types of fish. C. Spampinato et al. [47] classifies
360 images of ten different species and achieves an average accuracy of about 92%. R. Larsen
et al. [26] classify three fish species and achieve a recognition rate of 76%. In contrast, this
paper investigates novel techniques to perform effective live fish recognition in an unrestricted
natural environment.

2.1.1 Related work

SVM method. The fish recognition task is seen as an application of multi-class classification,
which has become an important and interesting research area since the influence of machine
learning theory. Over the last decade, SVM [9] has shown impressive accuracy on the multi-
class classification task because of its maximum-margin advantages. However, SVM is origi-
nally designed for a binary classification task. Therefore, to enable multi-class classification,
several mechanisms, such as one-vs-one and one-vs-rest, have been developed. This kind of
multi-class classifier could be considered as a flat classifier because it classifies all classes at
the same time [8] and omits the inter-class correlations. A shortcoming of the flat classifier is
that it uses the same features to classify all classes without considering that some classes have
certain similarities and can be better separated by some customized features.

Hierarchical classification tree method. To overcome the problem of flat classifier, one pos-
sible solution is to integrate a domain knowledge database with the flat classifier and construct a
tree to organize all classes hierarchically [11]. This strategy is called hierarchical classification
which inherits from the divide and conquer tactic. Essentially, it uses a hierarchical classifica-
tion procedure where a customized classifier is trained with specific features at each level [19].

Hierarchical classification has several noticeable advantages. Firstly, it divides all classes
into certain subsets and leaves similar classes for a later stage. This strategy balances the load of
any single node. Secondly, unlike the flat classifier choosing a feature set based on the average
accuracy over all classes, the hierarchical method applies a customized set of features to classify
specific classes. As a result, it achieves better performance on similar classes than the flat
classifier. Thirdly, the hierarchical solution exploits the correlations between classes and finds
similar groupings. This is especially useful with a large number of categories [11]. Hierarchical
structures are popular in document and image categorization. Mathis [33] organizes documents
hierarchically by making use of the correlations between topical subjects. Deng et.al. [12]
introduced a new dataset called ImageNet where a large scale hierarchical ontology of images
are constructed based on the WordNet knowledge. However, these approaches use pre-defined
hierarchical structures without considering how to construct a more accurate tree based on given
classes.

Nonetheless, the hierarchical structure has a critical disadvantage called error accumula-
tion. Each level of the hierarchical tree may have some classification errors. These errors are
accumulated into deeper layers and reduce the average accuracy of the final result.

Version 1.0; 2012-11-01 Page 6 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 4: The framework of our BGOT-based hierarchical classification system. The work flow
of dotted arrows shows the training procedure and the solid arrows indicate the recognition
procedure.

2.1.2 The framework

In this paper, we propose a novel method to recognize fish in an unrestricted natural environment
from underwater videos. We use the Balance-Guaranteed Optimized Tree (BGOT) to help
resolve the error accumulation issue and make use of the inner-class similarities among fish
species. The framework is illustrated in Fig 4.

In this paper we propose a hierarchical classification approach for live fish recognition.
Furthermore, we use a heuristic method to construct an automatically generated BGOT and
the proposed method is evaluated on a live fish dataset. The algorithm itself is presented
in Section 2.2, including the mathematical explanation of hierarchical classification, a set of
heuristics which help construct the hierarchical tree. In Section 2.2, we compared the proposed
BGOT tree to an Ada-boost [14] method and a flat SVM [9] on a fish image set [36].

2.2 Hierarchical classification approach
Given a set of samples {xi}ni=1, the feature vector fi = {fi,1, ..., fi,m} denotes the m feature
values for sample xi. Let {yi}ni=1 indicate the class label of xi, and yi ∈ {1, ..., c} where c is
the number of classes. Our aim is to construct a classifier h which uses the feature fi as input
to predict the class label ỹi = h(fi) that maximizes the classification accuracy.

A hierarchical classifier approach hhier is designed as a structured node set. Fundamentally,
a node is defined as a triple: Nodet = {IDt, F̃t, Ĉt}, where IDt is a unique node number,

Version 1.0; 2012-11-01 Page 7 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 5: Automatically generated tree (BGOT), the hierarchical example tree of 10 classes
(C1, ..., C10).

F̃t ⊂ {f1, ..., fm} is a feature subset chosen by a feature selection procedure that is found to
be effective for classifying Ĉt, which is a subset of classes and their groups. We only consider
binary splits at the upper levels so each node has at most two groups. All samples that are
classified as the same group will be transmitted into the same child node for later processing.
An example with 10 classes is demonstrated in Figure 5, where the IDt and F̃t are illustrated in
each node and Ĉt is described as local groups.

2.2.1 Heuristic method

We proposed two heuristics for how to organize a single classifier and construct a hierarchical
tree with higher accuracy.

1. Arrange more accurate classifications at a higher level and leave similar classes to deeper
layers.

2. Keep the hierarchical tree balanced to minimize the max-depth and control error accumu-
lation.

Rule 1 recommends how to assign the single classifiers to a hierarchical tree. We consider
the balanced tree Tb in Figure 6(a) with sample number ni. This tree has 4 classes {c1, c2, c3, c4}
and each single classifier has a different accuracy {p1, p2, p3}. The average accuracy is cal-
culated as p1 ∗ 1

2
(p2 + p3) assuming all classes have equal magnitude. The best accuracy

is achieved by assigning the most accurate classifier to node ID1. Generally, the result of a
balanced hierarchical tree of N nodes has depth log2N and average accuracy:

Pb =

log2N∏
i=1

P̃i =

log2N∏
i=1

1

2(i−1)

2i−1∑
s=2(i−1)

ps (1)

Version 1.0; 2012-11-01 Page 8 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

(a) Balanced tree Tb (b) Unbalanced tree Tu

Figure 6: Examples of hierarchical trees.

where ps is the accuracy of node s and P̃i is the average accuracy of all nodes in layer i. The
hierarchical tree achieves better accuracy if we choose the more accurate classifiers at higher
layers which equates to assigning these nodes a higher weight. In the future, we will think more
about how to construct the hierarchical tree if classes are not at equal size.

