

# High Performance Storage and Execution Architecture











### **Objectives**

# O1: Achieve scalable long term real time capturing and buffering for multiple undersea video stream. (Data)

**O2:** Build a Tera-scale data service platform consisting of repositories for the video data, for the metadata, for the processed data and for the live stream data, and a computational cluster to support analysis.

(Compute & Store)

O3: Achieve high performance data store and computational access for the data service platform.
 (Query Performance)



### O1: DATA

### A – 1 : Video Summary



# Video Data Collection Status in NCHC

| Video Format | Video Bitrate       | Site Name | # of Video in Storage | # of Video Record in DB |
|--------------|---------------------|-----------|-----------------------|-------------------------|
| FLV          | 200K/480K/<br>1M/2M | All Sites | 685,607               | 662,804                 |
| MPEG4        | 5M                  | NPP-3     | 41,977                | none                    |

10min per video record

Last Updated on 11/01/2013



# Video Data Collection Status in NCHC

| Video Format | Video Bitrate       | Resolutio | n Site Name | # of Video I | Record in DB |
|--------------|---------------------|-----------|-------------|--------------|--------------|
| FLV          | 200K/480K/<br>1M/2M | 320x240   | All Sites   | 200,004      |              |
| FLV          | 200K/480K/<br>1M/2M | 640x480   | All Sites   |              | 368,547      |
| Resolution   | <5 fps              | 5 ~ 8 fps | 9 ~ 23 fps  | 24 fps       | >24 fps      |
| 320x240      | 5,520               | 189,101   | 5,383       |              |              |
| 640x480      |                     | 90,653    | 12,356      | 264,421      | 1,117        |

| Resolution | 2 fps | 4 fps | 5 fps  | 8 fps | 9 fps | 10 fps | 15 fps | 20 fps | 24 fps | 25 fps | 30 fps |
|------------|-------|-------|--------|-------|-------|--------|--------|--------|--------|--------|--------|
| 320x240    | 337   | 5183  | 128903 | 60198 | 4178  | 1205   |        |        |        |        |        |
| 640x480    |       |       | 41638  | 49015 |       |        | 4833   | 7523   | 264421 | 718    | 399    |

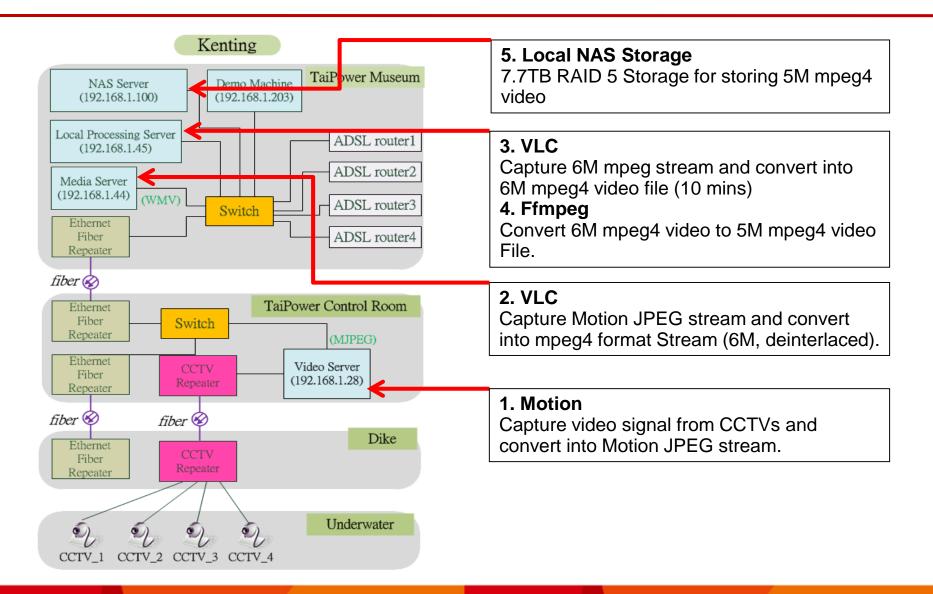
*Last Updated on 11/01/2013 Recording video with 24 fps since 2011/04/27 06:00:00* 

