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Executive Summary
This document describes an overview of the various user interface (UI) components devel-

oped and evaluated in the Fish4Knowledge project, and describes the development plans for
future components and their evaluation criteria.

The work described here reflects an explicit change of focus when compared with the
UI component development plans described in the Fish4Knowledge project proposal. This
adaptation is based on two findings.

First, the need for ground truth for the training and evaluation of computer vision compo-
nents within the project lead to the need for additional user interface support in various ground
truth collection tasks, to an extent not foreseen in the original proposal. Section 2 describes
the underlying research and user interfaces developed for collecting ground truth within the
project, targeting both expert and lay users. It also discusses the quality of the ground truth data
obtained with these user interfaces.

Second, user requirement studies identified a need to explicitly communicate uncertainty
metrics and evaluation results to end users. In D2.1 User Information Needs [2], we sketched
how the answers to almost all “20 questions” users might ask from the Fish4Knowledge system
have associated issues to trust and uncertainty. To some extent, these issues can be regarded
as general provenance questions that are relevant to all scientific data (including: where is this
data coming from, when was it collected, who was responsible and what assumptions were
made during data collection). More specific trust issues, however, are directly related to the
inherent uncertainty introduced by the Fish4Knowledge computer vision components.

The need to be able to trace back the overall data provenance and to explicitly handle the
uncertainty introduced by the computer-vision components was reflected in the Charles sce-
nario described in Section 2.1 of D2.2 User Scenarios and Implementation Plan’ [1]. Section 3
identifies the types of uncertainty information that need to be communicated to the end user to
allow them to understand the relationship between what the system is able to provide and the
information needed by the user. Section 4 gives examples of both basic and more advanced
user interfaces that are able to communicate (aspects of) provenance and implicit and explicit
uncertainty information, either visually or via an interaction dialogue. In section 5 we discuss
the evaluation criteria for future user development criteria and section. Section 6 concludes the
document and outlooks to the future work.
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1 Introduction
The goal of this section is to introduce the specific nature of the Fish4Knowledge user

interface components, and why dealing with uncertainty in the user interface is so important,
and what types of uncertainty we need to address.

In most computer applications, the correctness of the data is implicitly assumed. The task
of the back end is to compute this data as efficiently as possible, and with the term performance
people generally refer to the (CPU) time and (memory) space needed to do this computation.
The task of the front-end is to give the user access to view and manipulate the data. If data turns
out to be incorrect, this is considered a bug, something that needs to be corrected somewhere in
the input data or the processing software.

In contrast, the key data in the Fish4Knowledge system, that is, the data about the raw
video footage, is produced by computer-vision and other machine learning components that
have an inherent margin of error. In this context, the term performance is typically related to
the numbers of errors a component makes when doing its computations. Errors in the data are
unavoidable, and, even if individual errors could be corrected manually, this if often not effective
given the sheer size of the data set. As a result, errors in the data cannot be solved by fixing the
input data or the processing software, and the errors will still be in the data communicated to
the user.

Since the system is to be used in a scientific context, it is important for the user (e.g. the
researcher) to know to what extent the error margins in the data obtained from the system are
acceptable in the given context. For example, a certain observation in the data might reflect
a real event in the fish population under study, but it might also be caused by inherently noisy
data. The user needs to be provided with sufficient information to decide which of the two cases
is more likely.

To support the user in this task, we first need to know what the error rates are for the selected
data set. Second, we need to effectively communicate these rates to the user. The research
challenges associated with these two problems and their implications on the design of the user
interface are the main focus of this deliverable.

There are many different components in the Fish4Knowledge system that produce data,
and each component has its own error characteristics. Typically, these depend on the exact
parameters that were used to configure the component. Over time, components may evolve,
resulting in other error characteristics. For each data entry, we thus need to record by which
version and configuration of a particular component it was generated. We then need to evaluate
all versions of each component used to determine their error characteristics. To be able to do
this component-based evaluation, we need a ground truth for a representative and sufficiently
large subset of the entire data set for each feature being detected. Given that such ground truth
data does not exist for our domain, we thus need to create a number of ground truth data sets
within the project.

Ground truth data is used for both training and evaluating components. Initially, components
require training data to automatically learn how to classify their data, so for these components
ground truth data is important in the training phase, that is, even before any real data has
been produced. Ground truth data is also required in the component-based evaluation phase to
measure the performance of a single component, and to compare the performance of different
(versions of) components during development. While these are standard procedures, within
Fish4Knowledge, ground truth data is also needed to communicate the error rates of trained and
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evaluated components to the end user.
Collecting the necessary ground truth has been a challenging task, to which all research

partners in the project have devoted considerable time and effort. Tool support turned out to
be crucial in order to obtain ground truth data in sufficient quality and quantity, and different
features require different tools and user interface designs. An additional challenge has been to
reduce the time required of the experts within the project and to develop alternative interfaces
that allow lay users contribute to the creation of the ground truth data.

1.1 Uncertainty in computer vision components
The key components of the Fish4Knowledge system include five computer vision compo-

nents: fish detection, tracking, description, clustering and recognition (see Deliverable 5.1).
For each of the components, their outputs are not error free. These errors can be captured
using standard evaluation metrics as described in Deliverable 5.3. Each component generates
a certainty score indicating the confidence in its output. The certainty score depends on the
specific version of a specific component. The confidence score needs to be calibrated using a
ground truth data set. Even after the certainty scores have been calibrated with the ground truth
data, this still does not guarantee that using the same component on a different data set will
actually reflect the “true” error detection rates.

The fish detection components of the system are used by other, higher-level, components
in the system, so that the associated certainty scores will propagate throughout the system.
For example, the certainty score in the fish detection components will propagate to the species
recognition components.

1.2 Uncertainty in ground truth
While the uncertainty introduced by system errors can be measured using a number of

evaluation metrics, the ground truth used for the evaluation introduces its own uncertainty.
Within the project, the ground truth data for fish detection and tracking can be done relatively
easily since its correctness can be verified without expert knowledge. The creation of ground
truth for species recognition is, however, more difficult since i) non-experts make mistakes while
identifying fish species, and ii) experts sometimes cannot reach an agreement on the species of
a fish, see Section 2.2.1.

1.3 Communicating uncertainty to the user
The goal of the user interfaces within the project is to allow marine biologists to select sets

of automatically analysed data that allow them to draw scientifically significant conclusions,
(represented by the ”20 questions” detailed in Deliverable 2.1). In order to achieve this goal,
the user interface (UI) needs to allow expert users to understand where in the system uncertainty
is introduced, and its likely effect on the conclusions that they wish to draw.

To support users in understanding and evaluating the uncertainty inherent to image pro-
cessing, the user interface integrates specific uncertainty metrics, such as those described in
Deliverable 5.3 (e.g., detection rate, false alarm rate).

Thus for each task, users are assumed to need two types of metrics: one that expresses
a measure for the biological phenomenon of interest, and one that expresses a measure of
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uncertainty about the first metric:

• Population metrics, such as those described in Deliverable 2.1. (e.g., counts of fish,
growth rate, species composition), that describe the population dynamics of fish from
specific species, time period, location or behavior.

• Uncertainty metrics that describe the types of errors that the automatically analyzed data
is likely to contain.