Rule 2 is explained by comparing two sample trees: a balanced tree Tb and an unbalanced
tree Tu. These examples are shown in Figure 6. Let us assume each class has the same number
of samples ni and each classifier has an equal accuracy p. In Tb, each class is classified with an
accuracy p2, while the average accuracy in Tu is 1

4
(p + p2 + 2p3). We can prove that Pb > Pu,

for 0.5 < p < 1. To generalize, a balanced tree of N nodes has average accuracy:

Pb = plog2N (2)

and unbalanced accuracy:

Pu =
1

N
(
N−1∑
i=1

pi + pN−1) (3)

for 0.5 < p < 1, Pb > Pu. Thus a more balanced hierarchical tree with log2N depth suppresses
error accumulation, and achieves better accuracy than an unbalanced tree.

2.2.2 Algorithm of generating BGOT

The BGOT is based on the two heuristics of the last section: keep the hierarchical tree balanced
and optimize the performance by putting more accurate nodes at the top layers. In the fish
recognition task, some species of fish are more similar than others and the similarity is summa-
rized from the confusion matrix. We illustrate the algorithm of generating BGOT below:

Version 1.0; 2012-11-01 Page 9 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 7: Top 10 species of fish in underwater videos.

Input: class C1 to Cn
begin c := [C1, ..., Cn]
level := 0
construct(c, level);

where
proc construct(c, n) ≡

if n > MAXDEPTH then exit fi;
comment: find the best binary split of given classes on whole feature set;
[cLeft, cRight] := ChooseSplit(c);
comment: The ChooseSplit function splits the class set into equal-size subsets;
featureSet = FeatureSelection(cLeft, cRight);
comment: the minimum splitting is set to 3 to limit the max depth;
if size(cLeft) > 3 then

construct(cLeft, n+ 1)
fi;
if size(cRight) > 3 then

construct(cRight, n+ 1)
fi;

end
An example BGOT is shown in Fig 5, where 10 classes are arranged into 3 layers. The first

layer splits all classes into two groups: C1, C2, C4, C7, C8 and C3, C5, C6, C9, C10. Then it
chooses the feature subset to maximize the average accuracy of these groups. This procedure
keeps on until all groups have less than 4 classes.

2.3 Experiment with fish recognition
Our data is acquired from a live fish dataset with 3179 fish images of the 10 different species
shown in Figure 7. This figure shows the fish species name and the numbers of images. As can
be seen, the data is very imbalanced where the first two species account for 2564 images. The
fish detection and tracking software described in [36] is used to obtain the fish images. The fish
species are manually labeled by following instructions from marine biologists.

Figure 2.3 shows some hard fish examples: blurred, occlusion by other fish or background

Version 1.0; 2012-11-01 Page 10 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 8: Hard fish examples.

objects, which include coral, the sea flower and open sea.

2.3.1 Feature extraction

After constructing the fish dataset, some pre-processing procedures are undertaken to improve
the recognition rate. The Grabcut algorithm [39] is employed to segment fish from the back-
ground, which is initialised based on the segmentation obtained from the fish detection. We
align the fish images to the same direction before further processing. This procedure is carried
out based on a streamline assumption, which assumes that most fish have a smoother head than
tail because fish need a more frictional tail (caudal fin) to swim and help them keep balance.
We calculate the fish orientation by weighting each contour pixel with its local curvature scale,
and we use this algorithm to align all fish horizontally where the head of the fish is located
on the right. In order to find the tail side, we smooth the fish boundary with a Gaussian
filter to eliminate some noise, and then calculate the curvature of each boundary pixel as
following [22, 34]:

κ(u, σ) =
Xu(u, σ)Yuu(u, σ)−Xuu(u, σ)Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2))
3
2

(4)

where Xu(u, σ)/Xuu(u, σ) and Yu(u, σ)/Yuu(u, σ) are the first and the second derivative of
X(u, σ) and Y (u, σ), respectively; X(u, σ) and Y (u, σ) are the convolution result of 1-D
Gaussian kernel function g(u, σ) with fish boundary coordinates x(u) and y(u). However, the
pixel curvature is sensitive to local corners and we normalize it using the logarithm function:

κnormalize =

{
log(κ) if κ ≥ 1

−log(2− κ) if κ < 1
(5)

The fish boundary coordinates are weighted by their local curvature and the vector from
the center of mask to the curvature weighed center estimates the tail orientation. A typical
fish orientation procedure is illustrated in Figure 9. The fish orientation method achieves 95%
accuracy using 1000 manually labeled fish images. Finally, every fish image is divided into four
parts (head/tail/top/bottom) according to the relative positions from the fish center.

After this, 66 types of feature are extracted. These features are a combination of color,
shape and texture properties in different parts of the fish such as tail/head/top/bottom, as well
as the whole fish. We use normalized color histogram in the Red&Green channel and the Hue
component in HSV color space. These color features are normalized to minimize the effect of
illumination changes. We recompute the range of every bin according to the average distribution
over all samples and map them into a 11-bin histogram to take full advantage of all bins:

B̃i =

ai+1∑
j=ai

Bj s.t. ai = min{X ∈ N+ | ΣX
j=1Bj ≥

i

11
} (6)

Version 1.0; 2012-11-01 Page 11 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

(a) . (b) . (c) . (d) .

Figure 9: Fish orientation demonstration: (a) original fish image; (b) fish boundary after
gaussian filter; (c) curvature along fish boundary; (d) oriented fish image.

where Bj, j ∈ {1, ..., 50} is the original color histogram bin, Bj, j ∈ {1, ..., 50} is the averaged
histogram over all samples and B̃i, i ∈ {1, ..., 11} is the recomputed bin.

In order to describe the fish texture, we calculate the co-occurrence matrix, Fourier descrip-
tor and gabor filter. The grey level co-occurrence matrices describe the co-occurrence frequency
of two grey scale pixels at a given distance d [47]:

C∆u,∆v(i, j) =
n∑
p=1

m∑
q=1

{
1 if I(p, q) = i and I(p+ ∆u, q + ∆v) = j

0, otherwise
(7)

The frequency is calculated for several orientations λ. We compute Contrast, Correlation,
Energy, Entropy, Homogeneity, Variance, Inverse Difference Moment, Cluster Shade, Cluster
Prominence, Max Probability, Auto correlation, Dissimilarity. These 12 features are useful as
they are the most commonly selected features by the feature selection procedure.

Histogram of oriented gradients and Moment Invariants, as well as Affine Moment Invari-
ants, are employed as the shape features. Furthermore, some specific features like tail/head area
ratio, tail/body area ratio, etc. are also included. All features are normalized by subtracting the
mean and dividing by the standard deviation (z-score normalized).

