
IST – 257024 – Fish4Knowledge Deliverable 5.4

Fish4Knowledge Deliverable 5.4

Experimental evaluation report 1

Principal Authors: Bastiaan J. Boom, Concetto Spamp-
inato, Simone Palazzo, Emmanuelle
Beauxis-Aussalet, Xuan Huang, Gay-
athri Nadarajan, Cheng-Lin Yang

Contributors: UEDIN
Dissemination: PU

Abstract: In the first experimental evaluation report, we describe the
methodology and data used to evaluate the different components in our
system. In this report, we evaluated both the separate components (fish
detection and tracking, fish recognition, workflow and the user interface) and
also look at the evaluation of the entire system. Currently, a prototype system
is running and has already processed 67468 clips of 10 minutes videos (10%
of total amount of videos) allowing us to show some premilinary analyses of
the system to marine biologists. However, the marine biologists only see
the user interface, so during the evaluation, awareness of the underlying
system was neccesary to obtain feedback. Based on the current system,
marine biologists especially indicated that more clarity is neccesary on
the performance metrics used in the video and image processing and how
this influences the results. From an integration perspective, some final
connections between the user interface and workflow components have to
be developed so the user can also interact with the VIP components directly.

Deliverable due: 30 Month

Version 1.2; 2011-7-20 Page 1 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

1 Introduction
In the Fish4Knowledge project, we have developed a fully working prototype system at the
end of the second year of the project. In this system, all of the components developed by
the different research groups can communicate with each other using mostly the initial system
interface defined by Deliverable 5.1 and 5.2 (only small details changed). This design has
proven to be very flexible during the ongoing development, where new versions of individual
software components are easy to include into the system without other researchers having to
adapt their software components in major ways.
This report will discuss the ongoing efforts to evaluate the individual software components and
the overall system. Having a first prototype system available helps basically all research groups
with the evaluation of their individual components. In a lot of cases, for the evaluation, research
groups also depend on the results of other components in the system. For instance, the workflow
is dependent on being able to run the Video and Image Processing (VIP) components in order to
adjust their strategies according to the specific properties of those software components. Also,
the user interface relies on the data that is made available by the video and image processing
components and discussions with users based on fiction data is much harder than discussion on
real and maybe interesting results.
To evaluate the entire system, we have to first evaluate the different software components of the
system separately. The evaluation of the individual components are based on the criteria that
the developers of these components are using for their own evaluation. Most of the evaluation
measures of the individual components are very specific to that component, because they all
have a different task within the overall system. Still the performance of the individual compo-
nents also partly reflects on the overall system. For instance, if the fish recognition is not able to
recognise species accurately, then the results in the interface might not be accurate, making good
evaluation of the different individual components important. Besides looking at the individual
components, it is useful to look at how well the entire system is performing. In this case, we
looked at two aspects of the entire system, namely how well everything is integrated and what
the feedback of the users is on the system. In a lot of cases, the feedback of the users comes
from users looking at the interface, however, lots of issues are not related to the user interface
but the underlying methodology and software. This is why the user interface is an ideal tool to
obtain feedback on the entire system, but not all improvements are at the interface level, where
we also need the integration to support the needs of the interface.
This deliverable is organized as following: In Section 2 the state of the prototype system will be
discussed. Afterwards, the evaluation of the different components are separately described for
fish detection and tracking component in Section 3, fish recognition in Section 4, computation
time and stability of VIP in Section 5, workflow in Section 6 and the User Interface in Section 7.
In Section 8, conclusions will be given based on the user feedback and the current performance
of the system, allowing us to suggest improvements for the last stage of the system development.

2 State of System
In this section, we will discussed the current state of the prototype system developed by the
Fish4Knowledge project. Although, we already have an entire working system, there are still
several things that need to be developed for the final system. Also, during the course of the

Version 1.2; 2011-7-20 Page 2 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

project, new proposed ideas have emerged that are not fully integrated and need more attention.
However, currently we have for video and image processing multiple software components that
can perform either fish detection and tracking or fish recognition. For fish detection, we have
several different background subtraction methods and different fish tracking methods which
can be used for this task, because different kinds of methods work better on different kinds
of scene.Given the output of the fish detection and tracking, we have a old version of the fish
recognition that is able to recognize 10 species, while our newer version recognizes 15 species.
For the fish recognition, different preprocessing filters can be used to obtain more accurate
fish contours depending on the computation time and necessary accuracy. Currently, a simple
bulk processing workflow is used to compute the backlog of video data with both the default
fish detection and recognition software components. These components save their data into a
database, which is accessible by the user interface. Because the amount of data in the database
is massive, summary tables are being used so that the user interface can deal with the amount
of data more quickly. Currently, the user interface is able to show statistical information about
the processed video data, where we already have years worth of data stored in the database.
In this system, the following connections need further development to improve the system.
First, the current bulk processing workflow needs to be replaced by a workflow that can perform
bulk processing as well as response to user requests allowing users to run different versions of
the software to verify for instance hypotheses. Here a connection between user interface and
workflow is also necessary. Second, the integration of how to deal with uncertainty in the system
can be improved, where at the moment we already have different levels of score given decisions
made by the fish detection and recognition components. However, relating these scores to values
that are useful to the end users is difficult, especially because the end-user are also not familiar
with these kind of new systems. These are still issues that we are working on, but these are not
challenging from a integration perspective, because they mainly involve creating an updated
version of an existing component that inputs better quality data in the database.

