
IST – 257024 – Fish4Knowledge Deliverable D5.2

Fish4Knowledge Deliverable D5.2

RDF/RDMS Datastore Definition

Principal Author: S. Palazzo, C. Spampinato, J.R. van
Ossenbruggen

Contributors: CWI, UCAT
Dissemination: PU

Abstract: The RDF/RDMS Datastore Definition deliverable (D.5.2)
of the Fish4Knowledge project aims at describing the design and
implementation of a datastore schema for storing information on 1) the
underwater monitoring system and on 2) the processing results in terms
of fish detection, fish tracking, fish recognition, event detection and
recognition. Components developed by the different partners are envisioned
to inter-operate mainly by reading and writing data to a relational database
conforming to this schema. In addition, an RDF schema has been defined
in order to expose the project data in a Linked Data-compliant solution for
Web-scale sharing of resources and experimental data as proposed in WP5.

Deliverable due: Month 3

Version 1.0; 2011–07–03 Page 1 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

1 Introduction
This document aims at describing the design and implementation of a datastore schema for

storing information on:

• Underwater Monitoring. This data mainly concerns with the sites, cameras and recorded
videos of the monitoring system;

• Object Detection and Recognition. This section describes the data related to fish detec-
tion, tracking and recognition. It also allows the storage of events that involve groups of
fish, fish-fish and fish-background interactions.

• Low Level Features. This part aims at describing the schema for low level feature storage
for supporting the description of fish, event and scene of interest.

• Software Components. In order to deal with different versions of the algorithms, this
part of the schema aims at keeping track of which algorithm has been used for extracting
specific information.

Two schema have been defined: a relational one and another one using RDF. Since the data
has a clear relational structure, with little or no data integration or data heterogeneity problems,
a relational approach has been chosen as the project’s primary storage. Components developed
by the different partners are envisioned to inter-operate mainly by reading and writing data
to a relational database conforming to this schema. In addition, an RDF schema has been
defined in order to expose the project data in a Linked Data-compliant solution for Web-scale
sharing of resources and experimental data as proposed in WP5. This document focuses on the
description of the two solutions and also on reusable components for datastore access. The
relational datastore schema is described in Section 2, whose subsections discuss the single
entities. The following section describes the RDF export. For each developed schema, the
server name and how to access to stored data is also given.

2 Relational Datastore Schema
The huge amount of information extracted from the videos is stored in a relational database

which is specifically designed to make it easy to retrieve the data typically needed to answer
queries by marine biologists. The datastore schema is described by using the Entity/Relationship
model. Since this model for the entire datastore would be too big to fit one page, we split it into
four parts described in the following sections. Fig. 1 shows the formalism used to draw the
Entity/Relationship model.

2.1 Underwater Monitoring System
The entities used for describing the underwater monitoring system, i.e. the information

regarding the sites where cameras are located and the recorded videos, are: cameras and videos.
The ERM schema is shown in Fig. 2.

Version 1.0; 2011–07–03 Page 2 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

Figure 1: Entity/Relationship Formalism

Figure 2: ERM schema for Underwater Monitoring System Information

Version 1.0; 2011–07–03 Page 3 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

2.1.1 Cameras

ERM Entity: (camera)

This entity models information about a camera, such as its location, lens, width angle. Each
camera entity is identified by the name of the site (e.g. NPP-3, LanYu, etc) and by the video
number (whose maximum value depends on the number of cameras available on the site).

Attributes:

• camera id (integer): unique identifier for a camera.

• video number (integer): in each location there are more than one camera. This field
describes the number of camera for the specific location.

• location (string): short name describing the geographic location of the camera.

• camera lens (string): lens used by the camera.

• camera angle (integer): width angle of the camera in degrees.

ERM Entity: (camera info)

This entity is meant to provide information on the cameras used for video recording. It refers
to the camera’s entity and provides the hardware specifications of the the used cameras.

Attributes:

• camera id (integer): foreign key to the camera entity.

• diaphragm (float): diaphragm of the used camera.

• focal length (float): focal length of the camera.

• zoom multiple (float): type of zoom of the camera.

• shoot mode (string): how the camera grabs the frames.

• product (string): name of the used camera.

• product type (string): type of product.

• camera kind (string): the type of camera, e.g. digital camera, reflex camera. etc.

• max pixel (integer): spatial resolution in mega-pixel.

• product time (date).

Version 1.0; 2011–07–03 Page 4 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

ERM Entity: (maintain log)
This entity describes those cameras that undergo maintenance. It describes when the mainte-
nance starts and ends and the description of the intervention.

Attributes:

• maintain id (integer): the primary key of the maintenance intervention.

• camera id (integer): foreign key to the camera entity.

