WP1: Video Data Analysis

Leading : UNICT Participant: UEDIN

Fish4Knowledge Final Review Meeting - November 29, 2013 - Luxembourg

Leading : UNICT Participant: UEDIN WP1: Video Data Analysis

(4回) (4回) (4回)

- Fish Detection: Background/foreground modeling algorithms able to deal with complex domains
- Fish Tracking: Tracking algorithms to match objects with unpredictable trajectories and in cluttered scenes
- Fish Recognition: Methods to recognise fish species by integrating multiple 2D perspectively distorted views over time

(本間) (本語) (本語) (語)

- Reliable background and foreground modeling for dealing with highly complex domains featured by:
 - Multimodal backgrounds and periodic movements
 - Light variability due to the light propagation in water as affected by the water surface shape
 - Low quality videos in terms of both spatial and temporal resolution
 - Atmospheric phenomena, murky water and biofouling and video compression affecting video frame quality

イロト 不得 トイヨト イヨト

- Background modeling:
 - Using a fixed form of the *pdf* (e.g. AGMM) for background modeling shows evident limitations (**Year 1**)
 - Modeling background pixels with a set of neighbourhood samples (e.g. VIBE) instead of an explicit pixel model outperforms the above approaches (Year 2)
- Background movements and luminosity changes are the main causes of performance's decrease

Algorithms must balance the trade-off between accuracy and efficiency

イロト イタト イヨト イヨト 三臣

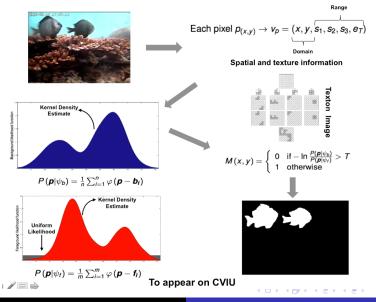
 Description: Data-driven Kernel Density Estimation for joint domain-range background and foreground models

Peculiarities:

- Non parametric kernel density estimator
- Spatial Information
- Texture Features
- Explicit Foreground Model
- Main limitation:
 - Efficiency

(日本) (日本) (日本)

Fish Detection Kernel Density Estimation using Spatial and Texture Information via Texton



ъ

Datasets:

- 17 underwater videos (spatial resolution ranging from 320×240 to 640×480)
- I2R Dataset containing nine videos (with frames 120 ×160) acquired by a static camera

Metrics:

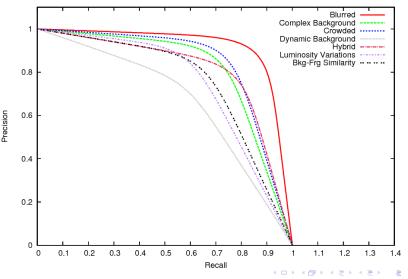
$$Precision = \frac{TP}{TP + FP}, \quad Recall = \frac{TP}{TP + FN}$$

$$F_1 = \frac{2 \times \textit{Precision} \times \textit{Recall}}{\textit{Precision} + \textit{Recall}}$$

Underwater Video Dataset. From top-left to bottom-right: 1) Blurred, 2) Complex Background Texture, 3) Crowded, 4) Dynamic Background, 5) Hybrid, 6) Luminosity Change

イロト イポト イヨト イヨト

Fish Detection Performance of KDE on Underwater Videos



Precision/Recall Curve of our method on Underwater Videos

Leading : UNICT Participant: UEDIN

WP1: Video Data Analysis

Video Class	P-finder	GMM	ZGMM	EIGEN	ML - BKG	KDE - RGB	VIBE	Our Method
Blurred	78.40	79.23	81.32	80.42	73.41	90.06	86.30	92.15
Complex Background Texture	69.73	71.48	68.17	75.27	76.85	66.64	74.17	80.37
Crowded	72.85	75.32	75.56	73.65	79.83	81.72	86.83	79.84
Dynamic Background	39.92	48.23	54.48	58.99	80.60	56.78	57.98	73.41
Hybrid	64.86	65.86	66.89	76.34	77.38	78.88	73.56	84.56
Luminosity Changes	54.15	65.84	64.45	63.19	61.07	71.47	72.92	74.43
Camouflage Foreground Object	67.90	72.42	67.68	66.20	77.43	57.72	72.88	80.36
Average	63.97	68.34	68.36	70.58	75.22	71.89	74.94	80.73