3 Fish Detection and Tracking
The evaluation phase for the fish detection and tracking algorithms aims at assessing the fol-
lowing properties:

• capability of the detection algorithms to identify the number of fish which are present in
a single frame (Section 3.1);

• accuracy of the detection algorithms in the extraction of the contour for each fish (Sec-
tion 3.1);

• capability of the tracking algorithms to follow a fish throughout a video (Section 3.2);

• accuracy of the total count of fish provided by the tracking algorithms for a whole video
(Section 3.2).

3.1 Fish detection
The evaluation of the fish detection perfomance was carried out by testing the performance,
first, of the background modeling approaches which identify the foreground pixels that are then

Version 1.2; 2011-7-20 Page 3 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

Figure 1: Underwater Video Dataset. From top-left to bottom-right: 1) Blurred, 2) Complex
Background Texture, 3) Crowded, 4) Dynamic Background, 5) Luminosity Change, 6)
Camouflage Foreground Object

grouped together to form objects (fish), and, then, of the post-processing module which, instead,
aims at filtering out the false positives due to errors of the previous step.

In particular, to test our background modeling approaches we used a set of 14 underwater
videos (spatial resolution ranging from 320×240 to 640×480 ) taken from the Fish4Knowledge
repository. These videos were categorized into seven different classes to account for the scene
variability. The video classes (see Fig. 1) are: “Blurred” (smoothed and low constrast images),
“Complex Background Texture” (background featuring complex textures), “Crowded” (lot of
fish), “Dynamic Background” (background movements, e.g. plants movements etc.), “Hybrid”
(more than one features: e.g. plant movements together with luminosity changes), “Lumi-
nosity Change” (videos affected by transient and abrupt luminosity changes), “Camouflage
Foreground Object” (e.g. fish with colours similar to the background).

The ground truth (consisted of about 20 labeled images per video) on this dataset was hand-
labeled using the tool in [8] and it is available together with the videos at http://f4k-db.
ing.unict.it/datasets.php.
In detail, we compared the results of our method (an adaption to the underwater domain of the
VIBE [1] approach) with some state-of-the-art approaches (mainly kernel density estimators)
on the same underwater dataset. In order to avoid any implementation bias in the performance
evaluation, we used only methods for which the original code was available1. More specifically,
the following methods were used for comparison:

• P-Finder [17] which models the background with only one single Gaussian pdf (Gaus-
sian):

• Two methods that exploit mixture of Gaussians, namely, the original Gaussian Mixture
1Most of the methods are available at https://code.google.com/p/bgslibrary/. The code of the

remaining methods were made available by the authors and reference to the code can be found in the corresponding
papers.

Version 1.2; 2011-7-20 Page 4 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

Video Class P-finder GMM ZGMM EIGEN ML−BKG KDE −RGB V IBE

Blurred 75.26 83.30 77.84 81.71 70.26 92.56 85.13
Complex Background Texture 75.63 66.95 75.94 74.78 83.67 87.53 74.17

Crowded 71.22 85.17 74.41 73.87 79.81 82.46 84.64
Dynamic Background 51.03 62.04 64.30 71.48 77.51 59.13 67.01

Hybrid 74.64 62.71 75.50 80.69 72.20 85.69 79.75
Luminosity Change 48.10 63.08 59.07 70.41 82.66 72.06 70.37

Camouflage Foreground Object 72.43 66.25 70.03 70.20 73.51 54.14 76.30

Average 66.90 69.92 71.01 74.73 77.08 76.22 76.76

Table 1: F-Measure scores (in percentage) for different methods on our underwater
dataset.

Model by Stauffer and Grimson [16] (GMM) and its improvement by Zivkovic (ZGMM)
[19];

• The Eigenbackground (EIGEN) Subtraction method [9],

• Two non-parametric kernel density estimation approaches: the Sheikh’s method [12]
(KDE-RGB), which uses colour features for modeling the background, and the Multi-
Layer background model (ML-BKG) by Yao in [18], which, instead, employs also texture
features computed via Local Binary Patterns.

• VIBE [1] that models the background through actual pixel color values instead of using a
predefined pdf shape;

The performance of the different methods are reported as F-Measure values (at the algorithms’
best operating points) and illustrated in Table 1, which shows that combining colour and texture
features (as in ML-BKG) enhanced the object detection performance also in complex scenarios
where targets and background had similar texture features.
Of course, the increment in accuracy of the ML-BKG was achieved at the expenses of efficiency;
in fact, the average number of frames (size 320×240) processed per second for VIBE and ML-
BKG were, respectively, 200 frames/sec and 20 frames/sec with a C++ implementation running
on a PC powered by an Intel i7 3.4 Ghz CPU and 16GB RAM. The other information that can
be derived from Table 1 is that methods relying on a pdf with a predefined form (e.g. P-Finder,
GMM, ZGMM) are not suitable to deal with complex scenes, where, instead, non-parametric
methods perform much better.

3.1.1 Detection post-processing

Fish detections are extracted from the binary motion masks (i.e. the output of the background
modeling process) by searching for connected regions of foreground pixels. However, due
to the complexity of the monitored environment (lighting changes, sunlight gleaming, plant
movements), many false alarms, i.e. image regions mistakenly identified as fish, may be
detected. In order to avoid such mistakes, a detection post-processing stage [14] has been
introduced to filter out objects which do not show motion and appearance traits typical to fish.