While the uncertainty metrics described in Deliverable 5.3 are well understood in the com-
puter vision community, they are not necessarily understood and accepted by users. In partic-
ular, the certainty scores produced by individual components need to be communicated to and
understood by users. When components are used in other parts of the system, the influence of a
certainty score on another component making use of it also needs to be conveyed. Ideally, a user
should be able to carry out a high-level task with confidence that the system will produce only
reliable results, and with the knowledge that questions about the certainty of the data analyses
can be checked through interactions with the system.

2 UIs for component-based ground truth collection
Ground truth generation for the detection, tracking and recognition algorithms training and

evaluation, as aforementioned, is inarguably the most time consuming and onerous task in the
whole evaluation process stack, including evaluation over individual computer vision compo-
nent as well as overall system output. Moreover, the accuracy of obtained evaluation results is
directly proportional to the quality of the supplied ground truth. Given the importance of high
quality ground truth generation, a tool for not only drawing efficiently accurate annotations,
but also for combining multiple annotations in order to increase their overall quality, had to be
developed.

In the following subsections, we introduce the methods and tool used for creating fish
detection and tracking ground truth in Section 2.1, and that for creating fish recognition ground
truth in Section 2.2.

2.1 Annotation tool for detection and tracking
Perla (PERformance evaluation, Labeling and Annotation)1 is a client-server rich internet

application which features a collaborative environment that allows users to share their own
annotations with others. By increasing the number of annotations per video and integrating
annotations from multiple users, it accelerates the high quality video ground truth generation
process.

Perla offers a personal workspace where the user can find information about past activities.
Through her workspace a user can also create, modify, review and share ground truth with
other users, in order to implement a collaborative environment for large-scale video annotation
acquisition (Fig. 1). Moreover, the tool offers the methods necessary to navigate through the
plethora of processed videos of the project’s image processing applications in an intuitive and
easy way by using the integrated search engine (Fig. 3, right).In particular, it allows users

1http://f4k.ing.unict.it/perla.dev
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Figure 1: The workspace: ground truth management.

Figure 2: The video selection window

to limit the number of the shown videos by defining criteria regarding the videos’ resolution,
acquisition time, enabling the user to select videos with specific features(e.g. day or night).
Once the user locates a video she is interested in, she can always bookmark it for future
reference without having to pick it from the whole video collection.

2.1.1 Establishing ground truth for fish detection

Once the user identifies the videos she wants to create ground truth for, she can create
annotations by using the provided multiple window application. Each drawing window (Fig. 3,
top left) shows one image and, by using the available tools (Fig. 3, bottom left), annotations can
be drawn on it. While the tools found on the toolbar are commonly found in many other ground
truth generation applications, there are situations when these tools results are inefficient at best.
For example, one of the most populated annotated videos in the project’s repository, contained
about 18000 fish. If the annotations were done by only using the manual tools and considering
that annotating a single object needs on average about 15 seconds, the total time needed to
annotate one densely populated 10 minute, low resolution, 5 fps videoclip would be about 75
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Figure 3: Top left: A drawing window that shows an image to be annotated. The controls located
at the bottom of the window allow the user to navigate through the image sequence. Bottom left:
The toolbar. From left to right, the Bounding Box Selection, Pencil, Rectangle, Polygon and
Eraser tools. Right: The search engine provided.
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Figure 4: Semi-automatic contour extraction applied on the central drawing window.

hours! Under these conditions, assisting users in annotating objects as efficiently as possible
seems necessary. To this end, Perla, offers three automatic contour extraction tools, namely,
Grabcut, Snakes and Canny edge detection, in order to hasten the ground truth generation
process (Fig. 4), especially in high contrast videos where these contour extraction algorithms
work best.

2.1.2 Establishing ground truth for fish tracking

We now proceed to introducing the procedure of creating tracking groundtruth using Perla.
In Perla, the tracking ground truth generation exploits the advantages of multiple windows

interfaces in order to provide an easy-to-use and intuitive way to follow objects across con-
secutive frames. In particular, by arranging two design windows side-by-side the user creates
“drawing chains” (as the one in Fig. 4). While in a “drawing chain”, the Next and Previous
buttons and the slider of each drawing window in the chain are disabled except from the
last one’s (the rightmost), which serves as a control to navigate through the image sequence.
When used in high resolution or multi-monitor desktop setups, the application can host multiple
drawing chains enabling the user to annotate different parts of a video at the same time.

2.1.3 Combining multiple annotations

Every user is a different one. The annotations provided sometimes vary minimally but
sometimes are substantially different among different users. While a well-done annotation (e.g.
made by a graphic designer) could supposedly constitute the gold standard in ground truth
generation, it is not always possible to acquire such an accurate annotation of the objects.

The web nature of Perla permitted us not only to implement a multi-user platform that
enables collaborative video annotation but also to integrate methods that combine multiple
annotations of the same object from different users in order to derive one single instance.
This result is practically the combination of the best features of each of the annotations. The
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Figure 5: Flowchart of the “best ground truth” building process.

collaborative aspect of the platform aims at assisting the users in ground truth generation by
allowing them to share their annotations. In particular, a user, instead of having to create a
ground truth from scratch for a video for which annotations already exist, she can derive them
and modify them at will. Alternatively, user groups can edit different parts of the same video at
the same time, reducing substantially the amount of time needed.

Multiple annotations of the same object can be combined by employing a voting policy,
in order to create better representations of the respective objects (the one herein called “best
ground truth”). Building a “best ground truth” (BGT ) involves two basic steps: i) adding new
annotated objects to the BGT , ii) integrating contours (Fig. 5).

Supposing that the BGT has been already built for a given video and new annotations for
the same video are created, then, for each new annotated object A, two cases may occur:

• New object instance. The object A did not previously exist and it is inserted to the BGT
as is. This exploratory strategy avoids limiting the number of objects on each ground
truth; however, to prevent noisy ground truths, each object instance in theBGT considers
the number of annotators that have labeled it over the total number of annotators, thus
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Figure 6: Building a “best ground truth” object. On the left, four annotations (black, yellow, red
from different users and blue is the existing BGT representation). On the right, the resulting
best ground truth.

allowing us to filter out object instances which were infrequently annotated.

• Existing object instance, i.e. there exists an instance (referred in the following as GT )
of object A in the BGT . In this case, we assess a matching score between object A and
objectGT and if this score is greater than a given threshold (in our case 0.75) the contours
ofAwill be combined with the ones ofGT . A resampling of the object’s contours usually
is applied in order to equate the number of the points of the object A and the object GT .
The matching score is the weighted mean of the two following measures:

– Overlap Score. Given the object A and the corresponding object GT of the best
ground truth BGT , the overlap score, Oscore, is given by:

Oscore =
area(A ∩GT )

area(A ∪GT )
(1)

– Euclidean Distance Score. Pairwise euclidean distance between A points (X, Y ),
with (Xi, Yi) ∈ A, and GT points (x,y), with (xi′ , yi′) ∈ GT , computed as:

Escore = 1−
∑n

i

√
(Xi − xi′)2 + (Yi − yi′)2

max(
∑n

i

√
(Xi − xi′)2 + (Yi − yi′)2)

(2)

Once a new object is considered for being part of the “best ground truth” (see above) its
contours CA are combined with the contours CGT of the corresponding “best ground truth”
object to form the new object contours CNGT , where each point is computed as:

CNGT (i, j) =
1

2N−1

N∑
n=1

(wA × CA(i, j) + CGT (i, j)) (3)

where wA ∈ [T, 1] (where T is the threshold described above, and is set to 0.75) is the
matching score between A and GT computed as above described and N is the number of
different annotations for that given object. Fig. 6 shows the result of a combination of three
annotations and the existing GT on the same object. Fig. 7, instead, shows how contours
definition becomes more precise as the number of annotators increases.
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Figure 7: Object contours quality improves as the number of annotations increases

2.2 Annotation tools for fish recognition
In this section, we introduce the methods and tools used for creating ground truth for fish

recognition.
In order to be able to train and evaluate fish recognition algorithms, we need to obtain

ground truth about which fish images belong to the same species, along with the species names.
To support the manual labelling of images, we use a cluster-based method to group and retrieve
similar images, which allows us to label a large dataset in an efficient manner. We conducted
a two-stage annotation procedure. In the first stage, we use a manual cluster-based approach to
assist the expert annotators, i.e., the marine biologists to label a small subset of the available
fish images. In the second stage, we use an automatic clustering based approach to support
non-expert annotators to conduct large scale annotation.