2.3.2 Hierarchical classification

As the SVM is firstly designed for binary classification problems, we introduce a one-vs-one
strategy with a voting mechanism to convert the binary SVM into a multi-class classifier [9].
Based on the multi-class classifier, we designed two classifiers (see Figure 5):

1. A flat SVM classifier, which classifies all 10 classes simultaneously, is implemented as a
baseline classifier.

2. An automatically generated tree (BGOT) is designed by recursively choosing a binary
split which has the best accuracy in given classes. We choose binary splitting to keep the
tree balanced.

An Ada-boost method [14], which boosts on individual features, is also implemented as a
comparison method.

2.3.3 Results and analysis

The experiment is based on 3179 fish images with a 6-fold cross validation procedure. The
training and testing sets are isolated so fish images from the same trajectory sequence are not

Version 1.0; 2012-11-01 Page 12 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

used during both training and testing. Sequential forward feature selection is applied at each
node. We then train a customized classifier at each node for specific classes. Results are listed
in Table 1 where the AP and AR results are averaged over all classes rather than over all fish.
This is because of the greatly unbalanced class sizes.

The accuracy of a classification system is evaluated as Average Recall (AR), Average Preci-
sion (AP) and Accuracy over Count (AC). Generally, given True Positive / False Positive / False
Negative, the AR is defined as:

AR =
1

c

c∑
j=1

(
TruePositivej

TruePositivej + FalseNegativej
) (8)

where c is the number of classes. The second score is Average Precision (AP) over all species. It
is the probability that the classification results are relevant to specified species, as shown below:

AP =
1

c

c∑
j=1

(
TruePositivej

TruePositivej + FalsePositivej
) (9)

The third metric is the accuracy over all samples (Accuracy over Count, AC), which is
defined as the proportion of correct classified samples among the whole dataset. The AC is
calculated as following:

AC =

∑c
j=1 TruePositivej∑c

j=1(TruePositivej + FalsePositivej)
(10)

We compare the hierarchical classification against the Ada-boost method (75.3% AR) and
flat SVM classifier (86.3% AR). The automatically generated hierarchical tree (BGOT), which
chooses the best splitting by exhaustively searching all possible combinations while remaining
balanced, achieves an AR of (90.0%). The search procedure takes several hours and a possible
improvement is to integrate the hierarchical method with domain knowledge like taxonomy,
which helps organize similar species for later processing, instead of exhaustive searching. In the
average precision (AP) score, the proposed BGOT method is about 6% better than the baseline
SVM method, which are 85.8% and 91.7%, respectively. The Ada-boost method is 76.9% in
AP. The AC score of BGOT is tested in a t-test with 95% confidence of significant improvement
than the SVM method and Ada-boost method. We calculate the average AC rates at each level
in the hierarchy (BGOT): 0.977 (Level 1), 0.9725 (Level 2), 0.950 (Level 3).

Algorithm AR AP AC
Ada-boost 0.753 ± 0.091 0.769 ± 0.092 0.923
Flat SVM 0.863 ± 0.052 0.858 ± 0.061 0.934

BGOT method 0.900 ± 0.042 0.917 ± 0.045 0.950*

Table 1: Fish recognition result. * means significant improvement with 95% confidence.

The individual class recall/precision is shown in Figures 10 and 11. The hierarchical ap-
proach achieves a better accuracy than the flat SVM classifier because it arranges the similar
species (1,4,7) into the same group and adds fish-tail features to distinguish these species.

Version 1.0; 2012-11-01 Page 13 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 10: Recall of 10 species. The BGOT method is better than the baseline method.

Figure 11: Precision of 10 species. The BGOT method is better than the baseline method (class
4 is an exception, and is discussed in the result section).

Version 1.0; 2012-11-01 Page 14 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

3 Fish Clustering

3.1 Introduction
Fish Clustering has as its main purpose to support the fish annotation process. In [5], we show
that it is much faster to annotate images by using clustering methods. In [5], we used the
clustering method proposed in [15] on the basis of the Information Bottleneck proposed in [17],
which will be discussed in the coming section. Based on our experience with the clustering
methods [15], we discover that given the amount of data that we would like to annotated, we
quickly run into scalability issues.
There are several reasons to perform image retrieval on such a database: Firstly, biologists are
interested in searching for rare fish species (where there are not many training images available
of such a species, making machine learning methods less suitable). Secondly, the annotation
of fish species can be supported by an image retrieval method, where annotators only have to
indicate if fish belong to the same species which makes this task faster and easier to perform.
Thirdly, given that a large set of images is annotated, this system can also be used for fish
recognition, where it searches quickly for similarly annotated fish. For biologists, it is easy to
improve the accuracy of this system by adding newly annotated fish images to the set in case of
mistakes.
The proposed fish clustering method should be able to deal with low resolution images. One
of the problems is that the features of unknown fish that need to be annotated are not always
known, making feature selection not an option. Instead, we propose a nearest neighbor search
methods that scales for large datasets, is able to deal with low resolution images and is very
flexible with comparing unknown features. In section 3.2, a literature study is performed.
Section 3.3.1 explains the Information Bottleneck as a distance measure between feature sets.
In Section 3.3.2, examples of the feature extraction with the Information Bottleneck are given.
Section 3.3.3 describes the method to obtain the binary codes for indexing based on this distance
measure. Experiments are performed in Section 3.4 with a large dataset of low resolution fish
images which shows the best results in image retrieval with the Information Bottleneck.