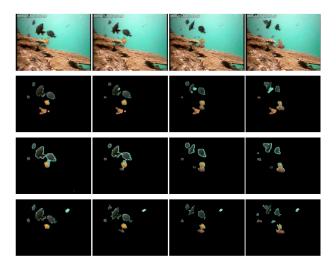
F-measures for the different background modeling approaches

Processing Times (frames/sec) on a PC powered by an Intel i7 3.4 Ghz CPU and 16GB RAM

Algorithm	320 imes 240	640× 480
P-Finder	250	60
GMM	200	50
VIBE	100	25
ZGMM	100	25
EIGEN	30	10
ML-BKG	20	3
Our recent approach	1.5	-

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

Fish Detection Qualitative results



Qualitative comparison: background modeling with (from top to bottom) VIBE (second row), ML – BKG (third row) and our KDE approach (last row)

(ロ) (同) (目) (日) (日) (の)

Leading : UNICT Participant: UEDIN WP1: Video Data Analysis

Image Region	P-finder	GMM	ZGMM	EIGEN	ML - BKG	VIBE
Open Sea	78.18	79.40	80.59	79.84	83.03	85.95
Corals	61.03	59.28	54.34	66.02	75.03	61.27
Rocks	64.44	73.90	68.83	64.97	76.60	77.17

F-Measure scores (in percentage) for different methods per image region

Video Class/Image Region	Open Sea	Rocks	Corals	Average
Blurred	VIBE(91.45)	-	VIBE (66.94)	79.19
Complex Background Texture	VIBE(79.95)	ML (86.64)	ML (87.37)	84.65
Crowded	VIBE (88.67)	ML (80.32)	· _ ·	84.49
Dynamic Background	VIBE (82.10)	ML (83.11)	ML (86.98)	84.06
Hybrid	EIGEN (80.16)	- /	ML (77.14)	78.65
Luminosity Changes	VIBE (85.95)	ML (77.14)	ML (84.68)	82.59
Camouflage Foreground Object	VIBE (88.52)	ZGMŇ (86.29)	GMM (65.22)	80.01
Average	85.25	82.70	78.05	

Best performance (in terms of F-Measure) per video class and image region

<ロト <回ト < 注ト < 注ト = 注 -

Video	KDE-RGB [2]	SILTP [28]	VKS rgb [27]	VKS Lab plus SILTP [27]	Our Method
AirportHall	61.34	68.02	70.44	71.28	69.23
Bootstrap	74.64	72.90	71.25	76.89	76.47
Curtain	97.73	92.40	94.11	94.07	94.89
Escalator	65.41	68.66	48.61	49.43	72.02
Fountain	51.32	85.04	75.84	85.97	83.21
ShoppingMall	60.36	79.65	76.48	83.03	78.54
Lobby	67.79	79.21	18.00	60.82	66.34
Trees	66.75	67.83	82.09	87.85	81.89
WaterSurface	81.57	83.15	94.83	92.61	92.51
Average	69.66	77.43	70.18	77.99	79.46

F-measures for the different background modeling approaches on the I2R Dataset

イロト イヨト イヨト イヨト

Perceptual Organization:

- Gestalt Laws: $E\left[\partial R\right] = \frac{-\int \int_{R} f(x,y) dx dy}{L(\partial R)}$

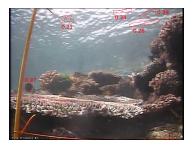
Features:

- Intraframe: e.g. Boundary complexity, color contrast on the boundary, superpixel straddling;
- Interframe: e.g. Motion on boundary, motion homogeneity, kinematic features extracted from affine motion model, etc.

Performance:

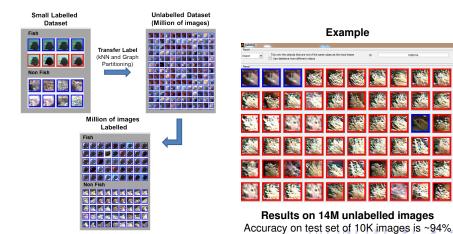
- SVM-RBF classifier
- Two datasets: fish and humans from I2R. About 1500 hand labeled detections.
- Average misclassification rate (MCR) obtained with a 5-fold cross-validation: 4.34%

Leading : UNICT Participant: UEDIN



WP1: Video Data Analysis

A big data perspective: How to exploit the 1.4×10^9 detections to filter out bad detections?