A Naive Bayes classifier has been used to discriminate between good and bad detections;
the training and test sets were built by manually labeling 852 samples, equally divided between
images representing single fish (as positive samples) and background portions (as negative

Version 1.2; 2011-7-20 Page 5 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

samples). Each sample consisted in the frame at time t, in which the object appears, the
corresponding binary mask and the frame at time t + 1 (used for the computation of optical
flow descriptors). The precision and recall scores achieved by the module are respectively
89.4% and 97.3% (overall misclassification rate of 6.8%).

3.2 Fish tracking
The evaluation of tracking algorithms was performed using both a typical ground-truth-based
approach (where the tracker’s trajectories were compared to the hand-labeled ones) and a self-
evaluation approach, which did not require the availability of ground-truth data and consisted in
analysing the likelihood that a given trajectory was correct, based on a motion and appearance
consistency analysis.

3.2.1 Ground-truth evaluation

The ground truth for fish tracking was built by hand-labeling a set of 5 videos (duration: 10
each minutes, resolution: 320×240, frame rate: 5 fps), for a total of 1854 trajectories and
27212 single detections (resulting in an average trajectory length of about 15 detections). The
annotation process involved both the manual labeling of fish contours and their associations
across frames.

The evaluation approach compared the ground-truth trajectories to the ones obtained by the
tracking algorithms, in order to produce the following set of quantitative indicators, describing
the accuracy of the algorithms from several points of view:

• Correct Counting Ratio (CCR): percentage of correctly identified ground-truth fish. This
ratio provides information not only on the tracking algorithms but also on the overall
system performance from background modeling to fish detection to tracking.

• Average Trajectory Matching (ATM): average percentage of common points between each
ground-truth trajectory and its best matching tracker trajectory;

• Correct Decision Rate (CDR): let a “tracking decision” be an association between a fish
at frame t1 and a fish at frame t2, where t1 < t2; this tracking decision is correct if
it corresponds to the actual association, as provided by the ground truth. The correct
decision rate is the percentage of correct tracking decisions, and gives an indication of
how well the algorithm performs in following an object, which is not necessarily implied
by the average trajectory matching (see Deliverable 1.1 for details).

Table 2 shows the results we obtained with the covariance-based tracker [10], the CAMSHIFT
tracker [3] (which was used in the only other known application of underwater tracking [13])
and the CONDENSATION [7] tracker. As can be seen, the best results in all three indica-
tors was obtained by the covariance tracker, closely followed by CONDENSATION, whereas
CAMSHIFT obtained significantly worse performance.

3.2.2 Self-evaluation

Because ground-truth generation is very tedious and time-consuming (and therefore error-prone),
we also sought confirmation for the results shown in the previous paragraph by an alternative

Version 1.2; 2011-7-20 Page 6 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

Figure 2: Ability of our tracking self-evaluation approach to reflect the presence of tracking
errors, with respect to two similar methods (see text for details).

evaluation approach, consisting of an analysis of the motion and apperance consistency of a
trajectory as an indicator for the likelihood that the trajectory is correct.

This analysis assigned a quality score to each tracking decision (as defined in the previous
paragraph), based on whether the new location of a tracked object was consistent, in terms of
motion pattern (in direction and speed) and visual description (shape, area, texture and intensity
histograms), with the object’s history up to that point. Details can be found in [15]; basically,
the algorithm employs a Naive Bayes classifier to merge motion and appearance information
features.

The quality score for a given trajectory was computed as the average score assigned to
each of the relevant tracking decisions, and the overall evaluation score for the algorithm was
computed as the average of all trajectory quality scores.

In order to estimate the accuracy of the self-evaluation approach we designed a test consist-
ing in introducing a certain amount of artificial tracking errors into the ground-truth data (by
altering object contours and/or switching or removing associations between objects in different
frames) and evaluating how the average quality score varied with respect to the amount of
errors introduced. Figure 2 shows the results of this test and a comparison with 1) a variant
of the algorithm which computes a weighted mean of the above-mentioned features, and 2) a
similar approach described by Erdem et al. [4]. It is easy to notice how our approach is able to
better reflect the amount of tracking errors introduced in the ground-truth data.

Table 2 shows the results of the self-evaluation approach for the three tracking algorithms
under examination. We can see that this method is able to reflect the higher accuracy of the
covariance and CONDENSATION trackers with respect to CAMSHIFT, while at the same time
showing the similarity between the results obtained by the first two.

Version 1.2; 2011-7-20 Page 7 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

3.2.3 Discussion

After this evaluation, the two candidate trackers were the covariance-based one and CONDEN-
SATION, since the former obtained a higher accuracy on the ground-truth evaluation, whereas
the latter had a slight advantage in the self-evaluation. In the end, since that advantage was too
small to be statistically significant, and because self-evaluation approaches unavoidably suffer
an intrinsic uncertainty, the covariance tracker was chosen as default tracker for the historical
video processing.

Covariance tracker CAMSHIFT CONDENSATION

CCR 91.3% 83.0% 90.9%
ATM 95.0% 88.2% 93.6%
CDR 96.7% 91.7% 94.5%

Self 80.1% 76.3% 80.2%

Table 2: Comparison between the results obtained by the covariance-based algorithm,
CAMSHIFT and CONDENSATION on the ground-truth data and with the self-evaluation
approach.