### NARLabs

### Current Data Storage Resources Status in NCHC

|               | Size     | ~ 2013-07-16  | ~ 2013-10-27  |                                                                  |
|---------------|----------|---------------|---------------|------------------------------------------------------------------|
| NAS_1         | 14 TB    | 8.2TB (60%)   | 8.3TB (61%)   |                                                                  |
| NAS_2         | 14 TB    | 9.0TB (66%)   | 11.0TB (76%)  |                                                                  |
| NAS_3         | 8.2 TB   | 695MB (1%)    | 1.2GB (1%)    | Historical video storago                                         |
| NAS_4         | 8.2 TB   | 2.1TB (26%)   | 2.1TB (26%)   | Historical video storage                                         |
| NAS_5         | 8.2 TB   | 7.8TB (96%)   | 7.8TB (96%)   |                                                                  |
| NAS_6         | 8.2 TB   | 3.6TB (44%)   | 3.6TB (44%)   |                                                                  |
| NAS_7         | 13 TB    | -             | -             | VM NFS shared storage<br>(damaged and moved to<br>NAS_9 already) |
| NAS_9         | 107 TB   | 47TB (44% )   | 58TB (55% )   | F4K data storage & video<br>backup                               |
| Total Storage | 180.8 TB | 77.7 TB (43%) | 90.8 TB (50%) |                                                                  |

Last Updated on 10/27/2013




- Provide about 10 Hours Native Motion JPEG (MJPEG)
   video from experiment on 5<sup>th</sup> of February. (around 9:30 AM ~ 19:00 PM)
- Each MJPEG video size is nearly 40 GB.
- The experiment was running at 10AM to 11AM and 2PM to 3PM.
- Split the MJPEG video to 5 ~ 10 minutes short videos. Each video size is about 250MB ~ 600MB
- Download Link:

http://gad249.nchc.org.tw/tom/tdw/ecodata/Site\_A/Video/1 0\_min/



### Multi-stage Data Streaming for the Monitoring System





# Ganglia Automatic Report System

- Our streaming system consists of many machines in Kenting, Taichung, and Hsinchu. Problems may happen to these machines, internet, power supply, etc. We need to handle these issues properly and rapidly for the highly distributed system.
- A Ganglia automatic report system was implemented to send emails to corresponding persons for notification of newly damaged, continuously broken, and repaired status.
- Probing every 5 minutes to minimize the issues of recording failure.



### O1: DATA

### A – 2 : Corrupt Video Information



# Video Download Error

• The failure of hard disks in NAS resulted in the inconsistence between database and physical file system.

| Location       | Counts | 2009 | 2010 | 2011 | 2012 | 2013 |
|----------------|--------|------|------|------|------|------|
| cam-1 @ NPP3   | 288    | 88   | 1    | 129  | 70   |      |
| cam-2 @ NPP3   | 90     |      |      | 78   | 5    | 7    |
| cam-3 @ NPP3   | 80     | 2    | 3    | 73   | 2    |      |
| cam-4 @ NPP3   | 85     |      | 3    | 79   | 2    | 1    |
| cam-1 @ HoBiHu | 4      |      |      | 4    |      |      |
| cam-2 @ HoBiHu | 6      |      |      | 6    |      |      |
| cam-3 @ HoBiHu | 18     |      |      | 18   |      |      |
| cam-1 @ LanYu  | 66     | 33   | 18   | 15   |      |      |
| cam-2 @ LanYu  | 20     |      |      | 20   |      |      |

• Solution: sync both file system and DB regularly.