Leading : UNICT Participant: UEDIN

WP1: Video Data Analysis

- Underwater fish tracking:
 - Fish deformations and orientation
 - Similarity between fish of same species
 - Low frame rate
- Covariance modeling
 - Spatial and statistical features
 - Position, color and gradient features
- Covariance-based tracker
 - Tracking-by-detection
 - Heuristic search area
 - Cannot fix detections
 - Occlusion: single blob
 - Faster (~0.05 s/obj.)

- Covariance particle filter
 - Weights: covariance and motion
 - Particles \rightarrow search area
 - Can find object without detection
 - Can handle "touching" occlusion

(日本) (日本) (日本)

3

About 10× slower

Fish Tracking Covariance particle filter

Particle filter with covariance in action. From top-left to bottom-right: 1) Detection constrained by the background modeling, 2) Background/foreground mask, 3) Object particles (describing search area), 4) Location estimated by the particle filter.

イロト イポト イヨト イヨト

Fish Tracking Covariance particle filter

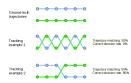
Covariance particle filter is able to follow object when motion detection fails...

...although sometimes it follows background areas.

Leading : UNICT Participant: UEDIN WP1: Video Data Analysis

Fish Tracking Performance evaluation of covariance-based tracker

- Matching Counting Rate (MCR).
- Average Trajectory Matching (ATM)
- Correct Decision Rate (CDR)



			COV			COVPF	
Video	Objects	ATM	CCR	CDR	ATM	CCR	CDR
1	1058	0.75	0.70	0.74	0.50	0.68	0.93
2	3072	0.92	0.51	0.81	0.84	0.53	0.93
3	16321	0.66	0.67	0.77	0.56	0.65	0.65
4	1927	0.73	0.56	0.80	0.69	0.55	0.89
5	1284	0.64	0.59	0.67	0.48	0.59	0.78
6	1656	0.70	0.55	0.66	0.56	0.52	0.87
7	5477	0.66	0.72	0.75	0.71	0.74	0.77
8	820	0.95	0.90	0.73	0.80	0.80	0.75
9	1447	0.88	0.66	0.73	0.84	0.63	0.83
10	1903	0.84	0.57	0.70	0.80	0.53	0.75
Avg		0.77	0.64	0.74	0.68	0.62	0.82

Comparison between original tracker and particle filter version on ground-truth videos.

イロト イワト イヨト イヨト

		COV			COVPF		
Video	Objects	ATM	MCR	CDR	ATM	MCR	CDR
1	344 260	0.86 0.84	0.85 0.85	0.84	0.86 0.85	0.85 0.85	0.88 0.88
3	121	0.75	0.71	0.81	0.80	0.76	0.83
Avg		0.81	0.80	0.83	0.83	0.82	0.86

Comparison between original tracker and particle filter version on high-res Aquacam videos.

ヘロト 人間 とくほとくほとう

æ

- Evolution of fish recognition.
- Latest fish recognition component.
- Result refining after classification.

イロト イヨト イヨト --

The species of this image is *Dascyllus reticulatus*.

NOT

Leading : UNICT Participant: UEDIN WP1: Video Data Analysis

(4回) (4回) (4回)

The species of this trajectory is Dascyllus reticulatus.

NOT

Leading : UNICT Participant: UEDIN WP1: Video Data Analysis

(日本) (日本) (日本)

ъ

The species of this **trajectory** is *Dascyllus reticulatus*. **NOT**

We reject some less confident recognition results. This is a **valid** fish with the probability of 0.8907.

Fish Recognition Fish ground-truth dataset of top 35 species

01.Dascyllus reticulatus 21.74(4298)	02.Plectroglyphide don dickii 2683(1226)	a3.Chronds margaritifer 3556(1164)	01.Angohiporion clarkii 4049(1021)	65. Chaetodon Junulatus 2533 (536)	06. Charlodon trifascialis 188(78)	07.Myriperistis kantee 449(71)
Acanthuras nigrofascus 204(61)	(9.Hemigymas faciatas 241(58)	10.Ncontiphon sansmara 299(53)	II.Abudqduf vaigienis 98(42)	12.Canthigaster valentisi 147(28)	13.Pomacentras webuccensis 181(27)	14.Zebrasoma scopas 85(19)
1		Wassister He	1065625	-		
15.Hemigymnus melapterus 42(16)	16Lutjanus fulvus 206(15)	17.Scolopsis bilineata 49(8)	18.Scaridae 56(5)	19.Pempheris vanicolensis 29(6)	20.Pempheris vanicolensis 21(6)	21.Neoghphidodon nigroris 14(6)
O 1	1		>	4	APOS 1011-W	Ø
22.Balistapus undulatus 41(6)	23.Siganus fuscescens 25(6)	24.Chaetodon lunula 12(4)	25.Kyphosus cinerascens 7(4)	26.Dascyllas aruanus 4(3)	27.Anampses meleagrides 8(2)	28.Siganus spinus 6(2)
			-	alastatus d		
29. Chaetodo n auriga	30.Chellinus fesciatus	31.Lethrinus	32.Scarus	33.Chaetodon	34. Plectorhinchus	35. Chaetodon