4 Fish Recognition

4.1 BGOT-based hierarchical classification
We apply a hierarchical classification method for fish recognition by using a Balance-Guaranteed
Optimized Tree (BGOT) [6]. Firstly, the BGOT algorithm arranges more accurate classifica-
tions at a higher level and leaves similar classes to deeper layers. Secondly, it keeps the hierar-
chical tree balanced to minimize the max-depth and control error accumulation. This method
controls the error accumulation during hierarchical classification and, therefore, achieves better
performance.

Based on the BGOT tree, we develops two improvements: node rejection and trajectory
voting.

The node rejection in Figure 3 algorithm aims at controlling the error accumulation. It adds
a ”-1” branch at each node. This branch contains all hidden classes which do not appear in this
node. Any fish that is classified as ”-1” will be rejected, and these rejected fish are re-classified
by using a flat SVM.

The trajectory voting in Figure 4 is used to minimize the environmental influence. As all
fish are freely swimming in a varying illumination environment, the detected fish may have
different orientations and appearances. Therefore, the recognition results may vary even for a
fish in the same trajectory. The trajectory based voting mechanism is applied after individual
classification. It combines the single frame classification results. The trajectory voting method
enhances the fish recognition accuracy by exploiting the consistency in labels expected from
tracking each fish individually. A voting mechanism (winner-take-all) is then carried out within
each group which reduces the misclassification rate.

Version 1.2; 2011-7-20 Page 8 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

Figure 3: A Balance-Guaranteed Optimized Tree computed from training data is shown, where
the leaf nodes contain classifiers that either separate the fish in more subclasses or reject the fish
for a particular subnode (shown by the “-1” branch), because it is not similar to the fish species
in that particular node. Rejected fish are classified by a flat SVM in this case.

4.2 Groundtruth Dataset
To evaluate fish recognition, lots of groundtruth data is necessary for both training the fish recog-
nition methods and evaluating these methods. Using clustering to support the annotation [2],
helps us to produce a large set of around 91894 images where a lot of images are labelled as
“bad images”, because of occlusions, low resolution, etc. For 28,264 images, we have obtained
species labels at the moment, however these numbers are still increasing. Currently, we are
training our new fish recognition methods using these dataset, so the experiments and evaluation
are still performed on a older subset of 6874 fish images. New efforts are being focussed
on finding rare species in this data, ignoring the common species where enough training and
testing data is available. Currently, we are annotating a new set of images where we filtered out
common species in the dataset.

4.3 Evaluation and analysis
The experiment is based on 6874 fish images with a 5-fold cross validation procedure over
15 species. The training and testing sets are isolated so fish images from the same trajectory
sequence are not used during both training and testing. Sequential forward feature selection is
applied at each node. Results are listed in Table 3 where the result score is averaged accuracy
over all classes rather than over all fish. This is because of the greatly unbalanced class sizes.

Three performance metrics are employed to evaluate the accuracy of the proposed system.
The first metric is Average Recall (AR) over all species. It describes on average how many
fish are correctly recognized for each species. This score is more important to our experiment
because of the imbalance in the classes. The second score is Average Precision (AP) over all
species. It is the probability that the classification results are relevant to specified species. The

Version 1.2; 2011-7-20 Page 9 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

Figure 4: An example of trajectory voting is shown where we use a winner-take-all strategy.

Method AR (%) AP (%) AC (%)
SVM 72.61 ± 6.02 77.63 ± 3.22 93.22
PCA (95%) 72.74 ± 6.39 76.68 ± 3.51 93.09
SVM (fs) 76.71 ± 5.93 81.47 ± 5.27 93.50
taxonomy 77.16 ± 6.29 80.80 ± 6.92 93.76
BGOT method 85.75 ± 5.64 91.30 ± 8.73 * 97.21

Table 3: Fish recognition results. Our proposed result is in Bold font. We add the standard
deviation of AR/AP/AC over 5 fold cross validation. * means the AC is a significant
improvement over other methods at 95% confidence level.

third metric is the accuracy over all samples (Accuracy over Count, AC), which is defined as
the proportion of correct classified samples among the whole dataset.

We also have compared our new result with the previous one [6]. We use the same in-
troduced dataset, and choose the top 10 species because the previous component can only
recognize these 10 species. The AR score shows that our new component achieves 81.03%,
which is 14% higher than the old component (65.63%).

5 Computation time of Video and Image Processing modules
The video and image processing modules allow our system to analyse the data. Currently, this
data is saved in 10 minute video clips, however, over the time of the project the resolution of the
video clips has improved and different formats have been used. As of May 27th 2013, the fish
detection has processed 70784 clips of 10 minutes which is equal to around 983 days of video
given the 12 daylight hours we are recording. The fish recognition, which depends on the fish
detection component has processed around 67468 clips of 10 minutes (937 days of video). In
total, we have however 623472 clips, although there are multiple clips where we have both low
resolution and high resolution videos of the same scene. There are also a lot of videos where
both fish detection and recognition is very hard due to very blurred recording, coding errors,
etc. Currently, filters are being developed to flag these videos, allowing us to focus on the more
promising videos first.