2.2.1 Cluster-based interface for expert annotators

The goal of the expert annotation is to assign a species name to each of the fish images.
Experts are expensive and a scarce resource. We therefore use expert annotators to label only
a small subset of our data and developed a cluster-based interface to facilitate their labeling
process. The images annotated by the experts can be used not only as training materials for the
recognition component, but also as a validation set for the non-expert annotation.

We manually clustered 3678 images randomly chosen from our video data. We then present
them in a labeling interface as shown in Figure 8. Using this interface, the expert annotator first
enters the species name that applies to the majority of the images in a cluster in the top-right
text box. Once the name is entered, all images within the cluster are automatically assigned
with the same species name. Then, the annotator is asked to select those images that do not
belong to the cluster. By selecting these images, he/she can input the correct species names for
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Figure 8: Interface for experts.

them in the text box under each image. In this manner, in the worst case, the annotator will
have to manually assign a species name to each of the images, i.e., when the clustering is so bad
that each image within a cluster represents a different fish species. In the best case, i.e., when
the cluster is pure, the annotator only needs to enter the species name once. After finishing
annotation, we also include a questionnaire for the experts in order to collect information such
as whether the labeling task is difficult for him/her, and why it is difficult. To limit the amount
of effort experts need to check the clusters, at most 30 images are randomly selected from each
cluster and shown to the experts.

We invited 3 marine biologists (referred to as E1, E2 and E3) to participate the expert
labeling task. They have research experience over 30, 10 and 25 years in the Taiwan sea area,
respectively.

In total 190 images are labeled by the biologists. We notice that the marine biologists do
not always agree on the species names for a given image. We use Cohen’s kappa to measure
the agreement between the expert labels, assuming the complete category set consists of all the
species mentioned in the labels. See Table 1.

In addition, we notice that sometimes the biologists are not sure which species a fish should
belong to, and they assign labels such as “A or B”, or simply assigns a family or higher level
label instead of a species level label. In the former case, we consider both labels mentioned, and
in the latter case, we consider all species under a higher level label as possible target labels. Thus
it is possible that an image has multiple labels assigned by a single expert. In total, 288 species
were mentioned as labels for the 190 images. Since Cohen’s kappa does not handle multiple
labels of a single rater, we handle this situation as follows. First, we evaluate the agreement
between labels at both species and family levels: it is expected that at family level, cases with
such situation will be greatly reduced. Second, when there exist multiple labels for an image
assigned by one expert, we randomly draw one of the them as the target label being evaluated;
this process is repeated 100 times and we report the averaged κ and its standard deviation over
the 100 runs. Note that the agreement calculated in this way is rather conservative.

Results in Table 1 show that at species level, the agreement between the experts are rather
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Species level Family level
Comparison Avg.κ Sdv. Avg.κ Stv.
E1 vs. E2 0.55 0.008 0.85 0.004
E1 vs. E3 0.48 0.008 0.75 0.000
E2 vs. E3 0.67 0.006 0.76 0.0001

Table 1: Cohen’s kappa for measuring expert annotation agreement.

moderate, while at family level, a much stronger agreement can be found, but still not perfect.
This result suggests that our labeling task is not trivial even for experts. Further, from the
questionnaire we learn that according to the experts, the top factors that make recognition
difficult are: 1) the low quality of the images and 2) the fact that some species are visually
very similar.

2.2.2 Cluster-based large scale annotation

Although not able to name fish with their species names, non-experts have shown to be
able to identify similar fish, e.g., in the previous experiment, only 6 out of 27 clusters contain
wrongly clustered images. Hence we use non-experts to perform a cluster-validation task for a
large scale species annotation. That is, instead of giving a label for every fish, we ask non-expert
annotators to judge the quality of (automatically created) clusters.

We first create clusters using Affinity Propagation [3]. We choose Affinity Propagation
as the clustering algorithm because it does not only cluster the images, but also selects a
representative image for the cluster. We use this image to merge the clusters when the dataset
is “over-clustered”.

Our labeling method consists of three steps:

1. Cleaning the cluster, where we remove images which are not similar to the representative
image;

2. Merging the clusters by linking the representative image of the cleaned clusters;

3. Linking removed images from the cleaning stage to the cleaned clusters.

After the three steps, we can assume that a cluster includes all fish of a certain species in the
dataset. Whether one needs to perform the last step depends on whether all images in a dataset
need to be labeled, or that a large subset of all images is sufficient. Figure 9(a) and 9(b) show
the two non-expert cluster-validation interfaces. We use interface I for cleaning clusters, e.g.,
step 1, and interfact II for merging the clusters or merging the singleton images to the cleaned
clusters, i.e., step 2 and 3.

Using the above described interface, we have a first dataset of 3678 fish images labeled.
We found 6 annotators to annotate the entire dataset. Based on the labeling of the biologists,
we found out that the average user performance achieves 87.6% correctly labelled fish. There
is however a large difference between people who saw the fish images for the first time and
people who are part of this project having observed some of the fish before. The lowest user
performance is 68.8%, where this person basically annotated different species that look similar
to the same category. For users, it is often very difficult to determine if fish belong to a different
species or not, because appearances of the fish such as colour can change due to illumination
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(a) Interface I (b) Interface II

Figure 9: Interfaces for non-experts.
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Figure 10: We show the distribution on the probabilities that an image labelled by multiple
annotators is correctl. However, in this database, there are still a lot of disagreements between
annotators. These images can be used to communicate to the marine biologists, for now they
are excluded from the training and evaluation of recognition methods.

conditions. Further, when judging images with multiple fish or fish that they feel difficult to
identify, some users used the ignore options very frequently, while other users used it rarely.

We estimate the probability that an annotator has correctly labeled (clustered) a fish using the
expert annotations and then use it to combine the labels from multiple annotators. If annotators
agree on a label, the probability becomes very high while with disagreements, the probability is
much lower. In Figure 10, we show the distributions on the user’s disagreements, in most cases
however users do agree which can be observed in the last bar. In more than 90% of the images,
the probability of being correctly labelled is greater than 99.9%.