3.2 Literature Review
Low resolution images are very common in video surveillance, medical imaging and microscopy,
however in image retrieval most methods are focussed on higher resolution images. Most image
retrieval methods use SIFT (like) features [32], which do not appear frequently enough in low
resolution images to be useful. Another problem in image retrieval is that most bag-of-feature
methods [28] [25] perform quantization using a training set. Using vector quantization, a lot
of information about the original features is lost and unseen features in the training set might
not be represented at all. Of course, other features can be extracted from the low resolution
images. This however often requires domain specific knowledge about which features are
important. In image retrieval, this knowledge is not always available and a training dataset
to obtain this knowledge is usually not representative enough. The purpose of image retrieval is
often to discover if similar images of unseen categories are in large datasets, where there is no
knowledge of these unseen categories anyway.
In order to quickly search these large datasets, several approximate nearest neighbor search

Version 1.0; 2012-11-01 Page 15 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

algorithms can be applied to solve this problem. Examples of approximate nearest neighbor
search methods are the kd-tree used in [32] and the inverted file system [25]. These approaches
can achieve good results if there are distinctive SIFT features, which is not the case for low
resolution images. Locality Sensitive Hashing (LSH) [16] [2] allows us to retrieve feature
vectors with a small Euclidean distance from the query feature vector. Because there are not
many distinctive features, LSH allows us to search for combinations of features, which are
probably distinctive. However, the underlying Euclidean distance between feature vectors used
in LSH does not allow us to indicate the importance of certain features.
There are many improvements for LSH. Semantic hashing is proposed in [42], where each item
in that dataset is represented by a binary code and a feedforward neural network is trained to
calculate the binary code for a novel input. Other machine learning approaches are pursued to
obtain compact codes by using Adaboost [31]. Recently, Spectral Hashing [54] was proposed
to obtain optimal bitstrings given a training set of feature vectors. One problem with image
retrieval is that it is very difficult to obtain a training set that is representative of the entire
dataset.
For this reason, our method uses a different distance measure that does not rely on training.
This work is inspired by the Information Bottleneck described in [31] and applied to image
clustering in [17], where sets of features are compared instead of feature vectors. There is other
related work using the Information Bottleneck for feature selection to cluster videos in [23]
and to improve quantization of the codebook for image retrieval in [27]. Our method uses the
approach presented in [17], and our main contribution is to extend this so it can be used in image
retrieval, explaining how to obtain binary codes that allow us to index the images. We show that
the information bottleneck can be used with low resolution features (like colour, texture and
contours) to perform image retrieval on low resolution images.

3.3 Methodology
The Information Bottleneck is the underlying theory behind this method, where it is used as
a distance measure between images. To use this distance measure, we need to obtain sets of
features from the images and models that can describe the features. Gaussian Mixture Models
obtained from the feature sets allow us to compute the distance measure between images, which
can be used to rank the images. However, in image retrieval, datasets are often too large to
compute the distance between all images with a query image. For this reason, hash functions
(LSH) are proposed to compute codewords, which allows fast indexing of the dataset. Given a
query, fast retrieval of a subset of promising images is then possible, so only the images in the
selected subset are ranked using the Information Bottleneck distance measure.

3.3.1 Information Bottleneck

In this work, the Information Bottleneck principle is used as a distance measure between images.
We were inspired by [17] and use a similar notation in order to explain this algorithm. Given
a joint distribution p(x, y) on the “model” space X and the “feature” space Y , Goldberger et
al. [17] find a clustering X̂ that minimizes the information loss I(X; Y) − I(X̂; Y), where
I(X; Y) is the mutual information between X and Y . In this work, the information loss is
used as a distance measure to obtain the ranking between a queried image and retrieved images.

Version 1.0; 2012-11-01 Page 16 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 12: The color, texture and contour features of the fish images: In the columns, the
segmented fish images, the magnitude of the Canny edge detector and the Curvature Scale
Space of the contour are shown respectively.

Given two models x1 and x2, the information loss due to merging the models is given by:

d(x1, x2) = I(Xbefore; Y)− I(Xafter; Y) (11)

In this case, I(Xbefore; Y) gives the mutual information of each model describing the feature
before merging the models. Xbefore can be seen as modeling the features with p(y|x1) and
p(y |x2) separately and I(Xafter; Y) is the mutual information afterwards. Xafter can be seen
as modeling the features if you combine p(y|x1 ∪ x2). According to Goldberger et al. [17] this
gives:

d(x1, x2) =
∑
y,i=1,2

p(xi, y) log
p(xi, y)

p(xi)p(y)

−
∑
y

p(x1 ∪ x2, y) log
p(x1 ∪ x2, y)

p(x1 ∪ x2)p(y)
(12)

=
∑
i=1,2

p(xi)D(p(y|xi)‖p(y|x1 ∪ x2)) (13)

In this case, D(f‖g) is the Kullback-Leibler (KL) divergence and this equation is similar to the
Jenson-Shannon divergence and can be used as a distance measure. In the next section, we will
discuss how to obtain both the features and the models from the fish images.

3.3.2 Feature Extraction

In order to compare fish images, there are three important features according to biologists,
namely the color of the fish, the texture of the fish (stripes, spots, etc) and the contour of the
fish. We show that all these different features can be converted into the same representation.
We start with a set of segmented fish images from a fish detection algorithm [47], shown in

Version 1.0; 2012-11-01 Page 17 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Figure 12. We compute the coordinates of the bicone HSL (Hue,Saturation,Light) colour space
for all segmented pixel values, which gives a set of color values together with their image
locations. The location values of the colors are normalized based on the center and size of
the segmentation. For the texture, we compute the Canny edge detector on all pixel values,
giving us a set of magnitude and orientation values of the edges together with their normalized
location values. Given the contour of the fish, we compute the Curvature Scale Space (CSS)
described in [1] giving us the graph shown in Figure 12 (third column). At the moment, the fish
images are not rotated or flipped in order to obtain a standard swimming direction, because we
assume that the dataset is large enough to find the same fish in almost any similar swimming
direction. These feature sets are modeled by a mixture of Gaussians like [17]. A set of features
Y π = {y1, ..., yn} is coupled for each different feature space π i.e. colour, texture, contour.
For the different feature spaces, both the dimensions of yi and the number of values ‖Y ‖ can
be different. For clarity, we give an intuition of our method on a single feature set and for this
reason leave out π in most equations. We model each set of features with a Gaussian Mixture
Model (GMM) f(y|x). Using the Expectation-Maximization described in [56], the GMMs are
computed using the Minimum Description Length to determine the number of Gaussians k.

f(y|x) =
kx∑
j

αx,jN(y, µx,j,Σx,j) (14)

Equation 14 gives the Gaussian Mixture Model, kx is the number of mixtures for model x. The
variables αx,j , µx,j , Σx,j are respectively the weight, the mean and covariance for each Gaussian,
which are estimated from the values Y .

Figure 13 shows the GMMs obtained from the color values of different fish images. These
are however five dimensional features (color and location values). The second column in
Figure 13 shows the Gaussians as ovals, where the color is the mean color of that Gaussian at its
normalized position. In the third column in Figure 13, the three dimensional bicone HSL space
is shown where we plot an ellipsoid for each Gaussian with its mean color. For texture, we can
perform the same operation as for colour because it is on a pixel basis, however, converting the
CSS into a GMM is not obvious. For the CSS, the region under the curves are filled (Figure 14
shows that the CSS curves look similar to a Mixture of Gaussians). By sampling from these
curves, we obtain a GMM which models the CSS. Using the GMM, both features Y and models
X are obtained which makes it possible to use the information loss described in the previous
section.