Version 1.2; 2011-7-20 Page 10 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

The average computation time to run the fish detection and tracking on a single videos is
currently 40 minutes with standard deviation of 83 minutes. The large standard deviation is due
to the fact that there are different kind of resolutions, where high-resolution videos need much
more computation time. To compute the fish recognition, it takes on average 175 minute and
the standard deviation is 381 minutes. Notice this large standard deviation is mainly due to the
fact that there are several videos containing many more individual fish than other videos and
also here, the resolution of the videos has a large influence. In the future, we hope to develop a
fish recognition method that is better able to deal with high resolution videos, which is currently
a bottle-neck for the existing fish recognition software components.

The stability of the current fish detection and recognition components can also be easily
checked in our system. In the case of the fish detection, 9.3% of the fish detection component
executions reported an unknown or known error to the system while computing the videos.
Given that this system has been running for over half a year, these can be network failures,
disk failures, errors in programs, etc. By reporting these errors, videos can be run again to
check if the error is something temporary or if it will be a persistent error. The fish recognition
has reported a 6.7% fish recognition video error. After inspection, lots of error can be usually
resolved by running the software again because resources where unavailable. The reported
errors of detection and recognition components may be due to the various tests of software in
some cases (i.e. we voluntarily interrupted the jobs for testing purposes to check for instance
the robustness of the system). Although improving this is not our top priority, we are still
monitoring the error log in case new issues arise.

6 Workflow Performance and Evaluation
A workflow management system is required to process on-demand queries from the user in-
terface and internal batch queries on NCHC’s high performance computing platform and to
monitor their execution. On-demand queries are those that have to be processed immediately
because it originates from the user. These on-demand queries can be one of the following:

1. Detect and track all the fish in a given date range and set of camera locations.

2. Identify all the fish species in a given date range and set of camera locations.

3. Estimate how long a detection or recognition query above will take to execute.

4. Abort a query that is in the middle of being processed.

Internal batch queries are those that are invoked by the workflow management system itself.
These are predominantly batch tasks on new video clips that have been collected and recorded in
the database by NCHC. It involves running fish detection and tracking (Query 1 above). These
batch queries are considered to have low priority so that they do not interfere with user queries
if they are spawned at the same time. Batch queries are scheduled to be executed at quiet times,
i.e. when on-demand queries are least likely to be processed.

At present the compute environment consists of a cluster of virtual machines (approx. 42
CPUs) and the Windrider supercomputer (96 CPUs). The workflow is able to schedule 300
batch jobs (i.e. process 300 videos) every 24 hours and listens for new on-demand queries

Version 1.2; 2011-7-20 Page 11 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

every 10 seconds. It can handle various scenarios on the Windrider facility while development
is on-going to have similar handling strategies on the VM cluster. This is because they both
use different resource schedulers (LSF on Windrider and Gridengine (SGE) on VM cluster)
and different mechanisms are needed to deal with these two schedulers. When the jobs are
executing, the workflow monitors them for successful completion, or deals with errors that
occur. We define test scenarios to demonstrate the strategies that we have deployed to deal with
the jobs dispatched for execution.

6.1 Different scenarios
We have tested various query processing and error handling strategies by simulating scenarios.
These queries are triggered using database entries onto the query management table for new
queries or updates onto the job monitoring table for existing queries. Real data and stable
software modules have been used for all the tests. Some scenarios were difficult to simulate, for
example a job waiting for more than one hour (most queues were efficient enough to process
jobs within this time frame and we did not have access to a whole queue exclusively to do
such tests). In these cases we tweaked the time thresholds to shorter values to demonstrate that
the situation can be handled. The first five scenarios were all tested on the Windrider facility.
Scenarios 6.1.6 and 6.1.7 are applicable to the VM cluster.

6.1.1 Successful Completion

This is the default scenario that occurs to most jobs scheduled for execution. When a job com-
pletes successfully, the scheduler returns with exit code 0 (DONE). The workflow monitoring
system catches this and updates the job monitoring and query management tables.

6.1.2 Failed Jobs

This scenario is simulated by running fish recognition tasks using incorrect parameters. The
program will thus fail and return with an error exit code. When this is encountered, the
workflow monitoring will reschedule the job for execution. A failed job is rerun at most twice.
After that it will be abandoned by the system and recorded in the database tables as being
“abandonedBySystem”.

6.1.3 Job Dependencies

This scenario applies to fish species recognition jobs. Fish species recognition can only be
applied when the fish objects have been detected in the videos. Thus a fish recognition module
can only be applied to a video when a fish detection module has already processed it. The
workflow engine deals with a fish species recognition task as follows:

• If fish detection has been completed on the video, then run fish recognition only.

• If fish detection has not been started, run fish detection and fish recognition with depen-
dency flag between them.

• If fish detection has been started but not completed yet, run fish recognition with depen-
dency flag on the running fish detection job.

Version 1.2; 2011-7-20 Page 12 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

6.1.4 Different Priorities

Jobs can have different priority levels when being sent for execution. As stated above, on-
demand queries will be tranlated to high priority jobs by the workflow engine, while batch
queries are translated to low priority jobs. Higher priority jobs will get precedence for execution
over lower priority jobs when being sent to a queue. Two main scenarios have been detected
when different priority jobs are queuing and executing in one queue:

• A low priority job has been waiting for too long: they are resubmitted with higher priority.

• A high priority job has been waiting for too long: suspend low priority jobs that are
running and resume them after a threshold.