This probability distribution can be seen as an estimation of the quality of the user per-
formance in cluster-validation. Note that to correctly interpret the results stated above, we
need to know: i) the species distribution among the labeled images, since some species are
dominant and easier to identify than others; ii) whether the images in this datasets contain many
continuous frames of the same fish, as it is easier to cluster these images compared to images
of different fish of the same species in different environment.
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Fish Species Solitary Pairing
Dascyllus Reticulatus Abnormal Breeding
Chromis Margaritifer Normal Breeding

Plectrogly-Phidodon dickii unknown Breeding
Acanthurus Nigrofuscus Abnormal unknown
Pomacentrus Moluccenis Abnormal Breeding

Chaetodon Trifascialis Normal Normal
Breeding

Zebrasoma Scopas Juvenile Rare
Scolopsis Bilineate Juvenile Adult
Amphiprion Clarkii unknown Breeding
Siganus Fuscescens Abnormal unknown

Table 2: Interpretation of Solitary and Pairing Events depending on Fish Species

2.3 Fish behavior annotation
Based on the user studies specified in Deliverable 2.1, we understand that end-users are

interested in fish behaviours related to demographics, reproduction, feeding, and environmental
conditions. In order for the system to be able to identify this type of behaviours, we created
an UI dedicated to the collection of corresponding training data. We focus on the 10 species
whose detection, tracking and recognition results are available in the F4K database. We derived
the specific fish behaviours of interest on the basis of descriptions of the 10 species provided by
end-users and by the FishBase 2. Here we investigate only pairing and solitary behaviours, as
we assume they can be labelled by non-experts. The Table 2 summarizes the interpretations of
fish co-occurrences. We report the following observations:

• Fish pairs, and solitary fish can contribute to the study of demographics and fish repro-
duction.

• The meaning of fish pairs, and solitary fish depend on the species involved.

To reduce the effort needed for collecting training data, we designed a rule-based inter-
face. It helps targeting meaningful events by supporting user-defined specification of fish
co-occurrences to retrieve. Users can define the rule parameters that target specific species,
number of fish, delay between fish and duration of co-occurrences. They can also apply specific
sampling methods by randomizing the ordering of the retrieved samples, by selecting the time
periods to sample, and by specifying the number of samples needed.

The user interface functionalities support i) the retrieval of video excerpts that display the
co-occurrences of interest, and ii) the manual selection of video excerpts that are suitable for
the training dataset. It organizes the dataset collection task in 3 steps:

1. Define the rule, and the sampling method.
Users are supported with 2 simple rules, and a set of parameters they can modify. The
most important rule supports the retrieval of solitary fish and pairing fish. It covers most
of the events of interest from Table 2 . Figure 11 shows how our user interface supports
the specification of rule parameters.

2http://fishbase.org
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Figure 11: Screenshots of user-defined rules for retrieving solitary and paring fish.

2. Manually select valid video samples.
Users are supported with a list of video samples that satisfy the rule they defined. Our
system retrieves the video excerpts that display the co-occurrences of interest, as defined
by the rule. Users can watch the video samples page by page. If a sample is a good
example of the event of interest, users can click on the sample to include it in the training
dataset. Fig. 12 shows a selected and a discarded video sample in our user interface.

3. Store the training dataset.
After selecting a set of training video samples, users can label the training dataset and
describe what event detection it supports. Fig. 13 gives an example of a label for a training
dataset. When storing the dataset, the system saves the rule parameters and all the video
samples it retrieved: the manually selected samples, flagged as valid samples, and the
discarded samples.

3 Uncertainty and its impact on UI
The interfaces provided need to allow the user to identify selections of data that represent

real-world effects, such as an increase in fish abundance. The data that is returned in response to
a user query is not the end of the user’s task, but the beginning of a process that allows the user
to verify the validity of the real-world effect. Uncertainty in the ground truth data is inherent
within the system, but its effects can be conveyed to the user to at least some extent. Uncertainty
in the computer vision components is, however, likely to be the main concern of the experts and
is the main topic we address in this section. We describe in detail how the uncertainty, in the
ground truth data sets and the components created using them, affects how the results should

Version 1.1; 2012-11-8 Page 17 of 49 c© Fish4Knowledge Consortium, 2012



IST – 257024 – Fish4Knowledge Deliverable D2.3

Figure 12: Users can select valid video samples (e.g., the video on the right is selected) and
discard the others.

Figure 13: Users can label the training dataset to describe the targeted event.
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be interpreted by the user. Within these descriptions we identify and summarise requirements
for the user interface. The UI requirements stated here are based on general design principles
and guidelines and the goals of the users stated in previous deliverables, 2.1 and 2.2. The
requirements will be used to steer the creation of the mockups and prototype interfaces that will
form the basis of evaluation with end users.

3.1 Uncertainty in ground truth
Different users were enlisted to create the ground truth data sets used in the project. Work on

improving methods for creating ground truths and on improving the ground truths themselves is
ongoing. The question is what is useful to expose to the user trying to draw conclusions based on
the ground truths. The main principles guiding our UI design are transparency and explanation,
for example, on which ground truth data is a result based (transparency), and what do we know
about the consensus of the evaluators when creating the ground truth data (explanation).

• The ground truth data set used to tune an analysis component should be accessible from
that component.

• A measure of evaluator consensus should be available for each ground truth data set.
The consensus measure needs to be understandable by the marine biology experts.

3.2 Uncertainty in computer vision components
The visual analysis components are based on the best ground truth information that we are

able to obtain. Even if the ground truth information were perfect, this provides no guarantee
for the performance of the fish detection & tracking, description, clustering and recognition
components based on it. For each of the components, their outputs are captured using standard
evaluation metrics and given a certainty score indicating the system confidence. In the example
case of identifying an object to be a fish, the system assigns a certainty score (in the range of
0.0 - 1.0) to the potential fish object. Each potential fish object thus has an associated certainty
score. While these certainty scores and evaluation metrics, as described in Deliverable 5.3, are
well understood in the computer vision community, they are not necessarily understood and
accepted by end users.

In the case of the fish detection component, these errors can be reduced to the under- and
over-detection of fish. In other words, objects incorrectly detected as fish are false positives,
and contribute to an overestimate of the number of fish; whereas fish that are not recognised
as such are false negatives and contribute to an underestimate. Statistical measures for these
can be provided on a per component basis. Since counting fish is the foundation for all other
analyses in the system, it is essential that the user has easy access to these measures at all times
when interacting with the system. The measures should be easily available in a consistent way
thrughout the whole system.

• A measure of over- and underestimating fish detections needs to be easily available in
a consistent manner at all times.

The relationship between the certainty score and the expected true and false positive rates
should be understandable by end users.
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• True and false positives per certainty score can be provided where there is sufficient
ground truth data.

The certainty scores for analysis components need to be calibrated so that counts based on
multiple analysis components can be combined together in some meaningful way.

• Calibrate the certainty scores per analysis component so that counts from multiple
components can be combined.

Analysis components may produce certainty scores that do not correspond to the actual true
positive percentages. For example, for a certainty score of, say, 0.8, may correspond to 93%
of detected fish being indeed fish, whereas for a certainty score of 0.6 perhaps only 80% are
fish. It would be easier for users if the certainty scores could be calibrated so that a score of 0.9
would indicate that 90% of the detected fish are true positives.

• Calibrate the certainty scores so that the values correspond to the expected true positive
percentages.

A data selection contains a distribution of potential fish objects with their corresponding
certainty scores. These can be used to create a certainty score profile for the specific data set3.
A certainty score profile indicates for a specific subset of data, analysed by the same component,
the differing numbers of identified fish per certainty score interval.