• maintain start time (date): Start time of the intervention.

• maintain finish time (date): End time of the intervention.

• maintain describe (string): Description of the intervention.

• maintain group (string).

2.1.2 Recorded Videos

ERM Entity: (video)

This entity represents the processed videos among all the available ones. It contains generic
and technical information on the videos (capture date and time, length, encoding, etc). In
detail, each video entity is associated to the camera from which it was captured, and contains
information on the date and time at which the video starts and technical data (frame rate, size,
codec, etc).

Attributes:

• video id (integer): unique identifier for the video.

• camera id (integer): foreign key to the camera entity, specifies by which this video was
created.

• date time (date and time): date and time at which the video begins.

• length (integer) : length in seconds of the video.

• frame rate (integer): frame rate in frames/second.

• frame height (integer): frame height in pixels.

• frame width (integer): frame width in pixels.

• frame depth (integer): bit width of the pixels.

• encoding (string): encoding algorithm of the video.

Version 1.0; 2011–07–03 Page 5 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

Figure 3: ERM schema for Fish Detection and Recognition

2.2 Object Detection and Recognition
The entities of this section are related to the results of video processing in terms of detection

of fish and non-fish objects (secondary objects). Moreover, events that involve more fish, groups
of fish, fish-background interactions and, more in general, fish non-fish objects interaction are
also stored. The schema for handling fish detection, tracking and recognition is shown in fig. 3.

As mentioned before, secondary objects are non-fish elements (such as plants or other
animals) which interact with fish in the context of an event (for example, feeding). These
objects are stored only if an event is being detected and the database representation is the same
as the one used for fish (with secondary objects and secondary object detection tables). An
event is the recognition of a particular behavior of a fish or group of fish, such as feeding,
preying, mating, schooling. The information associated to an event is its type, the frame range
in the video and the detections of both fish and secondary objects involved in the event (through
the event fish detection and the event secondary object detection tables) as shown in fig. 4.

2.2.1 Fish

ERM Entity: (fish)

The fish entity represents a unique fish which has been detected in a video. In other words,
if a fish appears in multiple frames, this will create a single record in the database (the tracking
component takes care of associating multiple detections to the same fish). To a fish we associate
its species (as obtained by the recognition algorithm), its best view as bounding box (the frame
coordinates {column, row} of the four corners of the rectangle), its contour (a sequence of

Version 1.0; 2011–07–03 Page 6 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

Figure 4: ERM schema for Event Detection

consecutive points of frame coordinates {column, row}), the frame number it was detected at,
and the software component which detected this fish.

Attributes:

• fish id (integer): unique identifier for the fish.

• best video id (integer): foreign key to the video entity (see below); it specified in which
video we have the best view for this fish.

• best frame (integer): frame number in the best video id video, where the best view of
the fish is.

• best bounding box (polygon): this specifies the bounding box for the best view of the
fish, as the absolute frame coordinates {column, row} of the four vertices (corners) of
the rectangle.

• best contour (polygon): field that contains a list of consecutive points of coordinates
{column, row} defining the contour of the object (this might be subject to changes,
according to performance and storage considerations).

• component id (integer): foreign key to the software component entity, identifies the
component which created this record (i.e. which detected this fish).

ERM Relationship: (fish species)

This relationship represents the fact that the recognition process might assign to each iden-
tified object different species with different levels of certainty.

Attributes:

• fish id (integer): foreign key to the fish entity.

Version 1.0; 2011–07–03 Page 7 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

• species id (integer): foreign key to the species entity, identifies the species to which this
fish belongs (according to the classifier).

• certainty (float): certainty score for each specie assigned to the identified fish.

2.2.2 Detection of a fish

ERM Entity: (fish detection)

Each fish detection instance represents an object in a video which has been recognized as
a fish by the detection algorithm. Unlike fish, we can have multiple fish detection records
referring to the same fish, if it appears in multiple frames. Each detected blob is assigned with
two scores: detection certainty and tracking certainty. The former score describes the certainty
that a detected blob is a fish and it is included between 0 and 1 (the larger, the more certain).
The latter score describes the certainty that a detected blob is correctly associated to the blobs
detected in the previous frames. It also ranges within 0 and 1.

Attributes:

• detection id (integer): unique key of the fish detection entity; it identifies each object
detected by the detection algorithms.

• fish id (integer): foreign key to the fish entity, identifies the specific (i.e. unique) fish this
detection refers to.

• video id (integer): foreign key to the video entity, specifies the video in which this
detection was found.

• frame id (integer): detection frame number in the video.

• bounding box (polygon): this specifies the bounding box for the best view of the fish,
as the absolute frame coordinates {column, row} of the four vertices (corners) of the
rectangle.