6.1.5 User Aborted Queries

When a query is being executed, the user may decide to give up on it. They can choose to
abort the query. Queries aborted by the user will be marked as “abandonedByUser” and its
corresponding unfinished jobs will be killed.

6.1.6 Successful Completion on VM

On the VM group, successful jobs run using the gridengine scheduler (SGE) can be monitored
and marked as completed by the workflow, same as Scenario 6.1.1 above.

6.1.7 Failed Jobs on VM

Similar to Scenario 6.1.2, failed jobs can be rerun up to twice on the VM cluster using SGE.

6.2 Evaluation Measure and Performance Based on these Measures
In order to evaluate the workflow system implemented, we decided to note the effects on the
overall system when the workflow is not used (jobs are send directly to resource scheduler).
Table 4 below summarises how each scenario is handled in the presence and absence of the
workflow. Additionally it states the possible effects on the system when the workflow is not
used.

We have also introduced Quality of Resilience [11] metrics to improve workflow’s overall
performance a metric that identifies how resilient a given workflow is likely to be prior to
its enactment. QoR aims at specifying workflow resilience from three different perspectives:
user (QoRU), workflow enactor (QoRE) and resource manager (QoRR). We assume that a
user running a workflow is primarily interested in a submit-and-forget mode of operation i.e.
where a workflow is submitted to an enactment engine often subject to a number of different
constraints, also identified by the user (such as execution time, cost (financial and in terms
of resources used) of execution, etc). Whereas significant work in workflow enactment has
focused on performance (often measured as the workflow makespan) and the associated Quality
of Service (QoS) metrics, limited attention has been given to resilience.

In F4K, we have defined a workflow that takes two tasks, fish detection and tracking (t1)
and fish species recognition (t2) in a sequential manner to accomplish a fish species recognition
query. For this task, we have determined 4 workflow options for t1 (corresponding to 4 detection

Version 1.2; 2011-7-20 Page 13 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

algorithms) and two recognition options for t2. This would yield 8 combinations or workflow
variants to be used. The main aim of the QoR analysis is to give a likelihood of failure by
using each combination of t1 and t2 options. The likelihood of the workflow to fail when using
each combination is calculated based on the performance (execution time) of the components.
Progress of this work is contained in [5].

Table 4: How jobs are handled with and without the workflow system in different scenarios
Scenario System Handling System Handling Possible Effect(s) without using Workflow

using Workflow without Workflow
Successful Finished Finished All jobs are waiting in the default queue
Completion without utilising full system capacity
Failed Job Rerun at most twice Exit directly The failed job will not be detected

until the user checks the status manually
Job Dependency With error handling Without error The failed dependent job will be

for failed jobs handling taken care by the system
Different Priority: Suspend low priority Job keeps wait- If the queue is packed with low priority
High priority job jobs that are running ting in the queue jobs, high demand user query will
waiting too long be held for a long time
Different Priority: Resubmit with higher Job keeps wait- If the queue is packed with high priority
Low priority job priority ting in the queue jobs, low priority jobs can be starving
waiting too long in the queue

In summary, we can conclude that when the system does not make use of the workflow,
suitable resources and queues are not being selected. Jobs that fail are not rerun and in extreme
cases some jobs can starve. All these factors affect the overall system performance.

Table 5: Statistics of average execution times and waiting times (in minutes) for fish detection
(80) and fish recognition (52) on Windrider for the month March 2013.

component id average execution average waiting num videos maximum minimum
time (sec) time (sec) processed time (sec) time (sec)

52 11,248 561 4,457 469,603 0
(>3 hrs) (>9 mins) (>130 hrs)

80 8,000 32,176 2,180 77,271 2
(>2 hrs) (<9 hrs) (>21 hrs)

Table 5 shows the statistics of the jobs executed on Windrider using two main components
for fish detection and fish species recognition in March 2013. These jobs were executed without
using the workflow engine and monitoring system. It can be seen that the average waiting time,
and maximum execution time should be reduced to enhance the overall performance of the
F4K system. This will be our aim when we migrate the workflow from testing phase to live
production phase.

Version 1.2; 2011-7-20 Page 14 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

7 User interface performance and evaluation

7.1 Answering user queries
The current User Interface (UI) supports flexible data visualizations over the entire dataset.
The data visualization system allow users to access various kinds of graph, which are all based
on similar database queries (the common queries). Table 6 summarizes the common database
queries used for the current UI demo. The response time of these queries is given in Table 6.
The response time for database queries was calculated using the NCHC database, and using
extensive where clauses since they imply the longest response times. The overall response time,
from the user query to the update of the UI, is much more important than the response time for
database queries. It impedes the usability of the Fish4Knowledge system since users experience
noticeable latency when requesting a new kind of graph, or when refining the dataset filters (e.g.,
it can be around 10s). The latency comes from the cumulated response time for database query,
the aggregation of data from common queries, the transfer of data from the database located
in Taiwan to the browser of the end user (e.g., for the biologists located in the Netherlands).
The reduction of latency relies on i) the efficiency of the database views and indexing (e.g.,
the summary tables available for each camera), ii) the optimization of the data processing for
integration in interactive visualizations (e.g., the aggregation of data from common queries),
iii) the relative geographical location of all the servers involved in the data processing, from the
database to the end user.