To compute the similarity between fish, we can now compute the similarity between their
models x1, x2 on the data y. This distance can be written as following:

d(x1, x2) =
∑
i=1,2

D(f(y|xi)‖f(y|x1 ∪ x2)) (15)

In this case, we assume that a uniform prior probability on p(xi) (see Equation 13) allowing
us to leave this term out of Equation 15 . This distance measure can also be used for more
than one image by combining GMMs. This gives the flexibility to compare sets of images with
each other using this distance measure. In the case of video surveillance, objects are usually
visible in multiple frames which allows us to combine the appearances of the objects in multiple
frames.

Version 1.0; 2012-11-01 Page 18 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

−2.5 −2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 13: The Gaussian Mixture Models of the colors. The fish images are in the first column.
The second column shows the GMMs where the oval indicate the mean and covariance in
position combined with average color of each Gaussian and where the thickness of the lines
indicates the weight αx,j of the individual Gaussians. The third column shows the ellipsoid
for each Gaussian in the bicone shaped HSL color space, where the cube corners indicates the
locations of some primary colors.

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

Figure 14: The Gaussian Mixture Models of the Curvature Scale Space of the fish image (first
column). In the second and third column, the original CSS representation and the filled curves
are shown. The final column gives the estimated GMMs based on the filled curves.

Version 1.0; 2012-11-01 Page 19 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

To compute the KL divergence between two mixtures of Gaussians f and g, a Monte-Carlo
simulation is used, because there is no closed-form expression. The KL-divergence for f and g
is given by

D(fg) =
1

n

n∑
t=1

log
f(yt)

g(yt)
(16)

where y1, ..., yn are sampled from the GMM f(y). Notice that this gives the ability to compute
a distance between two feature sets modeled by GMMs. To incorporate multiple feature spaces,
the sum is taken over all the distances between the different sets of features and models.
However, computing the distance between each image in the dataset is not feasible in a large
dataset, so we use Locality Sensitive Hashing for indexing.

3.3.3 Codeword extraction

In Locality Sensitive Hashing (LSH), there are multiple ways to compute a codeword from a
feature vector. One of the most common ways to obtain a single bit given the feature vector v
is h(v) = bav+b

R
c. In this case, both the vector a and b are randomly chosen for each bit, where

a is vector with the same dimension as v from a stable distribution and b is a real number from
a uniform distribution over the range [0, R] and R is the expected range of the feature vector.
In [54], the following requirements for the function h to compute the bits are given: (1) the
function has to be easily computed for new images, (2) the function requires small numbers of
bits to code the full dataset and (3) similar items get similar codewords by the function.
In the previous section, a GMM x is computed for every fish image. Given a random point yr in
the feature space Y , we can compute the probability f(yr|x) > t and together with a threshold t,
this will give us a binary decision, performing this operation multiple times gives us codewords.
This already satisfies both requirements (1) and (3). Because the computation of the probability
given a GMM is very easy and, given similar fish images, we expect that if the GMMs of these
fish images are quite similar that this also gives a similar probability. A more formal definition
of our hash function is given as follows:

h(f) = log f(yπrr |xπr) > t (17)

For the hash function h(f), r denotes index of a randomly properties that are randomly chosen,
meaning yπrr is a single random feature value of a certain feature set of a randomly chosen
feature space πr (i.e. colour, texture, contour) and xπr is the GMM that models that randomly
chosen feature space. In LSH with a feature vector v, a hash function h(v) is used to index
images allowing the fast retrieval of other feature vectors with a small Euclidean distance. In
this method, the distance between GMMs f is used, so a hash function h(f) is computed for
indexing which allows fast retrieval of potentially similar GMMs. The log of the GMM is used
in the hashing function and the threshold t can be set randomly. However, better results can be
obtained by using a set of images to obtain a threshold t where h(f) has 50 % chance of being
zero or one, making the bit more efficient which allows us to satisfy requirement (2).
One of the advantages of this method is that there is a clear relationship between the bit and
the feature space, because the bit encodes the likelihood that a certain random feature yr is
part of the model x. When using LSH [2], instead of extracting a single bit, multiple bitstrings
are extracted. Similar bitstrings mean that multiple features are represented similarly by the
models. Based on L bitstrings each with length of K, the nearest neighbor search with LSH

Version 1.0; 2012-11-01 Page 20 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

is performed. Here we give a brief overview of LSH [2]: For each bitstring, a hash table is
created allowing fast retrieval of the same bitstring. However because images are never exactly
the same, bitstrings might be slightly different, so searching L bitstrings enlarges the chance of
finding similar images, where both K and L are parameters that can be tuned. Given the set
of retrieved images using this algorithm, which is a small subset of the entire set, we compute
information loss given in Equation 15 between all those retrieved images and the query image
allowing us to rank the images based on the information loss.

3.4 Experiments
3.4.1 Comparison

The Information Bottleneck method is compared to two other methods: the first method is the
standard bag-of-features method using the VLFeat implementation [53] to obtain a normalized
histogram of SIFT features. This normalized histogram is then used as a feature vector into
LSH and the Euclidean distance is computed to determine the ranking. The problem is however
that in low resolution images (especially the fish images used in this work) there are often only
a small number of SIFT features and in some cases there are no features at all. We decided not
to query the images where no features are detected, while for the other methods, all the images
in the dataset are queried. The second method is LSH combined with a feature vector made up
of properties used for fish recognition. In this case, the shape of the fish is used to determine
the head and tail and align the fish images. Using both more specialised texture and contour
features of the aligned fish and color histograms in certain regions (head, tail, top, bottom, entire
segmentation), a feature vector is created to describe each fish. This feature vector is then used
in LSH and the Euclidean distance is used to rank the fish images. For LSH, the bitstring length
and number of hash tables are respectively, K = 24 and L = 30, and are used for both the
described methods above and the Information Bottleneck method.
We created two versions of the Information Bottleneck method for image retrieval. The first
version of this method uses only a single GMM of colour (HSL) values together with their
normalized location values in the images. The second version of this method uses multiple
GMMs, which include both the colour values with their normalized location values, texture
(Canny) with normalized location values and contours (CSS).