• contour (polygon): field that contains a list of consecutive points of coordinates {column, row}
defining the contour of the object (this might be subject to changes, according to perfor-
mance and storage considerations).

• detection certainty (float): certainty score of the detected object.

• tracking certainty (float): certainty score of the tracked object.

• timestamp (date and time): estimation of the date and time of the detection performed
by a software component.

Version 1.0; 2011–07–03 Page 8 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

2.2.3 Secondary (non-fish) objects

ERM Entity: (secondary object)

This entity represents non-fish objects found in the videos which have some kind of inter-
action with fish, especially for the event detection component. The structure of this entity and
the way detections are managed are similar to fish and fish detection. However, consider the
scenario in which a fish hides behind a rock. It might be useful to save the rock as a secondary
object and to associate it to the “fish hiding” event (see below). Of course, it would be useless
and unfeasible to save all detections of the rock; for this reason, secondary objects can be
marked as stationary, in which case detections are not saved.

Attributes:

• object id (integer): unique identifier for the object.

• type (string): name of the object (e.g. rock, plant, etc).

• stationary (boolean): specifies if the object is stationary (if that is the case we do to save
detections). By default, this value is set to false.

• best video id (integer): foreign key to the video entity, specifies in which video we have
the best view for this object.

• best frame (integer): frame number in the best video id video, where the best view of
the object is.

• best bounding box (integer): it specifies the bounding box for the best view of the object,
as the absolute frame coordinates {column, row} of the four vertices (corners) of the
rectangle.

• best contour (polygon): field that contains a list of consecutive points of coordinates
{column, row} defining the contour of the object (this might be subject to changes,
according to performance and storage considerations).

• component id (integer): foreign key to the software component entity; it identifies the
component which created this record (i.e. which detected this object).

2.2.4 Detection of secondary objects

ERM Entity: (secondary object detection)

This is the equivalent of fish detection for secondary objects.

Attributes:

• detection id (integer): primary key to identify a specific detection.

• object id (integer): foreign key to the secondary object entity, identifies the specific (i.e.
unique) object this detection refers to.

Version 1.0; 2011–07–03 Page 9 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

Figure 5: List of Events in the datastore

• video id (integer): foreign key to the video entity, specifies the video in which this
detection was found.

• frame id (integer): detection frame number in the video.

• bounding box (polygon): specifies the bounding box of this detection, as the absolute
frame coordinates ({column, row}) of the four vertices (corners) of the rectangle.

• contour (blob): binary field which contains a list of the points defining the contour
of the object (this might be subject to changes, according to performance and storage
considerations).

• detection certainty (float): certainty score of the detected object.

• tracking certainty (float): certainty score of the tracked object.

• timestamp (date and time): estimation of the date and time of the detection performed
by a software component.

2.2.5 Event types

ERM Entity: (event type)

This entity lists the possible events which can be detected by analyzing the videos for fish-
environment interactions. A preliminary set of events right now stored in the datastore is shown
in fig. 5. Currently, we simply define the names for the possible events.

Attributes:

• event type id(integer): unique identifier for the event type.

• description (string): short description of the event.

2.2.6 Events

ERM Entity: (event)

Version 1.0; 2011–07–03 Page 10 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

This entity represents an event, defined as the recognition of a particular behavior of a fish or
a group of fish (e.g. eating, preying, schooling, etc). The sets of involved fish and, if necessary,
secondary objects is associated to the event (via the event fish detection and event secondary object detection
entities, see below).

Attributes:

• event id (integer): unique identifier for the event.

• event type id (integer): foreign key to the event type entity, specifies the kind of event.

• event name (string): name of the specific event of type event type id.

• video id (integer): foreign key to the video entity, specifies in which video the event was
detected.

• start frame (integer): number of frame in which the event began.

• end frame (integer): number of frame in which the event ended.

• event certainty (float): certainty score of the event detection algorithm.

• component id (integer): foreign key to the software component entity, identifies the
component which created this record (i.e. which recognized this event).

2.2.7 Fish detections related to an event

ERM Relationship: (event fish detection)

This relationship captures how fish and event entities are related and, more specifically, it
lists all the detections of a fish involved in an event.

Attributes:

• event id (integer): foreign key to the event entity, specifies to which event this detection
refers to.

• fd detection id (integer): foreign key to the fish detection entity, specifies the detection
of a fish involved in the event.

2.2.8 Secondary object detections related to an event

ERM Relationship: (event secondary object detection)

This relationship lists all detections of the secondary objects involved in an event. Similarly
to event fish detection, it describes the relation between secondary object and event entities. If
the object is stationary and no detections of the object were saved in the time interval of the
event, then an arbitrary detection of the object is assigned to the event.