The certainty score profile can be visualized as the distribution of the certainty scores in 10
intervals of 0.1 for a specific data set. For example, X% of the dataset contains potential fish
objects with a certainty score >0.8 and ≤0.9. The dataset, by definition, does not include real
fish that were completely missed by the analysis component. The number of false negatives,
that is the number of real fish not detected, can be calculated using the ground truth data set
used to develop the analysis component. This would then give a percentage of false negatives
that can be added as an “11th” column in the certainty score profile showing the number of fish
that have (likely) been missed by the system. If this is extraploted to all later datasets analysed
by the same component then an estimation can be made of both the true positives and the false
negatives. These two together give the end user the best estimation of the true number of fish.

• Include false negative estimates in certainty score profiles where appropriate.

The certainty score profile may also indicate the likely false positive/false negative distribu-
tion in each of the certainty score categories.

• Indicate levels of expected true positives in certainty score profiles, perhaps on de-
mand.

Datasets analysed by different components have different certainty score profiles. The
certainty score profile for the specific analysis component should be easily accessible.

• Certainty score profile for each component needs to be easily accessible.

3To simplify the explanation, we assume that the data selection contains only certainty scores from a single
analysis component.
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Figure 14: Initial prototype showing raw counts of fish per video and numbers of videos
analysed for the days in April 2011.

4 Basic UIs for data visualization
Our approach to developing the interface is iterative, in that we first produced an initial

“strawman” interface that could be used among the project team as a first prototype to look at
the data gathered so far and to discuss how the visual analysis techniques should be presented
to end users in the context of fish population metrics. A screen shot of this interface is given in
Figure 14.

Having developed this initial prototype, we were able to develop our ideas on the user
interface design further. This section discusses the component-based mockups that will be
implemented using the data produced by the image processing components. We will discuss
what data analyses can be performed with our prototypes (section 4.1), the basic functionalities
of the user interface that support these analyses (section 4.2), and the mockups of our user
interface designs (section 4.3).

4.1 Main data analyses
4.1.1 The population metrics and the 4 main variables

The primary analyses of the Fish4Knowledge data are based on counts of fish which can
be calculated using 4 main variables: the timeframe and location of fish occurrences, and
the species and behaviors of fish. The counts of fish is usually called abundance by marine
biologists. Additionally, the abundance in growth rate, the species richness, and the species
composition are complementary metrics for the analysis of fish counts. The abundance in
growth rate is the rate in percentage at which the counts of fish increase in a given time
period. The species richness concerns the number of species recognised in a population of
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fish. The species richness can be calculated in counts (i.e., the counts of species recognised
in a population) or in growth rate (i.e., the rate in percentage at which the counts of species
increase in a given period of time). The species composition concern the distribution of fish
for each species present in a population. The species composition can be given in counts (i.e.,
the set of counts of fish for each species of a given population), or in percentage (i.e., the
proportion in percentage of fish from each species calculated over the total number of fish in a
given population).

The 6 metrics mentioned above are the primary metrics that support the analysis of fish
demographics: the abundance in counts of fish and in growth rates, the species richness in
counts of species and in growth rates, and the species composition in counts and in percentages
of fish for each species of a population. These metrics were derived from the user study we
conducted and reported in Deliverable 2.1. As mentioned in section 1.3, we call these metrics
the population metrics. We assume that marine biologists are used to perform multivariate
analyses of the population metrics, which basically consist of comparing metrics’ results for
various timeframes, locations, species, or behaviors.

The usage of population metrics in the UI is illustrated by Fig. 15 to 20.

4.1.2 The uncertainty metrics and the 3 additional variables

On top of these primary data analyses, our system involves the analysis of the uncertainties
contained in the data. Automated video analysis introduces errors in the counts of fish because
some fish are not recognized (False Negatives), or because some non-fish objects are counted as
fish (False Positives). As mentioned in section 1.3, we support users with uncertainty metrics
so that they can perform the analysis of uncertainties and evaluate the levels of confidence
in the patterns observed in the data. We consider 3 sets of uncertainty metrics: the detection
probabilities, the estimation of video analysis errors, and the estimation of statistical variability.

The detection probabilities, the implied data analysis variables and the error correc-
tion mechanism

The detection probabilities indicate an estimation of the certainty of automatically extracted
data. Users are provided with 3 detection probabilities for the detection of fish, species and
behaviors. Detection probabilities can be classified in intervals of 0.1 from 0 to 1, i.e., [0.0,0.1),
[0.1,0.2) ... [0.9,1.0]. For instance, a fish detected with a high detection probability would
be in the [0.9,1.0] interval. This measure is independent of the detection probability of its
associated species, which may lie in the range of [0.1,0.2) which denotes a high uncertainty. In
this example, we are very sure that the object is a fish, but we are uncertain that the species is
correct.

These metrics are called certainty scores in other documents related to the project. But for
the User Interface, we call these metrics detection probabilities because we assume that this
term is easier to understand for marine biologists.

These detection probabilities can be used as a threshold for selecting the fish to take into
account in the calculation of counts of fish, growth rate or any population metric. For instance,
marine biologists could wish to deal only with highly certain recognition of species, and set
the species recognition probability threshold to 0.9. Fig. 27 gives an example of the usage of
detection probability thresholds.

The detection probabilities add 3 more variables to the multivariate data analyses that can be
performed on population metrics. Thus multivariate data analyses can be performed with up to 7
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variables that are attached to each detected fish: timeframe, location, fish detection probability,
species, species recognition probability, behavior, and behavior recognition probability.

Additionally to detection probability thresholds, we support a simple mechanism for visual-
izing the probability of errors implied in the detection of fish, species and behaviors. It consists
of visualizing population metric’s results that integrate the correction of the estimated errors.
This error correction mechanism is applicable for population metrics that are based on counts
of fish (i.e., abundance and species composition), and is not applicable to the study of species
richness. It basically consists of multiplying the counts of fish by the detection probabilities
implied in the multivariate analysis, in order to obtain corrected counts of fish. Fig. 32 gives an
example of the visualization of errors denoted by detection probabilities. The calculation of a
corrected count of fish consists of the following steps:

1. Select the fish population that respects the multivariate criteria (e.g., timeframe, location,
species...).

2. If a threshold criterion is applied on fish detection probability, select subsets of fish
population that belong to each fish detection probability bin (e.g., a subset of fish with
a fish detection probability of 0.1, one for fish with a probability of 0.2, of 0.3...).

3. If a threshold criterion is applied on species recognition probability, for each subset
selected in the previous step, divide the subset in further subsets of fish that belong to
each species recognition probability bin (e.g., fish with a species recognition probability
of 0.1, 0.2, 0.3...).

4. If a threshold criterion is applied on behavior recognition probability, for each subset
selected in the previous step, divide the subset in further subset of fish that belong to each
behavior recognition probability bin (e.g., fish with a behavior recognition probability of
0.1, 0.2, 0.3...).

5. For each subset selected in the previous steps, count the number of fish and multiply this
count by all implied detection probabilities (i.e., the fish detection probability, the species
recognition probability or the behavior recognition probability if applied as a selection
criterion).