3.4.2 Dataset

The dataset is a low resolution fish image database, where the average fish image size is
78 × 82 and the average numbers of pixels of the segmented fish is 1003. These images
are obtained from underwater cameras which are monitoring a coral reef environment. These
cameras are recording every day, giving us a very large database of interesting video material.
Background subtraction together with tracking techniques are used to extract fish images from
the videos [47]. 1955 trajectories of fish are detected. This database has 20074 labeled fish
images, where a lot of images (11310) are also annotated as “bad image”, because of blurring
effects in the water and the low resolution of fish in the images which made it impossible to
determine the exact species. There are 43 different fish species in this database, where the
distribution of species varies greatly. A couple of species appears very often (e.g. clownfish),
but there are also around 20 very rare species. The dataset is in reality much larger than the

Version 1.0; 2012-11-01 Page 21 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

10 20 30 40 50 60 70 80 90 100
0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

K Nearest Neighbors (Best Ranked Images)

M
ea

n
A

ve
ra

ge
P

re
ci

si
on

Bag of Features

Domain Specific Feature Vector

Information Bottleneck (only color)

Information Bottleneck (all features)

Figure 15: The mean average precision of all methods, where the Information Bottleneck with
all features performs best.

20074 fish images, but this number of images is annotated at the moment.

3.4.3 Methodology of Experiments

In the previous section, an information retrieval method is described, where we are interested
in the number of similar fish which can be found by querying with a certain fish image. In
our method, the fish images are ranked, where we like to obtain images of the same species
in the high ranks if we search for a certain species. There are also many “bad images” in the
database, so if we search for a bad image, we would like to retrieve “bad images” instead of fish
allowing us to discard these images. In order to evaluate these image retrieval algorithms, we
query with all the images of a trajectory in the entire dataset, where we perform a leave-one-out
experiment removing all images of that trajectory from the dataset. Querying with all images
of a trajectory makes all methods more robust against the very uncontrolled movements of the
fish. To compute the distances of the multiple fish images in the trajectory, we sum over the
individual distances for all methods. The mean average precision curves are calculated for all
methods and are plotted in Figure 15, which shows the average precision in retrieval given the
best k ranked images for different values of k. The ideal retrieval function has precision 1.0 for
all values of k.

3.4.4 Results

Figure 15 shows that the Information Bottleneck on all features performs better than the other
compared methods. In the case of the Information Bottleneck on all features, subsets from the
LSH algorithm (see Section 3.3.3) are obtained with an average of 148 fish images in them. The
feature vector created for fish recognition is stable and works well with the Euclidean distance.
This feature vector, however, takes into account a lot of domain specific assumptions. The
Information Bottleneck on the colour set has almost the same performance by only taking into
account the pixel values and positions in the image, which did not require any domain specific

Version 1.0; 2012-11-01 Page 22 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

Query Retrieval (Best Ranking)

Figure 16: Some results given the query images on the left hand side: The first rows shows the
10 neighbors of the clown fish image (there are many images of clown fish in our database), the
third row show results of querying a “bad image”, the final row shows that incorrect fish images
are also sometimes found.

assumptions. The performance of SIFT with the bag-of-features method indicates that another
direction was necessary to solve the problem of image retrieval on low resolution fish images.
In Figure 16, the results of the queries (10 best ranked images) for a single fish image are
shown, where there are both query results on fish images (first two and last two rows) and a
“bad image” (middle). The annotation of “bad image” is important, because not all images are
useful for species classification and this allows us to estimate which images are good enough.
The clown fish appears very often in our dataset, which is why the retrieved images look very
similar to the query image, although they are from different trajectories. The similarity arises
because: 1) many fish, 2) fixed camera, 3) typical fish behaviour, 4) location based feature
model. The two fish at the bottom of Figure 16 are less common. The query time of the method
depends on the size of the dataset, however querying from the 20074 fish image is on the order
of milliseconds. Queries on a dataset of 393.101 fish images take around a second using a single
desktop computer.

3.5 Application
In the fish4knowledge project, fish clustering is mainly used for annotation of fish species.
A web interface has been developed to support the annotation of different species. Some
screenshots of the two main interfaces are shown in Figure 17(a) and 17(b). For the first
interface, we use the cleaning interface shown in Figure 17(a). In this case, the representative
cluster image is shown at the top of the screen and the rest of the images in that cluster are
put under this image. The user only has to select the images which are not correctly clustered
(where the fish species label is not similar to the label in the representative cluster image) and
continue to the next interface. In the second interface, users link the clusters to labels using the
representative images (image on top in first interface). Notice that by linking these images, we
also immediately link the images that belong to the underlining clusters. The second interface
shown in Figure 17(b) is used to link the representative image either to one of the previous

Version 1.0; 2012-11-01 Page 23 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

(a) The first interface to remove images from the cluster
by clicking on the image that does not belong to the
same label as the representative image in the top row

(b) The second interface to link the image in the top
row to a label by clicking on one of the gallery images
which belonging to the same label or add a new label by
pressing the green plus button

Figure 17: Annotation interfaces

(a) The first interface allows you to choose a random
fish to see if similar fish can be found in the dataset

(b) The second interface put the selected picture of the
fish on top and shows in an ordered way similar fish that
in found in the dataset. Average query time is around 1
second

Figure 18: Query interfaces

representative images of a label or the user will create a new label by pressing the green plus
button.
At the moment, these clusters are determined offline and are loaded into a database. We have
however developed a webinterface (Figure 18) for searching for similar fish by clicking on the
fish images which are interesting. The first interface (Figure 18(a)) in this case shows a random
selection of the fish in our dataset, by clicking on a fish image the method searches for all the
similar fish in a dataset of 393101 image of fish (Figure 18(b)). The normal query time is around
1 second which is what is expected from these kind of webpages. In the future, the plan is to
combine both interfaces, allowing us to search and label at the same time, so we can focus more
on the uncommon fish.

Version 1.0; 2012-11-01 Page 24 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

4 Conclusion
In this document, we have presented both a fish recognition and clustering method. Both
methods are already used in the Fish4Knowledge system, where we currently perform fish
recognition in our system based on the methodology presented in Section 2, which has already
processed 18,475,001 fish images (result from 1 November 2012), which are stored in our
database server in Taiwan. The fish clustering methods are actively being used for annotation,
which provides us with a growing set of fish images for both training and evaluation purposes.
At the moment, using clustering 303,625 annotations has been performed by users, however to
obtain accurate annotation multiple annotation of users have to be combined giving us a set of
around 28,264 usable annotated fish images covering about 40 species. In this case, we ignore
the images that are filtered out for reasons of occlusions by coral or other fish, bad quality
images, etc.