### Synchronize Between DB and File System

- Backward SYNC
  - Read records in DB to check the existence of files
    - Not exists: delete the record in DB
    - Exists: modify size/timestamp in DB if needed
  - Modify 431 videos at 2013/7/13.
- Forward SYNC
  - Read physical video file in file system to check the record in DB exist or not.
  - Modify ~170K records at 2013/7/13



### O1: DATA

### A – 3 : Realtime Video Detection and Notification



### Video Classification (~350K videos from 2009 to 2013)

Algae: 9.2%



Blurred: 33.5%



Complex Scenes: 4.3%





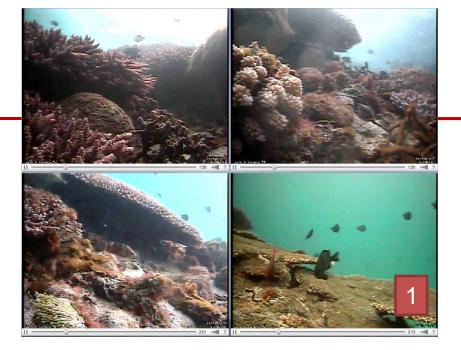
Encoding: 23.9



Highly Blurred: 13.9%



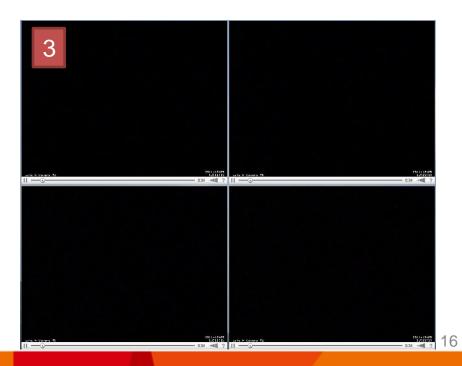
Normal: 12.9


Unknown: 2.2%




# Probably Causes of Abnormal Video

- Algae, Blurred, Highly Blurred
  - Some climatic factor like typhoon or heavy raining
  - Cleanness of camera lens
- System Errors
  - Blue screen: camera failure.
  - Gray screen: video capture card failure
  - Black screen: night
  - Mosaic/noise: internet traffic-jam, going to broken