6. Add all the counts of each subsets calculated in the previous step. We obtain a corrected
count of fish.

The estimation of video analysis errors and the related error correction mechanism
Specific video analysis components detect fish, recognize the species of fish, and recognize

the behaviors of fish. For each of these video analysis tasks, the performance of our system
is evaluated with respect to a ground-truth dataset. This evaluation provides the counts of
elements (i.e., fish, species or behaviors) that were correctly identified (True Positives), the
counts of elements that were not identified (False Negatives), and the counts of elements that
were identified but that do not correspond to any real elements (False Positives). We can use
this evaluation to estimate the number of True Positives, False Negatives and False Positives
that are likely to be contained in any fish population.

We support a simple mechanism for visualizing the probability of errors implied by the
automated video analysis. It consist of calculating the rates of True Positives, False Negatives
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and False Positives that are likely to be contained in every fish population, and correcting the
counts used in the population metrics accordingly. For instance, given the following video
analysis evaluation: the automatic detection of fish in the ground-truth dataset contained 80%
of True Positives and 20% of False Negatives, and should have contained 30% more of missing
False Negative fish. In other terms, 110 fish are contained in the ground-truth, 80 are correctly
detected (True Positives), and 20 of detected fish are non-fish objects (False Positives), and 30
fish were not detected (False Negative). Thus the detected fish contained 20% of False Positives,
and missed an additional 30% of False Negative fish. And the overall corrected number of fish
should contain +10% fish. In that case, given another population of 200 detected fish, we can
inform users that i) 20% of the fish are False Positives, i.e., discard 40 fish, ii) 30% of the fish
are missing False Negatives, i.e., add 60 fish, and iii) the corrected count of fish is 220 fish.
We aim at supplying users not only with corrected counts of fish, but also with the detailed
estimation of True Positives, False Negatives and False Positives.

The recognition of each species and each behavior imply their own dedicated error rates,
and thus the estimation of video analysis errors is more complex than the correction of detection
probabilities errors. We assume that this estimation of video analysis errors is not relevant for
the study of species richness. Note that the abundance in growth rate is not affected by this error
correction mechanism. Fig. 31 gives an example of the correction of the video analysis errors.

Estimation of statistical variability
Our envisaged tool supplies 3 types of statistical measurements of variability and the related

common ways to visualize them: i) the standard deviation visualized with error bars, ii) the
inter-quartile range visualized with box plots, and iii) the decomposition in sub-samples of data
visualized with scatter plots. All these statistics are using sub-samples of the data used for the
calculation of a population metric. Users can choose how the data should be sampled. The data
can be sampled per time unit, per location, per species, or per detection probability bin. For
instance, if users are visualizing counts of fish per week, they can choose to calculate standard
deviation with all counts of fish per days of each week. They can also choose to calculate the
standard deviation for counts of fish calculated for each hour of the week. They might also
observe a greater variability for counts sampled per hour rather than per days. Fig. 28 to 30
give examples of the usage of statistical variability metrics.

4.1.3 The species abundance thresholds as an extra variable

As mentioned by marine biologists during our user study, and as reported in the Deliverable
2.1, the calculation of population metrics can be done using a species abundance threshold. A
species abundance threshold consists of selecting fish species for which a certain number of
individual were detected. The species abundance threshold can be defined in counts (e.g., the
species is discarded if less then 5 fish were detected), or in percentage w.r.t. to the overall count
of fish regardless of the species (e.g., a species is discarded if it represents less than 2% of all
the fish in the population).

The species abundance threshold is primarily used to discard species that do not contain a
sufficient number of individual for the species to be suitable for a statistically valid data analysis.
For instance, a species containing less than 5 fish should be discarded of the calculation of
species richness, because there is a too high chance on the 5 fish not to belong to the species,
or on the species not to constantly live in the area of study. This contributes to the support
provided for users to deal with the uncertainty contained in the data. Additionally, the species
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abundance threshold can also be used to study species from specific abundance range, e.g., to
study only abundant, common, occasional or rare species. This is done by defining a range of
abundance of interest (e.g., to study species that contain more than X fish or X percents of fish,
or an interval of abundance).

The detection probabilities add one more variables to the multivariate data analyses that can
be performed on population metrics. Thus multivariate data analyses can be performed with
up to 8 variables that are attached to each detected fish: timeframe, location, fish detection
probability, species, species recognition probability, behavior, behavior recognition probability,
and species abundance threshold. Fig. 19 and 20 give examples of the usage of species
abundance thresholds.

4.1.4 Data analysis tasks

We assume that biologists will perform data analysis by basically making only one variable
vary at a time, so that they have a consistent scope of comparable population metrics’ results.
For instance, a biologist studying species X would calculate counts of fish from species X for
each location, but for the same period of time and regardless of behaviors. If she also wants
to study the evolution of the population over time, she might repeat the calculation of sets of
counts for each period of interest.

Biologists might need to perform more variations of the populations metrics. For instance,
they might study the break down of counts for various behaviors, and they might perform
more complex study of growth rates. Regarding the resources available for the project, the
user interface can not integrate the whole range of possible data analyses as suggested by the
examples above. Thus we aim at supporting basic data analyses of population metrics. More
advanced data analyses should be performed using other tools, such as those already in use in
their regular working environment (e.g., R, matlab, etc.).

Our tool will support i) the identification of interesting variations in populations metrics,
and ii) the evaluation of the level of confidence in the population metrics w.r.t. the potential
errors of automated video analysis. The main data analyses tasks that can be performed using
our user interface are:

• Task 1: Requesting an overview of a consistent set of population metrics where only
one variable varies (e.g., counts for each month of the year and for the same location, or
counts for each location but for the same period of time, etc...). We call that variable the
x-axis variable because it defines the x-axis to use in the visualized graph.

• Task 2: Comparing 2 sets of population metrics that can be obtained through Task
1 above. The 2 sets of population metrics are of the the same metric (e.g., they are
both abundance in growth rate), and they both use the same type of unit for their x-axis
variable (e.g., both are weekly counts of fish, or both are daily counts). The 2 sets of
population metrics also share the same variable parameters (amongst timeframe, location,
fish detection probability, species, species recognition probability, behavior, and behavior
recognition probability), except one variable which value is different between the 2 sets
of metrics (e.g., they both count fish for each month of the year, but one set is evaluated
for 2011 and the other for 2012). Figures 21 and 25 give examples of the visualization of
2 comparable sets of population metrics.
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• Task 3: Requesting a view of the potential errors involved in the provided population
metrics. This task involves the uncertainty metrics mentioned in section 4.1: the detection
probabilities, the estimation of video analysis errors, and the estimation of statistical
variability. Additionally, this implies additional explanations provided for users to un-
derstand the underlying computational layers that produced the visualized data, and the
related errors and uncertainty introduced in the data. Figures 27 and 32 give examples of
the visualization of uncertainty metrics.

4.2 Basic user interface functionalities
This section discusses the user interface functionalities needed for the 3 data analysis tasks

mentioned above.

4.2.1 Task 1: Request a consistent set of population metrics

To allow users to perform the Task 1, i.e., requesting a set of population metrics where only
one variable varies, the user interactions supply 3 main functionalities:

• F1: Support the selection of the population metric of interest.

– Display all available population metrics, amongst abundance in counts or growth
rates, species composition in counts or percentages, and species richness in counts
or growth rates.

– Allow the selection of a population metrics to calculate.

– Indicate the selected population metrics.

Figures 15 to 20 illustrate the selection of the population metric of interest.

• F2: Support the calculation of the set of population metrics of interest.

– Display all available variables and variables’ values.

– Allow the selection of variables’ values or sets of values to select the fish population
of interest.