4.1 Future Work
In our future work, we hope to improve the accuracy of both methods even further where
especially the increasing size of annotated images help us to make more robust classifiers for
fish recognition. Another topic which requires more work is the discovery of species that have
not been seen before by our classification methods. In the recorded videos, certain fish are very
common, while a large percentage of the fish is so rare that we only have a couple of recordings.
Techniques are being developed to find the rare fish (so to not classify them incorrectly) and
using nearest neighbor search to find similar fish images allowing us to build models for these
kinds of fish to classify them in the future.

References
[1] Sadegh Abbasi, Farzin Mokhtarian, and Josef Kittler. Curvature scale space image in

shape similarity retrieval. Multimedia Syst., 7(6):467–476, November 1999.

[2] Alexandr Andoni and Piotr Indyk. Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Commun. ACM, 51(1):117–122, January 2008.

[3] D. R Blidberg. The development of autonomous underwater vehicles (AUVs); a brief
summary. In IEEE International Conference on Robotics and Automation, volume 4,
2001.

[4] B. Boom and R. Fisher. Fish4Knowledge deliverable d5.1 component interface and
integration plan, 2011.

[5] Bastiaan J. Boom, Phoenix X. Huang, Jiyin He, and Robert B. Fisher. Supporting ground-
truth annotation of image datasets using clustering. ICPR 2012, to appear.

[6] P. Brehmer, T. D. Chi, and D. Mouillot. Amphidromous fish school migration revealed
by combining fixed sonar monitoring (horizontal beaming) with fishing data. Journal of
Experimental Marine Biology and Ecology, 334(1):139–150, June 2006.

Version 1.0; 2012-11-01 Page 25 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

[7] M. J. Caley, M. H. Carr, M. A. Hixon, T. P. Hughes, G. P. Jones, and B. A. Menge.
Recruitment and the local dynamics of open marine populations. Annual Review of
Ecology and Systematics, 27:477–500, January 1996.

[8] Silla Carlos and Freitas Alex. A survey of hierarchical classification across different
application domains. Data Mining and Knowledge Discovery, 22(1-2):31–72, 2010.

[9] Chang Chih-Chung and Lin Chih-Jen. LIBSVM: a library for support vector machines.
ACM Trans. Intell. Syst. Technol., 2(3):1–27:, 2011.

[10] G. C. Daily. Nature’s services: societal dependence on natural ecosystems. Island Pr,
1997.

[11] Jia Deng, Alexander Berg, Kai Li, and Li Fei-Fei. What does classifying more than 10,000
image categories tell us? In ECCV, volume 6315, pages 71–84. 2010.

[12] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet: a large-scale
hierarchical image database. CVPR, pages 248 –255, 2009.

[13] M. Dunbabin, P. Corke, I. Vasilescu, and D. Rus. Data muling over underwater
wireless sensor networks using an autonomous underwater vehicle. In IEEE International
Conference on Robotics and Automation, page 2091–2098, 2006.

[14] Y. Freund and R. E. Schapire. A Decision-Theoretic generalization of on-Line learning
and an application to boosting. Computational Learning Theory, 904:23–37, 1995.

[15] Brendan J. Frey and Delbert Dueck. Clustering by passing messages between data points.
Science, 315(5814):972 –976, February 2007.

[16] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search in high dimensions
via hashing. In Proceedings of the 25th International Conference on Very Large Data
Bases, VLDB ’99, pages 518–529, San Francisco, CA, USA, 1999. Morgan Kaufmann
Publishers Inc.

[17] J. Goldberger, S. Gordon, and H. Greenspan. Unsupervised image-set clustering using
an information theoretic framework. IEEE Trans. on Image Processing, 15(2):449–458,
February 2006.

[18] R. M. F. Gomes, J. B Sousa, and F. L Pereira. Modeling and control of the IES project
ROV. In European Control Conference, pages 3436–3441, Cambridge, UK, 2003.

[19] A. D Gordon. A review of hierarchical classification. J. Royal Stat. Soc., 150(2):119–137,
1987.

[20] G. G. Hall. Remote environmental sensor array system. PhD thesis, Queen’s University,
2007.

[21] S. Harsdorf. Contrast-enhanced optical imaging of submersible targets. In Proceedings of
SPIE, pages 378–382, Munich, Germany, 1999.

Version 1.0; 2012-11-01 Page 26 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

[22] X. C. He and N. H. C. Yung. Curvature scale space corner detector with adaptive threshold
and dynamic region of support. In Pattern Recognition, International Conference on,
volume 2, pages 791–794, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[23] Winston H. Hsu and Shih-Fu Chang. Visual cue cluster construction via information
bottleneck principle and kernel density estimation. In Proceedings of the 4th international
conference on Image and Video Retrieval, CIVR’05, pages 82–91, Berlin, Heidelberg,
2005. Springer-Verlag.

[24] K. Ishii, H. Takahashi, K. Oda, T. Kojima, H. Soeda, K. Takemoto, M. Hiwada, and
S. Sameshima. 3-D analysis of behavioral responses of aquatic life using stereo video
imagery. In OCEANS’98 Conference Proceedings, volume 1, page 267–271, 1998.

[25] Hervé Jégou, Matthijs Douze, and Cordelia Schmid. Improving bag-of-features for large
scale image search. Int. J. Comput. Vision, 87(3):316–336, May 2010.

[26] R. Larsen, H. Ólafsdóttir, and B. Ersbøll. Shape and texture based classification of
fish species. In Proceedings of the Scandinavian Conference on Image Analysis, page
745–749, 2009.

[27] Svetlana Lazebnik and Maxim Raginsky. Supervised learning of quantizer codebooks by
information loss minimization. IEEE Trans. Pattern Anal. Mach. Intell., 31(7):1294–1309,
July 2009.

[28] Svetlana Lazebnik, Cordelia Schmid, and Jean Ponce. Beyond bags of features: Spatial
pyramid matching for recognizing natural scene categories. In Proceedings of the 2006
IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Volume
2, CVPR ’06, pages 2169–2178, Washington, DC, USA, 2006. IEEE Computer Society.