Attributes:

Version 1.0; 2011–07–03 Page 11 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

Figure 6: ERM schema for Low Level Features of Fish

• event id (integer): foreign key to the event entity, specifies to which event this detection
refers to.

• so detection id (integer): foreign key to the secondary object detection entity, specifies
the detection of a secondary object involved in the event.

2.3 Low Level Features
These entities aim at storing the low level features extracted from fish, non-fish object,

videos and frames for purposes such as fish recognition, videos classification, event classifica-
tion, etc. An example of the datastore schema for storing features about fish is shown in fig.
6.

2.3.1 Fish/secondary object/video description features

ERM Entity: (feature)

This entity lists the possible features which can be used to describe fish and secondary
objects (for classification purposes) and videos (for video-specific computed attributes). For
each feature, its name and the kind of data (integer, floating point, string, ...) stored in it are
specified.

Attributes:

• feature id (integer): unique identifier for the feature.

• name (string): a short feature name.

• type (string): a definition of the kind of data in which the feature is represented (the
format of this string is to be specified in detail).

2.3.2 Fish description features

ERM Relationship: (fish features)

This relationship describes all features computed on fish and represents the relation between
entities fish and feature. In order to support matrix data, it is possible to specify the number of

Version 1.0; 2011–07–03 Page 12 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

rows and columns this data requires. The actual data is stored in binary format, row by row
(from left to right). The bit width of each element depends on the type of the feature. Given
a specific fish, features can be computed from any of its detections, not necessarily the one
corresponding to the best view.

Attributes:

• fish id (integer): foreign key to the fish entity, specifies on which fish this feature was
computed.

• feature id (integer): foreign key to the feature entity, identifies the computed feature for
a specific fish.

• data (blob): actual data of the feature. It consists of a stream of data elements (the width
of which depends on the type of feature), organized by rows, consistently with the rows
and columns fields.

• rows (integer): number of data rows.

• columns (integer): number of data columns.

• feature certainty (float): certainty score of the computed feature. For some kind of
features (e.g. histogram, Gabor descriptors, etc) there actually is no uncertainty, so this
value is always 1. For other kinds, typically at higher-level features such as the number
of fins, it actually makes sense to specify a certainty score.

2.3.3 Secondary object description features

ERM Relationship: (secondary object feature)

This relationship describes all features computed on secondary objects, in a similar way as
fish features.

Attributes:

• object id(integer): foreign key to the secondary object entity, specifies on which object
this feature was computed.

• feature id (integer): foreign key to the feature entity, identifies the computed feature.

• data (blob): actual data of the feature. It consists of a stream of data elements (the width
of which depends on the type of feature), organized by rows, consistently with the rows
and columns fields.

• rows (integer): number of data rows.

• columns (integer): number of data columns.

• feature certainty (float): certainty score of the computed feature (see fish features entity).

Version 1.0; 2011–07–03 Page 13 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

2.3.4 Video description features

ERM Relationship: (video feature)

This relationship contains all features computed on videos. In order to support matrix data,
it is possible to specify the number of rows and columns this data requires. The actual data is
stored in binary format, row by row (from left to right). The bit width of each element depends
on the type of the feature.

Attributes:

• video id (integer): foreign key to the video entity, specifies on which fish this feature was
computed.

• feature id (integer): foreign key to the feature entity, identifies the computed feature.

• data (blob): actual data of the feature. It consists of a stream of data elements (the width
of which depends on the type of feature), organized by rows, consistently with the rows
and columns fields.

• rows (integer): number of data rows.

• columns (integer): number of data columns.

• feature certainty (float): certainty score of the computed feature (see fish feature entity).

2.4 Software components
This entity aims at storing the software components used for all type of processing, from

fish detection and tracking to features extraction to fish recognition to event detection and
classification. There are several reasons why we might want to store results from different
algorithms for detection, tracking, classification, etc. For instance, two algorithms might have
different characteristics that make each of them more suitable for different kinds of queries.
In order to manage results obtained by different algorithms, all data that is produced (e.g.
detections, tracking, classification) is associated to the software component which created it.
This causes replication of data (for example, if two detection algorithms detect the same fish,
two records will be created in the fish entity, see below), but allows to keep track of the
differences between the results and to let the user choose from which source to retrieve the
data.

ERM Relationship: (software components)

Attributes:

• component id (integer): unique identifier for the software component.

• type (string): type of algorithm implemented by the component (e.g. detection, tracking,
etc).

• method (string): name of the algorithm.

Version 1.0; 2011–07–03 Page 14 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

• version (integer): component version (we might want to overwrite results written by the
same component but with a different version).