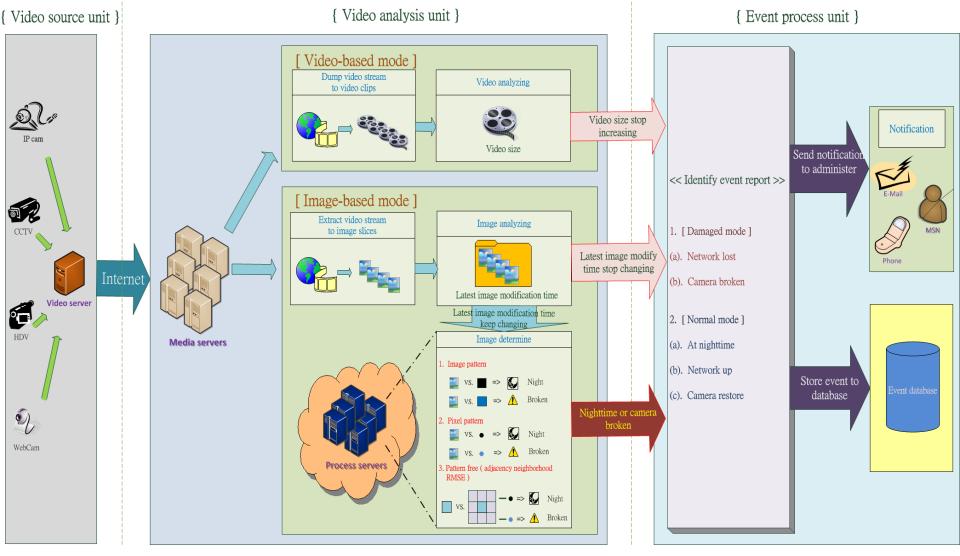





### Three Types of Video Stream

- 1. Normal
- 2. Broken in the left-bottom camera
- 3. Evening






### Video-Slicing and Image-Analyzing Procedure

- Slicing video into images: *ffmpeg* 
  - One frame per second.
  - To saving the computing time, sampling only 3 images (first/middle/last) for each video.
- Parsing each sliced image: JPEGParser program
  - JPEG\_Filename
  - RGB\_Boundary\_Value: 000000 FFFFFF
  - RGB\_Boundary\_Ratio: 0 100
  - RGB\_Difference\_Value: 0 255
  - Parser\_Scheme: 1 3 (pixel-based, line-based, average)
  - RGB\_Filename: save to a RGB ASCII

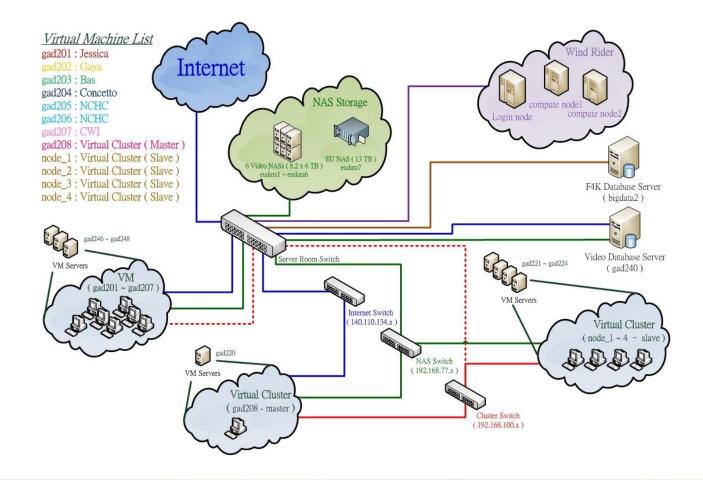


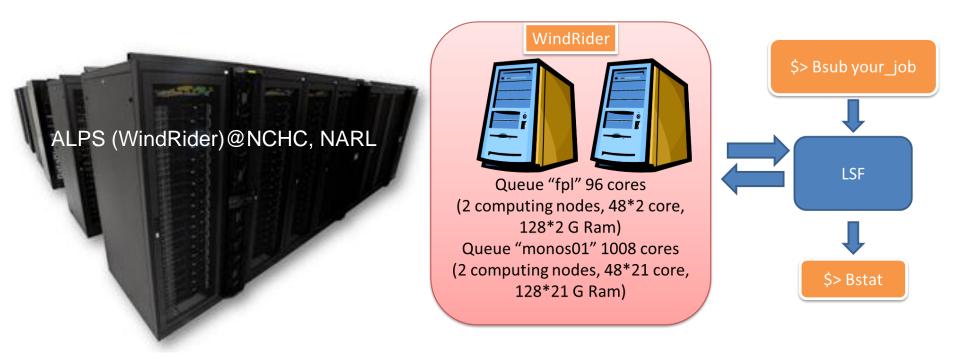
# Detect & filter video from system errors (multistage data streaming)





### **O2: Compute & Store**


### **B**-1: WindRider and VM Group

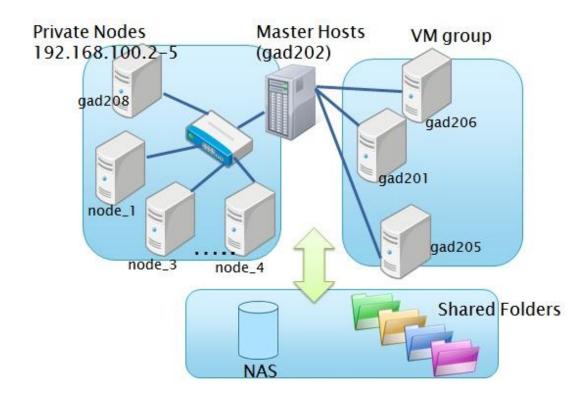



## **Computate Resources**

- Computer systems
  - WindRider: 2 nodes, 96 CPU + additional ondemand 4.7 M core-hour
  - Experimental VM group.
    - Migration to Formosa 3 Production Cloud.
- Summary of core-hours for 2013
  - 5.8M core-hour (WindRider) provided.
  - 3.5M core-hour practically consumed. (~400 core-year)
  - The support will be extended to 2015