[29] D. J. Lee. Contour matching for a fish recognition and migration-monitoring system. In
Proceedings of SPIE, volume 5606, pages 37–48, Philadelphia, PA, USA, 2004.

[30] R. Li, H. Li, W. Zou, R. G Smith, and T. A Curran. Quantitative photogrammetric
analysis of digital underwater video imagery. Oceanic Engineering, IEEE Journal of,
22(2):364–375, 1997.

[31] Yingyu Liang, Jianmin Li, and Bo Zhang. Learning vocabulary-based hashing with
adaboost. In Proceedings of the 16th international conference on Advances in Multimedia
Modeling, MMM’10, pages 545–555, Berlin, Heidelberg, 2010. Springer-Verlag.

[32] David G. Lowe. Object recognition from local scale-invariant features. In Proceedings of
the International Conference on Computer Vision-Volume 2 - Volume 2, ICCV ’99, pages
1150–, Washington, DC, USA, 1999. IEEE Computer Society.

[33] Charles Mathis. Classification using a hierarchical bayesian approach. volume 4 of Proc.
of ICPR, pages 103–106, 2002.

[34] F. Mokhtarian and R. Suomela. Robust image corner detection through curvature scale
space. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 20(12):1376–
1381, 1998.

Version 1.0; 2012-11-01 Page 27 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

[35] G. Nadarajan, Y. H Chen-Burger, and R. B Fisher. A knowledge-based planner
for processing unconstrained underwater videos. In IJCAI’09 Workshop on Learning
Structural Knowledge From Observations (STRUCK’09), 2009.

[36] G. Nadarajan, Y.-H. Chen-Burger, R.B. Fisher, and C. Spampinato. A flexible system for
automated composition of intelligent video analysis. Proc. of ISPA, pages 259–264, 2011.

[37] M. Okamoto, S. Morita, and T. Sato. Fundamental study to estimate fish biomass around
coral reef using 3-dimensional underwater video system. In OCEANS 2000 MTS/IEEE
Conference and Exhibition, volume 2, page 1389–1392, 2000.

[38] J. P. Queiroz-Neto, R. Carceroni, W. Barros, and M. Campos. Underwater stereo. In
Proceedings of the Computer Graphics and Image Processing, XVII Brazilian Symposium,
page 170–177, Washington, DC, USA, 2004. IEEE Computer Society. ACM ID: 1026250.

[39] Carsten Rother, Vladimir Kolmogorov, and Andrew Blake. GrabCut: interactive
foreground extraction using iterated graph cuts. ACM Trans. on Graphics (TOG), pages
309–314, 2004.

[40] A. Rova, G. Mori, and L. M. Dill. One fish, two fish, butterfish, trumpeter: Recognizing
fish in underwater video. In IAPR Conference on Machine Vision Applications, pages
404–407, 2007.

[41] B. P. Ruff, J. A. Marchant, and A. R. Frost. Fish sizing and monitoring using a stereo
image analysis system applied to fish farming. Aquacultural engineering, 14(2):155–173,
1995.

[42] Ruslan Salakhutdinov and Geoffrey Hinton. Semantic hashing. Int. J. Approx. Reasoning,
50(7):969–978, July 2009.

[43] R. A. Salam, A. O. Ee, and M. S. Hitam. Unsupervised Color Correction Using Cast
Removal for Underwater Images. World Scientific and Engineering Academy (WSEAS)
Transactions on Information Science and Applications, 2004.

[44] Y. Y. Schechner and N. Karpel. Clear underwater vision. In Computer Vision and Pattern
Recognition, IEEE Computer Society Conference on, volume 1, pages 536–543, Los
Alamitos, CA, USA, 2004. IEEE Computer Society.

[45] R. Schettini and S. Corchs. Underwater image processing: state of the art of restoration
and image enhancement methods. EURASIP J. Adv. Signal Process, 2010:14:1–14:7,
January 2010.

[46] C. Spampinato, Y.-H. Chen-Burger, G. Nadarajan, and R. B Fisher. Detecting, tracking
and counting fish in low quality unconstrained underwater videos. In 3rd International
Conference on Computer Vision Theory and Applications (VISAPP’08), page 514–519,
2008.

[47] C. Spampinato, D. Giordano, R. Di Salvo, Y. H.J Chen-Burger, R. B. Fisher,
and G. Nadarajan. Automatic fish classification for underwater species behavior
understanding. In Proceedings of the first ACM international workshop on analysis and

Version 1.0; 2012-11-01 Page 28 of 29 c© Fish4Knowledge Consortium, 2012

IST – 257024 – Fish4Knowledge Deliverable D1.3

retrieval of tracked events and motion in imagery streams, page 45–50, New York, NY,
USA, 2010.

[48] N. J. C. Strachan. Length measurement of fish by computer vision. Computers and
electronics in agriculture, 8(2):93–104, 1993.

[49] N. J. C Strachan. Recognition of fish species by colour and shape. Image and Vision
Computing, 11:2–10, January 1993. ACM ID: 156583.

[50] N. J. C. Strachan, P. Nesvadba, and A. R. Allen. Fish species recognition by shape analysis
of images. Pattern Recognition, 23(5):539–544, 1990.

[51] Y. H. Toh, T. M. Ng, and B. K. Liew. Automated fish counting using image processing. In
International Conference on Computational Intelligence and Software Engineering, page
1–5, 2009.

[52] L. A. Torres-Méndez and G. Dudek. A statistical learning-based method for color
correction of underwater images. Research on Computer Science, 17, 2005.

[53] Andrea Vedaldi and Brian Fulkerson. Vlfeat: an open and portable library of computer
vision algorithms. In Proceedings of the international conference on Multimedia, MM
’10, pages 1469–1472, New York, NY, USA, 2010. ACM.

[54] Yair Weiss, Antonio Torralba, and Robert Fergus. Spectral hashing. In Neural Information
Processing Systems Conference, pages 1753–1760, 2008.

[55] B. Zion, A. Shklyar, and I. Karplus. In-vivo fish sorting by computer vision. Aquacultural
Engineering, 22(3):165–179, June 2000.

[56] Z. Zivkovic and F. van der Heijden. Recursive unsupervised learning of finite mixture
models. IEEE Transactions on Pattern Analysis and Machine Intelligence, 26(5):651–
656, May 2004.

Version 1.0; 2012-11-01 Page 29 of 29 c© Fish4Knowledge Consortium, 2012