• execution time (integer): measure in msec of the execution time of the algorithm.

• settings (string): the set of parameters used by this component (e.g. thresholds).

• input (string): input required by the component (e.g. video, fish list, etc.).

• output (string): type of data produced by the component.

2.5 Metadata
This entity is meant to provide high level information for some fields of the databases. In

detail, the entity is supposed to contain units, valid ranges, missing data symbol for fields of the
database.

ERM Relationship: (metadata)

Attributes:

• id (integer): unique identifier of the entity.

• name (string): the name of an attribute of a db entity. The best practice is use to use some-
thing in the form “table.attribute”. For example, if we want to provide information on the
field “event certainty” of the table events, this field should be “events.event certainty”.

• type (string): datatype: double, integer, string, etc.

• allowed values (integer): valid ranges for the attribute specified in field “name”.

• unit time (string): units of measurements.

• missing data symbol (string): symbols used to describe that the information for that field
is not available.

• notes (string): additional notes.

2.6 Database Implementation
We provide two implementations of the relational datastore schema described above: MySQL

and PostgreSQL. This has been done mainly in order to identify which is the best solution in
terms of query optimization, available datatype for the specific data and storage size limita-
tions. The first implementation of the relational datastore schema above described was done
in MySQL. This was mainly due to the simplicity of implementation and the availability of
connectors for any programming language. Afterwards, due to size limits the MySQL database
was migrated to a PostgreSQL one. In fact, the effective maximum entity size for MySQL
databases for Win32 w/ NTFS, Linux 2.4+ and Mac OS X, is respectively, 2TB, 4TB and 2TB,
whereas the maximum entity size for PostGreSQL databases is independent from the operating
and is 32 TB.

Version 1.0; 2011–07–03 Page 15 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

The MySQL data server has the following credentials:
IP address: 151.97.9.184
IP port: 3306
Database: f4k-db
username: f4k
username: f4kpwd

The PostgreSQL server, instead, has the following credentials:
IP address: 151.97.6.81
IP port: 5432
Database: f4k
username: guest
username: guest

2.6.1 C++ Interface for F4K Relational Database

To accommodate the need of the programmers to handle data in the F4K database, in a
higher level than plain SQL language, a module that hides the complexity of I/O operations to
and from the database has been created. The module is called DBDispatcher and consists of the
following files:

• DBDispatcher.h

• DBDispatcher.cpp

• DBObject.h

These files include the functions and data variables, necessary to abstract the low level data
operations and they depend on the following programs/classes that have to be already installed
and configured on the computer.

• The MySQL Connector or PostgreSQL for C++ version.

• The OpenCV image processing library. The module is currently compatible with the 2.1
and 2.2 versions of the library.

• The F4K detection and tracking platform’s DBObjects, in particular:

1. Fish.h and .cpp

2. Fish Detections.h and .cpp

3. Species.h

4. SWComponent.h and .cpp

5. Camera.h

6. Video.h and .cpp

In the following the description of the developed classes is given.

Version 1.0; 2011–07–03 Page 16 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

2.6.2 Class Description

• The Fish class
File: Classes/Fish.h
The fish class contains variables and methods necessary to describe completely a fish in
the database. The variables that a Fish object contains are:

- int id. This is the fish id associated to the detected object after being inserted in
the database.

- int specie. This is the fish’s specie id. Currently it is not used.

- int componentid. The component id of the software component used for fish
detection

- int bvideo. The id of the video which the fish belongs to.

- int bframe. The number of the frame of the video that contains the best view of
the fish.

- short bboxx. The x coordinate of the bounding box that contains the fish’s
mask.

- short bboxy. The y coordinate of the bounding box that contains the fish’s
mask.

- short bboxh. The height of the bounding box that contains the fish’s mask.

- short bboxw. The width of the bounding box that contains the fish’s mask.

- IplImage *bcontours. The image representation of the contours of the best
view of the fish.

- vector<Fish Detection*> detections. A vector that contains all the
fish’s detections.

• The Fish Detection class
File: Classes/Fish Detection.h
This class represents a detection of a fish. The variables that a Fish Detection object
contains are:

- int fish id. The fish’s ID that the detection object belongs to.

- int frame id. The number of the frame of the video that contains the detection.

- short bboxx. The x coordinate of the bounding box that contains the fish’s
mask.

- short bboxy. The y coordinate of the bounding box that contains the fish’s
mask.

- short bboxh. The height of the bounding box that contains the fish’s mask.

- short bboxw. The width of the bounding box that contains the fish’s mask.

- int video id. The id of the video which the fish belongs to.

- long timestamp. The timestamp of the captured frame.

- float detection certainty.