rivulatus

7(1)

Only use top 23 species (27370 detections, 8756 trajectories).

vittatus

12(1)

speculum

5(1)

Leading : UNICT Participant: UEDIN

ornatus

12(1)

18(3)

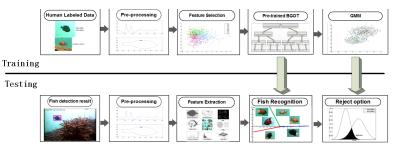
fasciatas

5(1)

auripes

4(1)

35 species 27470 detections (8780 trajectory)



Leading : UNICT Participant: UEDIN WP1: Video Data Analysis

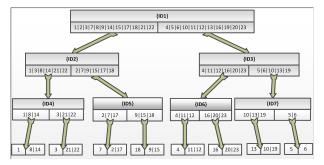
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─の�?

69 features (2626 dimensions)

- Color
 - Normalized Red / Green histogram
 - H component histogram in HSV space
- Boundary
 - Curvature tail area ratio / Density
 - Moment Invariants / Affine Moment Invariants
 - Fourier transform
- Texture
 - Co-occurrence matrix
 - Histogram of oriented gradients
 - Gabor filter

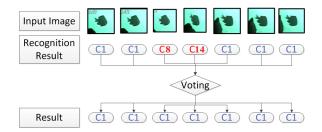
(1) マン・ション (1) マン・

- Balance-Guaranteed Optimized Tree (BGOT)
- Arrange more accurate classifier at a higher level.
- Keep the hierarchical tree balanced.
- Leaf node is a multi-class SVM based on 1-vs-1 strategy.



イロト 不得 トイヨト イヨト

Fish Recognition Result refining after classification: Trajectory voting

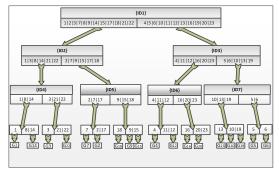


	Recall Averaged	Precision Averaged	Percentage of
	by class (%)	by class (%)	recognised fish (%)
multi-SVM	72.1	79.3	96.8
BGOT	75.3	81.9	97.0

Fish recognition result with Trajectory Voting

イロト 不得 トイヨト イヨト

- Reject unlikely fish from the BGOT result.
- Tradeoff between precision and recall.
- Reduce error accumulation.



イロト イボト イヨト イヨト 三日

- Reject unknown species & misclassifications.
- Use specialised class model.
- Reject low probability classifications.

Algorithm	AP (%)	AR (%)
BGOT baseline	56.5 ± 2.5	$\textbf{91.1} \pm \textbf{2.2}$
BGOT+SVM prob. rejection	59.0 ± 2.7	90.9 ± 2.3
BGOT+soft-deci. rejection	58.9 ± 2.7	90.7 ± 2.3
BGOT with GMM rejection	$\textbf{65.0} \pm \textbf{2.7}^{\star}$	$\textbf{88.3}\pm\textbf{3.0}$

Here use 15 species as training and 8 other species (plus samples from 15 species) as testing. * means significant improvement with 95% confidence by t-test.

伺 とくほ とくほう

- Background modeling results beyond the state of the art, both in underwater videos and in standard datasets (e.g., I2R)
- Novel approach for discriminating objects of interest from the background
- A covariance particle filter able to handle multi-object occlusions and to track effectively objects with 3D complex and unpredictable trajectories
- Novel methods for recognising deforming similar shapes (fish) in 3D under variable lighting conditions

(日本) (日本) (日本)

Thank you!!!

Questions?

Leading : UNICT Participant: UEDIN WP1: Video Data Analysis

ъ.