– Indicate the selected values or sets of values.

– Allow the selection of the x-axis variable that defines the set of population metrics
to calculate. The population metric will be calculated for each of the values selected
for that variable.

– Indicate the selected x-axis variable.

– Display the set of results of the population metrics calculated for the selected set of
x-axis variable’s values, and for the selected fish population of interest.

Figures 22 to 24 illustrate the selection of the variables’ values of interest.
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4.2.2 Task 2: Compare two sets of population metrics

To allow users to perform the Task 2, i.e., comparing 2 sets of population metrics’s that can
be obtained through Task 1, the user interactions supply the following functionalities.

• F1: Support the calculation of two comparable sets of population metric, on the basis of
a set of population metric that was previously calculated

– Allow the selection of one alternative variables’ values for which another set of
population metrics must be calculated

– Indicate the selected alternative values

– Overlay the 2nd set of results of the population metrics on top of the initial set of
results

Figures 21 and 25 give examples of the visualization of 2 comparable sets of population
metrics.

4.2.3 Task 3: Request an overview of the uncertainties

To allow users to perform the Task 3, i.e., requesting an overview of the potential errors
involved in the provided population metrics, the user interactions supply the following func-
tionalities.

• F1: Provide explanations of the data processing steps and the nature of the errors that
each step can introduced.

• F2: Support the usage of the uncertainty metrics of interest

– Display all available uncertainty metrics

– Allow the selection of the uncertainty metrics to study

– Display the results of the selected uncertainty metrics

Figures 27 to 32 give examples of the usage of uncertainty metrics.

4.3 Preliminary user interface mockups
Figures 15 to 32 show the user interface mockups we have designed, which support our

reflections and experimentations for the user interface of the system in the project. Figures 15
to 25 give examples of the usage of population metrics. Figures 26 to 32 give examples of the
usage of uncertainty metrics.

Using Figure 15 as an example, we briefly explain the design of the UI. Figure 15 shows
an example of multivariate analysis where only one variable is usable with interactive widgets:
the timeframe of interest. The other variable widgets are available through the ”Parameters”
menu on the left side of the Zone D. The fish detection probability variable is also used to select
the fish population of interest, and is set to a range of [0.7, 1] as indicated in the title of the
graph. The other variables are set on default values, i.e., all possible values are selected. The
x-axis variable is set to the month of year, which is indicated by the icon overlaid on the related
variable widget in Zone D.
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Figure 15: Counts of fish over the month of the year (i.e., the abundance in counts).

The UI is organized in 4 zones. The Zone A contains a menu to access explanations
about all the layers of computations that produced the current visualization. This support the
functionality F1 of Task 3 described in section 4.2.3. The Zone B contains the visualization of
the selected population and uncertainty metrics. The title of the visualization is automatically
generated. It describes the metrics that are visualized, and all the related variables implied in the
calculation of the metrics. The Zone C contains a menu of all available population metrics. This
supports the functionality F1 of Task 1 described in section 4.2.1. The zone also contains a help
button (on the right side) and a download button (on the left side) to get the raw numerical data
that are displayed on the graph, in the form of a csv file. The Zone D contains the interactive
widgets for the selection of the variables used to calculate the population metrics, and for the
selection of the uncertainty metrics to calculate. This supports 3 functionalities described in
section 4.2: F2 of Task 1, F1 of Task 2, and F2 of Task 3. The interactive variable widgets are
not displayed at all times, because it would clutter the display space and prevent users to focus
on useful variables. Thus we provide a menu to select the widgets to display. The usage of the
widget menu is described in Fig. 23. The variable widgets contain a small graph providing an
overview of the visualization that would be generated if the variable is selected as the x-axis
variable.
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Figure 16: Abundance in growth rate for each month of 2011.
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Figure 17: Species composition in counts for each month of 2011.
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Figure 18: Species composition in percentages for each month of 2011.
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Figure 19: Species richness in counts for each month of 2011. It uses a species abundance
threshold, as defined in section 4.1.3.
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Figure 20: Species richness in growth rates for each month of 2011. It uses a species
abundance threshold, as defined in section 4.1.3.
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Figure 21: Two comparable sets of population metrics, i.e. the abundance in counts for each
month of 2011 and 2012. The alternative set of population metrics is obtained by a rollover on
the alternative variable value. In this example, the user rolls over the year 2012 in the ”Year”
widget on the left. The alternative variable value is highlighted in blue. A new set of population
metrics is calculated using all the other variables used for the previous set of metrics (e.g., the
fish detection probability is within a range of [0.7, 1.0], and the x-axis variable is the month of
the year). The new set of population metrics is displayed in blue in the main graph. The title
of the graph describes the 2 sets of population metrics that are compared. This supports the
functionality F1 of Task 2 described in section 4.2.2.
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Figure 22: Selection of variable values. The user started with the variables of the data analysis
shown in Fig. 15 and 21 above. The initial timeframe of interest was the whole year 2011. It
this figure, the user has narrowed down the timeframe to the months of March, April and May
2011. This is done by clicking on each of the months in the ”Month” widget (in the bottom of
the UI).
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Figure 23: Selection of parameters. The parameter menu gives users access to the interactive
widgets used i) to select the variables for the calculation of population metrics, and ii) to select
the uncertainty metrics to display. In this example, the user requests the display of the ”Week”
widget that allows the selection of the weeks of interest.
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Figure 24: Selection of the x-axis variable. In this example, the user sets the x-axis to weekly
counts of fish. This is done by clicking on the title of the ”Week” widget (on the bottom right of
the UI). The x-axis displays the week numbers for each week of the timeframe of interest (e.g.,
March, April and May 2011).
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Figure 25: Comparison of 2 sets of population metrics over consistent periods of time. In
this example, the user rolls over the month of July in the ”Month” widget. This triggers the
calculation of a new set of population metrics, overlaid in blue in the main graph. This new set
of population metrics is calculated over the same duration but with a different start date, and
uses the same time window as the previous set of population metrics (e.g., 3 months). In this
case, the user rolls over only 1 single month (e.g., July), but the set of population metrics is
calculated over 3 consecutive months.
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Figure 26: Uncertainty metrics provided in the parameter menu.
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Figure 27: Usage of detection probability thresholds. In this example, the fish detection
probability variable is set to the range [0.7, 1]. The user rolls over the 0.6 fish detection
probability. It triggers the calculation of a new set of population metrics for a fish detection
probability within [0.6, 1]. The new set of population metrics is displayed in blue in the main
graph.
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Figure 28: Usage of statistical variability over time, and the display of standard deviation. In
this example, the users chooses to calculate the standard deviations for data sampled per days
of the week, for each week of interest. The population metric is calculated for each day of the
week, for each week of interest (e.g., weeks 10 to 23). For each week, the standard deviation is
calculated using the daily data samples.
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Figure 29: Usage of statistical variability over location, and the display of inter-quartile
range. In this example, the user chooses to calculate the inter-quartile ranges for data sampled
per location. For each week of interest (e.g., weeks 10 to 23 in year 2011), the population metric
is calculated for each location, and the inter-quartile range is calculated using the data sampled
for each location. This shows the variability over location, for each week of interest.
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Figure 30: Usage of statistical variability over species, and the display of all data points. The
user chooses to display all the data points for data sampled for each species of the population.
For each week of interest (e.g., weeks 10 to 23 in year 2011), the population metric is calculated
for each specific species (e.g., weekly counts of fish from species X, species Y...). The graph
displays the values obtained for each species. This shows the variability over fish species, for
each week of interest.
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Figure 31: Estimation of video analysis errors. As described in section 4.1.2, the estimated
number of True Positives, False Positives and False Negatives are reported on the population
metric results. In the example, the user rolls over the ”Correction of Video Analysis errors”
button (in the bottom right of the UI). This triggers the display of the estimated errors and
the corrected count of fish. If the user clicks on the error correction button, this causes the
calculation of population metrics using only corrected counts of fish, without the estimated
video analysis errors.
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Figure 32: Estimation of detection probability errors. As described in section 4.1.2, the
estimated errors due to imperfect detection probability are reported on the population metric
results. In the example, the user rolls over the ”Correction of Detection Probability” button
(in the bottom right of the UI). This triggers the display of corrected count of fish. The counts
of fish are corrected using the method defined in section 4.1.2. If the user clicks on the error
correction button, this causes the calculation of population metrics using only corrected counts
of fish, without the estimated detection probability errors.
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5 Evaluation criteria
From the user study we conducted and reported in Deliverables 2.1 and 2.2, we derived 3