Version 1.0; 2011–07–03 Page 17 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

- float tracking certainty. These two parameters are used to evaluate the
correctness of the detection/tracking.

- IplImage *bcontours. The Image representation of the detection’s mask.

• The Camera class
File: Classes/Camera.h
This class represents a capturing camera in the database. The variables that a Camera
object contains are:

- int id. The id of the the camera which is generated after the camera object is
inserted in the database.

- int video num. The number of the camera that resides in a site.

- int camera angle. The camera angle in degrees.

- string camera lens. This variable describes the type of the camera.

- string location. The name of site where the camera is located.

• The Video class
File: Classes/Video.h
This class contains information about a captured video. The variables that a Video object
contains are:

- int camera id; The id of the camera that this video has been acquired.

- int video id; The video’s ID. This number is generated after the video object
is inserted in the database.

- long date time; When a video has been acquired.

- int length

- int frame rate

- int frame height

- int frame width

- int frame depth
These variables describe low level features of the video.

• The SWComponent class
File: Classes/SWComponent.h
The Software Component class is an abstract class that represents a software module used
for fish detection/tracking/classification. Every software module must extend this class
and implement its pure virtual methods.

• Dispatcher Initialization
To initialize a DBDispatcher object, one must pass the following parameters in the con-
structor:

1. The type of RDBMS, namely, MySQL or PostgreSQL.

Version 1.0; 2011–07–03 Page 18 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

2. The prefix ‘‘tcp://’’ concatenated with the IP address and the port of the
database server; an example of string to be passed to the method is: ‘‘tcp://
192.168.0.1:3306’’.

3. The username.

4. The password.

So a valid DBDispatcher object is something like:
DBDispatcher* dispatcher = new DBDispatcher(‘‘MySQL’’,‘‘tcp://
192.168.0.1:3306’’,‘‘username’’,‘‘password’’);

The methods interfacing to the database are included in the db variable of the DBDispatcher
object. So to insert a software component in the database one must write:
dispatcher→db→insertSWComponent(component);

2.6.3 How to insert/update data

To insert data in the database the module uses the following functions:

• void insertSWComponent(SWComponent* component);
This function is used to insert a software component in the DB. It is used to populate the
software component entity.

• void insertFish(Fish *fish);
After all the necessary information to describe a fish have been acquired by the tracking
and detection modules the program should create a Fish object. In this module are
included data like bounding boxes of the best views, fish ids, fish detections etc..
Fish detections are inserted by calling the addDetection member function of the Fish
class and are all stored in a vector. Fish detections are inserted when the user calls the
insertFish function.

• void insertSpecies(Species* specie);
This function inserts a new specie in the DB.

• void insertVideo(Video* video);
The insertVideo function serves the role of registering a new video in the DB. If a video
with the same parameters exists the function fills all the missing member variables with
the values read from the DB .

• void insertCamera(Camera* camera);
The insertVideo function serves the role of registering a new camera in the database. If a
camera with the same parameters exists the function fills all the missing member variables
with the values read from the DB

• void insertObject(DBObject *obj);
This is a wrapper function. It calls the getObjectType function, defined in DBObject.h
and overloaded by all the other classes that derive the DBObject class. It can be used to
replace every other insert function.

Version 1.0; 2011–07–03 Page 19 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

Similar methods, to the ones shown above, have been implemented for updating the database’s
records.

2.6.4 How to retrieve data

• void getObjectsFromVideo(Video* video,vector<Fish*>& fish);

• void getObjectsFromVideoID(int id,vector<Fish*>& fish);

These functions return a vector containing all the detected fish in a video. The video can be
passed with its fish id or by passing a Video object. For the latter the video’s filename has to be
decoded and a call to the insertVideo function must be made. If the video exists in the database,
the Video object will be populated by the data present, else the video will be inserted with a
new ID and the querying of the database will result in an empty fish vector.

3 Linked Open Data
All data described according to the relational schema will be made available through com-

mon SQL application programmer interfaces, so it will become readily available for reuse. We
envision, however, that most third party applications that either need to integrate the data in our
relational storage into data sets with other schemas, or applications that need to link our data
to other data or vise versa can do so more easily if the data is also exposed as Linked Open
Data (LOD) using the RDF data model. The RDF data is published in three categories. First,
all relational data described above is being exposed using a direct mapping to RDF. Second, a
taxonomy of all Taiwanese coral reef fish is published in SKOS. Finally, we will publish RDF
links between the relational data and the SKOS taxonomy, to other relevant LOD data sets and
alternative representations of the key data.