7.2 User feedback
We conducted a series of 34 interviews of researchers within the coral reef biology community
in Taiwan and in the Netherlands. The collected feedback gives directions for addressing
further user information needs, and trust and uncertainty issues. The user information needs
expressed in the early user studies can be addressed by the current UI design. But they can
be further addressed by including additional data visualizations. We will study and prioritize
the potential design refinements and integration of new UI features. The most important user
feedback mentioned by users concern:

• Comprehensible and relevant data provenance information: the information related to
the performance of the video analysis components is difficult to understand since users are
not familiar with computer vision techniques. We observed that users tend to overlook the
technical details that can bias their analysis. Further work can be done to refine the report
on the certainty scores attributed to each image processing steps, and on the ROC-like
evaluation of the video processing. Further, users expressed demands for other technical
information regarding uncertainty issues:

– The quality of the video (e.g., fuzziness, murkiness) that can for instance bias the
seasonal pattern observed, since seasonal events can influence video quality;

– The rate of duplicates of single fish in fish counts. Some species may produce more
duplicates than other species. This is an important bias for studying the relative
abundance of each species (e.g., species composition);

– The performance of the video analysis components for various sets of video, for
instance more errors may occur with murky videos.

Version 1.2; 2011-7-20 Page 15 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

Table 6: Common queries used for the current F4K demo. These queries are used for the
visualization of raw fish counts and normalized fish counts (i.e., the average number of fish per
video).

Fish count
Q1 Per year select year(date) as year, count(fish id) from summary camera 38 group by year order

by year
1.590s

Q2 Per week select week(date) as week, count(fish id) from summary camera 38 group by week
order by week

1.736s

Q3 Per hour select hour(date) as hour, count(fish id) from summary camera 38 group by hour
order by hour

1.678s

Q4 Per camera select count(fish id) from summary camera 38 1.648
Q5 Per species select species id, count(fish id) from summary camera 38 group by species id order

by species id
1.656s

Q6 Per software
version

select det component id, rec component id, count(fish id) from summary camera 38
group by det component id, rec component id order by det component id,
rec component id

1.717s

Q7 Per certainty
score

select truncate(rec certainty, 1) as rec cert, count(fish id) from summary camera 38
group by rec cert order by rec cert

1.657s

Video count
Q8 Per year select year(date time) as year, count(distinct v.video id) from video v,

(select v1.video id from processed videos v1, processed videos v2 where
((v1.component id=50 and v2.component id=52)) and v2.status in (”completed”,
”completed - workflow error”) and v1.video id = v2.video id) v3 where v.video id =
v3.video id group by year

0.300s

Q9 Per week select week(date time) as week, count(distinct v.video id) from video v,
(select v1.video id from processed videos v1, processed videos v2 where
((v1.component id=50 and v2.component id=52)) and v2.status in (”completed”,
”completed - workflow error”) and v1.video id = v2.video id) v3 where v.video id
= v3.video id group by week

0.303s

Q10 Per hour select hour(date time) as hour, count(distinct v.video id) from video v,
(select v1.video id from processed videos v1, processed videos v2 where
((v1.component id=50 and v2.component id=52)) and v2.status in (”completed”,
”completed - workflow error”) and v1.video id = v2.video id) v3 where v.video id =
v3.video id group by hour

0.301s

Q11 Per camera select v.camera id as camera, count(distinct v.video id) from video v,
(select v1.video id from processed videos v1, processed videos v2 where
((v1.component id=50 and v2.component id=52)) and v2.status in (”completed”,
”completed - workflow error”) and v1.video id = v2.video id) v3 where v.video id =
v3.video id group by camera

0.306s

Q12 Per software
version

select v3.det component id as det component id, v3.rec component id as
rec component id, count(distinct v.video id) from video v, (select v1.component id
as det component id, v2.component id as rec component id, v1.video id from
processed videos v1, processed videos v2 where v2.status in (”completed”,
”completed - workflow error”) and v1.video id = v2.video id) v3 where
v.video id = v3.video id group by det component id, rec component id order
by det component id, rec component id

4.241s

Q13 Total select count(distinct v.video id) from video v, (select v1.video id from
processed videos v1, processed videos v2 where ((v1.component id=50 and
v2.component id=52)) and v2.status in (”completed”, ”completed - workflow error”)
and v1.video id = v2.video id) v3 where v.video id = v3.video id

0.306s

Version 1.2; 2011-7-20 Page 16 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

• High-level information needs: a number of additional visualizations and UI features
were suggested by users, such as: the integration of a calendar and of lunar month for
filtering datasets of interest, the calculation of the number of species that occur in the
dataset of interest (species richness), the usage of the traditional data analyses widely
used for biodiversity research, access to detailed description of fish species (e.g., image
of the species, link to fishbase.org).

8 Conclusions

8.1 Refinements for the integration
In this deliverable, we show that most of the system is fully integrated and the system has
already processed lots of videos (67468 clips) as promised. The user interface team is able
to read this processed information and show statistics to the users. During interviews with
marine biologists, a better understanding of the underlying computer vision is necessary for
potential usage. In the integration, we have to focus with the user interface team on improving
the user understanding by presenting measures that are comprehensible and useful to marine
biologists. In the system, the user should also have control over which video and image
processing components are used when analysing certain videos. In this case, a connection
between the workflow and the user interface still needs to be developed to support users allowing
them to perform new analyses on the data or verify parts of the data using multiple video and
image processing components.