primary tasks that underly the data analysis and interpretation:

• A. the identification of trends in fish populations;

• B. the identification of correlations of trends;

• C. the identification of levels of confidence in the identified trends (from task A) and
correlations of trends (from task B).

The trends and correlations of trends in fish populations can be observed in counts of fish
which can be calculated depending on 4 variables: the timeframe of fish occurrence, the location
of fish occurrence, the species of the fish and the behaviors of the fish. We assume that marine
biologists are used to analyzing these counts, and that the identification of trends is a common
and well-understood task.

Marine biologists can evaluate the levels of confidence in the identified trends and correla-
tions of trends from the description of the potential errors introduced at each step of the video
analysis process. Identifying levels of confidence in the context of automated video analysis
is an unusual task in the marine biology domain. It deals with specific errors inherent to
image processing, and these errors are different from the errors encountered in more traditional
methods for counting fish. Thus the task of identification of levels of confidence (task C above)
is the one for which marine biologists need specific support, and the one on which we focus our
research effort.

We aim at evaluating the system’s ability to support the 3 primary tasks described above,
and in particular the identification of levels of confidence, task C. To support them, the interface
relies on 2 types of tools we can design and adapt according to user needs: metrics (i.e.,
mathematical tools) that describe the interesting characteristics the data, and visualizations (i.e.,
graphical tools) that conveys these metrics. As mentioned in sections 1.3 and 4.1, we consider
the population metrics that describe demographics of fish populations, and the uncertainty
metrics that describe the potential errors inherent to image processing. The population metrics
support the identification of trends and correlations of trends in the counts of fish, and the
uncertainty metrics support the levels of confidence in the results.

Metrics and visualizations can be separately designed and adapted to users, e.g., we can
modify the metrics and keep the same visualization, and vice versa. Thus we aim at distinc-
tively evaluating metrics and visualizations, and we will compare different sets of metrics and
visualizations.

The metrics and the visualizations must supply a sufficient amount of information, and
that information must be understandable for marine biologists who are not computer vision
experts. We will evaluate the UI’s ability to supply sufficient and understandable metrics (i.e.,
mathematical representations of the fish populations and of the image processing uncertainties)
and visualizations (i.e., graphical representations of the metrics) that support the identification
of trends, correlation of trends, and users’ confidence levels in the results.

The list below gives examples of the types of trends, correlations and levels of confidence
we plan to support, and examples of the sets of metrics and visualizations we plan to evaluate.
A. Identification of trends
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• Types of trends: increase, stable, decrease.

• Metrics: counts of fish, growth rates, species richness, species composition.

• Visualizations: diagram, line chart.

B. Identification of correlations of trends

• Types of correlations: similar, contrary; and temporality of correlations: precede, simul-
taneous, follow.

• Metrics: variability of counts over species (i.e., species composition), locations, hours of
day, day of lunar month, month of year.

• Visualizations: diagrams of distribution, overlaid line charts, stacked diagram.

C. Identification of level of confidence

• Metrics: False Alarm Rate (FAR), Correct Detection Rate (CDR), False Positives (FP),
False Negatives (FN) and True Positives (TP), variability over certainty scores.

• Visualizations: diagrams, scatter plot.

• Confidence levels: very high, high, neutral, low, very low.

The overall goal of the UI evaluation is to analyze how marine biologists understood the
metrics and the visualizations, and what characteristics of the mathematical and graphical tools
influenced their understanding. In an overall perspective, we aim at studying the semantic gap
between the computer vision domain and the marine biology domain, and we aim at drawing
conclusions on the implications for the design of mathematical and graphical tools that would
support marine biologists. To summarize, we aim at answering the research questions listed
below.

• In order to understand and trust the system, how much knowledge of the computer vision
domain do marine biologists need to comprehend?

• What metrics and visualizations are the most understandable for marine biologists to
evaluate the levels of confidence in the observed trends and correlations of trends?

• Do the provided metrics and visualizations give sufficient information for marine biol-
ogists to derive scientifically valid analyses of the Fish4Knowledge data, including the
identification of valid hypotheses and the verification of hypotheses derived from prior
knowledge?

In order to answer these questions, we will use standard qualitative and quantitative human
computer interaction methods. We will start with qualitative investigations to obtain feedback
from users using directed tasks with very simple interfaces on a pre-selected portion of the data
in the database. As we gain knowledge about the users’ understanding of the interpretations
of the data in the system we will be able to work in two directions: improve the visualizations
of the information (necessary for users to be able to use the system) and, more importantly,
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understand to what extent users are able to understand and develop some degree of confidence
in the statistics that the system is able to supply.

As the system develops, with larger amounts of data and with a more stable prototype inter-
face, we will move towards more quantitative studies to understand better which visualizations
are more appropriate for which tasks. These will be developed after gaining understanding of
the users’ interactions with the system in the qualitative studies.

We are aware that the creation of interfaces to the data analyses in the system is a non-trivial
task, requiring different types of expert involvement in both the population and uncertainty
metrics. This complexity leads us to anticipate that users of the system will require time to fully
understand it, and more time to be able to use it for tasks not pre-specified by ourselves. If the
system proves to be sufficiently robust within the lifetime of the project, then we will also carry
out longer term studies with a few users to understand how their usage and understanding of the
system develops with extended use.

6 Conclusions and Future Work
We have discussed the uncertainty inherent in the F4K system and their implications on

the UI design. On top of that, we sketched our proposed user interface and visualizations
that aim at assisting end users in exploiting and understanding the information supplied by the
system. Meanwhile, we proposed a set of user tasks and evaluation criteria that will be used for
evaluating the proposed UI components.

Our next step is to convert our proposed tasks to one or more concrete experiments using
real data from the system and use these to test specific components on users. A number of
discussion points are left open for research:

• Are users likely to want to see the ground truth data used? For example to verify the
representativeness. E.g., certain species are rare, may not be found in the training set.

• How likely is it that the user wants to combine data sets analysed with different compo-
nents?

• How do we propagate and combine uncertainties for higher-level operations.

• As our users become more acquainted with the system-introduced uncertainties, they may
want to access to more detailed/lower-level information. In other words, what we assume
now may change when we start showing the system to users.
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