3.1 Direct Mapping to RDF
The basis of our LOD data set is a direct, one-to-one mapping from all the relational data

described above to RDF, using the guidelines described in “A Direct Mapping of Relational Data
to RDF” Working Draft1 that is currently under development in the W3C RDB2RDF Working
Group2. Note that one of the key advantages of the Direct Mapping is that the RDF Schema are
directly derived from the relational schema defined in section 2. We will therefore not duplicate
this information, but instead show some examples to explain the key principles. The key current
Fish4Knowledge Linked Open Data addresses for the Direct Mapping are:

HTML browser entry point http://f4k.project.cwi.nl/lod/
Namespace URL http://f4k.project.cwi.nl/lod/
Namespace abbreviation f4k: http://f4k.project.cwi.nl/lod/

RDF browser entry point f4k:all http://f4k.project.cwi.nl/lod/all

SPARQL end point f4k:sparql http://f4k.project.cwi.nl/lod/sparql

SPARQL explorer f4k:snorql http://f4k.project.cwi.nl/lod/snorql

1http://www.w3.org/TR/2011/WD-rdb-direct-mapping-20110324/
2http://www.w3.org/2001/sw/rdb2rdf/

Version 1.0; 2011–07–03 Page 20 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

The example below shows the RDF description of camera #25, the third camera on HoBiHu
harbor reef under the Direct Mapping, using Turtle as the serialization syntax. Note that by
default, also the URLs of the resources which use camera #25 as an object are being returned.
Below, we only included the first of these, in this video fragment #16, that was apparently shot
by camera #25:

@prefix f4k: <http://f4k.project.cwi.nl/lod/> .
@prefix vocab: <http://f4k.project.cwi.nl/lod/vocab/resource/> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix d2r: <http://sites.wiwiss.fu-berlin.de/suhl/bizer/d2r-server/config.rdf#> .

<http://f4k.project.cwi.nl/lod/resource/cameras/camera_id=25>
a <http://f4k.project.cwi.nl/lod/vocab/resource/f4k.cameras> ;
rdfs:label "camera #25 (3@HoBiHu)" ;
vocab:cameras_camera_id "25"ˆˆxsd:int ;
vocab:cameras_location "HoBiHu" ;
vocab:cameras_video_number "3"ˆˆxsd:int .

<http://f4k.project.cwi.nl/lod/resource/videos/video_id=16>
vocab:videos_camera_id

<http://f4k.project.cwi.nl/lod/resource/cameras/camera_id=25> .

...

The next example shows an entry of the fish detection table under the Direct Mapping. Note
that — as described in section 2.2.2 — detections are identified not by a single ID but by a
composite key combining the fish, video and frame IDs. Namespace declarations are omitted
for brevity, and are identical to the previous example.

f4k:resource/fish_detection/fish_id=261208,video_id=3576,frame_id=1652
a vocab:f4k.fish_detection ;
rdfs:label "fish_detection fish261208/v3576/f1652" ;
vocab:fish_detection_detection_certainty

"0.88877"ˆˆxsd:double ;
vocab:fish_detection_fish_id

<http://f4k.project.cwi.nl/lod/resource/fish/fish_id=261208> ;
vocab:fish_detection_frame_id

"1652"ˆˆxsd:int ;
vocab:fish_detection_timestamp

"2010-12-16"ˆˆxsd:date ;
vocab:fish_detection_tracking_certainty

"0.79386"ˆˆxsd:double ;
vocab:fish_detection_video_id

<http://f4k.project.cwi.nl/lod/resource/videos/video_id=3576> .

The Turtle code above can also be accessed over HTTP by requesting the text/turtle
MIME type on the resource’s URL. For example, by using the open source curl command
line tool, this can be done as follows:

shell> curl -LH "Accept: text/turtle"
"http://f4k.project.cwi.nl/lod/resource/cameras/camera_id=25"

Version 1.0; 2011–07–03 Page 21 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

shell> curl -LH "Accept: text/turtle"
"http://f4k.project.cwi.nl/lod/resource/fish_detection/fish_ \\
id=261208,video_id=3576,frame_id=1652"

By using the application/rdf+xml MIME type, the same resources can be returned in
RDF/XML notation, e.g.:

shell> curl -LH "Accept: application/rdf+xml"
"http://f4k.project.cwi.nl/lod/resource/cameras/camera_id=25"

3.2 Taiwanese coral reef fish taxonomy in SKOS
This RDF data set will use SKOS to provide a detailed taxonomy of all coral reef fish species

that live on the Taiwanese reefs. It will be based on information from authoritative sources such
as the Fish Database of Taiwan by Prof.dr. K.T. Shao from the Biodiversity Research Center
of the Academia Sinica in Taiwan. At the time of writing, a first, tentative version includes
28113 fish images, associated with 2893 species descriptions. These species belong to 1051
genera, 300 families, 61 suborders, 47 orders and 3 (sub)classes. (Note that the taxonomy
not necessarily has a single root as fish are a paraphyletic collection of taxa, of which 3 are
potentially relevant to our project).