8.2 Refinements suggested by biologists
The interviews of researchers within the coral reef biology community provided valuable in-
sights for understanding the potential usage of our tool, and more generally, for understanding
the acceptance of video analysis tools by the marine biology community. Video analysis tools
are relatively recent in this community. No well-accepted data analysis framework has been set
up for the usage of video data for marine biology research. Particularly, the evaluation of the
video analysis algorithms is a technical information of main concern for the acceptance of video
analysis tools. Biologists need to evaluate the potential errors (e.g, noise and biases) contained
in the data. However, the types of evaluation that are well-accepted by the image processing
community are not easy to understand by the marine biology community. And biologists may
require additional information, such as the rate of duplicates in fish counts (e.g., the chance
of counting single fish several times), and detailed evaluations under specific conditions (e.g.,
performance for murky videos only).

During this first end-to-end evaluation of the system, users also suggested interesting re-
finements of the interactive features of the UI. Our future work consists of eliciting the most
important user requirements to implement within the duration of the project. We will particu-
larly focus on the features that allow biologists to use video analysis data for scientific research
(e.g., the provenance information, and the support of uncertainty issues).

Version 1.2; 2011-7-20 Page 17 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

References
[1] Olivier Barnich and Marc Van Droogenbroeck. ViBe: a universal background subtraction

algorithm for video sequences. IEEE Transactions on Image processing, 20(6):1709–
1724, June 2011.

[2] B. J. Boom, P. X. Huang, J. He, and R. B. Fisher. Supporting ground-truth annotation of
image datasets using clustering. In 21st Int. Conf. on Pattern Recognition (ICPR), 2012.

[3] Gary R Bradski. Computer Vision Face Tracking For Use in a Perceptual User Interface,
1998.

[4] C.E. Erdem, A. Murat Tekalp, and B. Sankur. Metrics for performance evaluation of
video object segmentation and tracking without ground truth. Proceedings of Internation
Conference on Image Processing, 2:69–72, 2001.

[5] Y.-H. Chen-Burger R. Tolosana-Calasanz O. Rana G. Nadarajan, C.-L. Yang. Analysing
quality of resilience in fish4knowledge video analysis workflows. CloudAM 2013
(submitted).

[6] P. Huang, B. Boom, and R. Fisher. Underwater live fish recognition using a balance-
guaranteed optimized tree. In Asian Conference on Computer Vision, 2012.

[7] M Isard and A Blake. CONDENSATION - conditional density propagation for visual
tracking. International Journal of Computer Vision, 29(1), 1998.

[8] Isaak Kavasidis, Simone Palazzo, RobertoDi Salvo, Daniela Giordano, and Concetto
Spampinato. An innovative web-based collaborative platform for video annotation.
Multimedia Tools and Applications, pages 1–20, 2013.

[9] N.M. Oliver, B. Rosario, and A.P. Pentland. A bayesian computer vision system for
modeling human interactions. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22(8):831–843, 2000.

[10] Fatih Porikli, Oncel Tuzel, and Peter Meer. Covariance Tracking using Model Update
Based on Lie Algebra. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition,
2005.

[11] O. Rana J. Banares D. Talia R. Tolosana-Calasanz, M. Lackovic. Characterizing quality
of resilience in scientific workflows. WORKS’11, pages 117–126, 2011.

[12] Y. Sheikh and M. Shah. Bayesian modeling of dynamic scenes for object detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 27(11):1778–1792, 2005.

[13] C Spampinato, Y H Chen-Burger, G Nadarajan, and R B Fisher. Detecting, Tracking and
Counting Fish in Low Quality Unconstrained Underwater Videos. In 3rd International
Conference on Computer Vision Theory and Applications, VISAPP 2008, pages 514–519,
2008.

Version 1.2; 2011-7-20 Page 18 of 19 c© Fish4Knowledge Consortium, 2010



IST – 257024 – Fish4Knowledge Deliverable 5.4

[14] Concetto Spampinato and Simone Palazzo. Enhancing Object Detection Performance by
Integrating Motion Objectness and Perceptual Organization. In Proceedings of the 21st
International Conference on Pattern Recognition, ICPR, pages 3640–3643, 2012.

[15] Concetto Spampinato and Simone Palazzo. Evaluation of Tracking Algorithm
Performance without Ground-Truth Data. In IEEE International Conference on Image
Processing, to appear, 2012.

[16] C Stauffer and W E L Grimson. Adaptive background mixture models for real-time
tracking. Proceedings 1999 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition Cat No PR00149, 2(c):246–252, 1999.

[17] C. Wren, A. Azarbayejani, T. Darrell, and A. Pentland. Pfinder: real-time tracking of
the human body. In Automatic Face and Gesture Recognition, 1996., Proceedings of the
Second International Conference on, pages 51–56, 1996.

[18] Jian Yao and J-M Odobez. Multi-layer background subtraction based on color and texture.
In Computer Vision and Pattern Recognition, 2007. CVPR’07. IEEE Conference on, pages
1–8. IEEE, 2007.

[19] Z. Zivkovic and F. van der Heijden. Efficient adaptive density estimation per image pixel
for the task of background subtraction. Pattern recognition letters, 27(7):773–780, 2006.

Version 1.2; 2011-7-20 Page 19 of 19 c© Fish4Knowledge Consortium, 2010