The Fish4Knowledge SKOS taxonomy will play several roles. First, it will provide a
species-centric access point to the Fish4knowledge LOD data, where the relational data de-
scribed above primarily provide a detection-centric view. It will provide the most natural
link target to link Fish4knowledge data to other LOD data that is species-oriented, such as
the species descriptions in AGROVOC and other relevant taxonomies published by the Food
and Agriculture Organization of the United Nations.

Second, it will be a means to publicly share, as LOD, the external resources that were used to
train the species recognition software modules, for example by providing examples still images
or contours of fish species, genera or families, or of specific features that are used, such as tail
or fin shapes, or textures or color histograms etc.

Finally, the SKOS vocabulary provides an excellent means to systematically deal with the
variety of names that are associated with fish species. Many species have different (accepted)
scientific names, different common names in multiple languages, different transliteration of
the same name, etc. Having this information in a machine-readable format such as SKOS is
a key asset that can, for example, be used in the user interface to support query formulation
(e.g. by using autocompletion or query expansion techniques) or in the result display (e.g. by
automatically augmenting search results from the database with species names in languages
appropriate to the current user).

Software used to create the taxonomy will be published as open source, along with OPM
data describing the origin of the taxonomic.

3.3 Interlinking and alternative representations of Direct Mapping data
A vital part of the interlinking will be the mapping of the internal database keys of the

relational species identifiers to the species that are defined as SKOS concepts in the taxonomy.
As the species recognition data is not yet available at the time of writing, we will speculate
on the exact nature of this mapping. However, since the species recognition will be based on

Version 1.0; 2011–07–03 Page 22 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

Figure 7: HTML rendering of f4k:resource/cameras/camera_id=25

the same authoritative resources that were crawled to create the SKOS taxonomy, we expect no
problems in this area.

Second, we will provide links from geographical locations and event types to common LOD
data sets such as DBpedia3 and GeoNames4. Since the number of unique items of this type in
the database is very small, we expect this mapping can be done manually without problems.

Third, we will provide links from event detections to relevant external event resources when
available (e.g. typhoons or other major environmental events). Since we have precise data
and location information for all detected events, we expect these links can be provided fully
automatically with great reliability.

Finally, we will use the Open Provenance Model (OPM) and its associated RDF vocabu-
laries5 to provide machine readable, provenance metadata about our data sets. By combining
the explicit data about the versions of the software components used, the timestamps of the
detection and the processing work flows defined, we will strive to provide OPM data to fully
describe the origin of all our data, in sufficient detail to allow full replication of it.

3.4 Implementation
All three categories will be implemented using different methods. A first prototype of the

relational data under the Direct Mappings is available at the time of writing. Relational data is
being exposed by running the open source D2R Server6. At the time of writing, we are using
D2R version 0.7 alpha7 and run it against a copy of the Postgres database described earlier in
this document. The mapping table specifying the rules to map the SQL data to RDF is available
from http://f4k.project.cwi.nl/resources/d2r/f4k.ttl.

The HTTP redirection required to conform to the LOD conventions8 is performed by the

3http://ckan.net/package/dbpedia
4http://ckan.net/package/geonames
5http://purl.org/net/opmv/ns
6http://www4.wiwiss.fu-berlin.de/bizer/d2r-server/
7http://sourceforge.net/projects/d2rq-map/files/D2R\%20Server/
8http://linkeddatabook.com/editions/1.0/

Version 1.0; 2011–07–03 Page 23 of 24 c© Fish4Knowledge Consortium, 2010

IST – 257024 – Fish4Knowledge Deliverable D5.2

D2R server. The general pattern is that any request for a URL starting with the pattern http:
//f4k.project.cwi.nl/lod/resource/ is redirected using an HTTP “303 see other”
redirect reply. The location to which is redirected depends on the HTTP Accept: header. For
MIME types associated with an RDF serialization syntax, the redirection is to http://f4k.
project.cwi.nl/lod/data/ while for HTML related and unknown MIME types, the
redirection is to http://f4k.project.cwi.nl/lod/page/.

For example, the URL f4k:resource/cameras/camera_id=25/ will be directed
to f4k:data/cameras/camera_id=25/ in case the HTTP client application requests
text/turtle as in the example above. However, if the client requests text/html, it will
be redirected to f4k:page/cameras/camera_id=25/, allowing normal Web browsers
to show the page in figure 7.

Version 1.0; 2011–07–03 Page 24 of 24 c© Fish4Knowledge Consortium, 2010