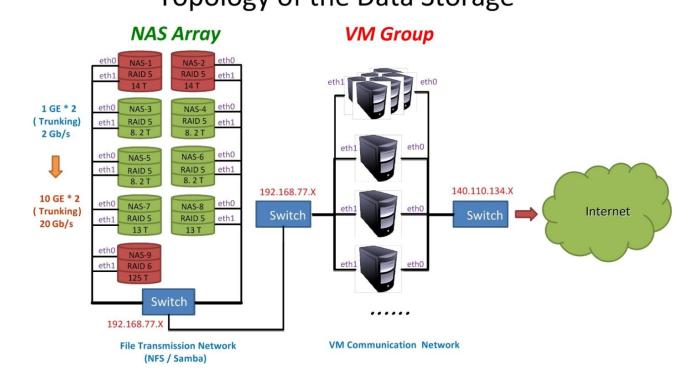
### Network/Resource Architecture for F4K






•The general purpose system uses the AMDR Opteron 6100 processors, and has a total of 8 compute clusters, 1 large memory cluster, and over 25,600 cores.

•It is a supercomputer that offers an aggregate performance of over 177 TFLOPS.


### VM Group

Architecture of VM Group



# Data Storage

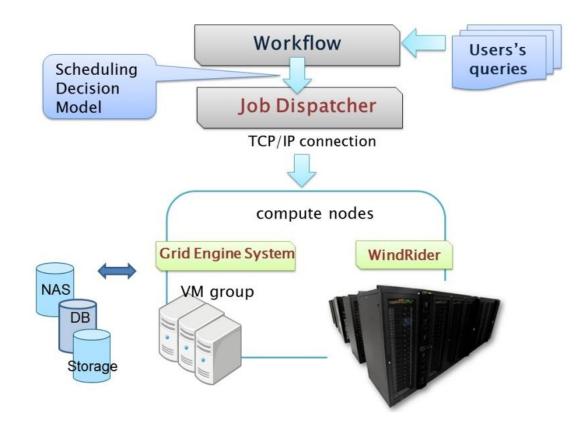
### NAS Storage Topology - Private Storage Network Topology of the Data Storage





- VM group migrate to Formosa 3, as backup VM group for testing or additional computing resources.
- Current VM group state

| VM<br>Name | Owner    | CPU | Memor<br>y (GB) | Cluster Node | SGE<br>Node |
|------------|----------|-----|-----------------|--------------|-------------|
| Gad201     | Jessica  | 8   | 16              |              | Slave       |
| Gad202     | Gaya     | 12  | 32              |              | Master      |
| Gad203     | Bas      | 8   | 16              |              |             |
| Gad204     | Concetto | 8   | 16              |              |             |
| Gad205     | NCHC     | 8   | 16              |              | Slave       |
| Gad206     | NCHC     | 8   | 16              |              | Slave       |
| Gad207     | CWI      | 8   | 16              |              |             |
| Gad208     | NCHC     | 6   | 16              | Master       | Slave       |
| Node_1     | NCHC     | 6   | 6               | Slave        | Slave       |
| Node_2     | NCHC     | 6   | 6               | Slave        | Slave       |
| Node_3     | NCHC     | 6   | 6               | Slave        | Slave       |
| Node_4     | NCHC     | 6   | 6               | Slave        | Slave       |




O2: Compute & Store

### B – 2 : Job Dispatcher (GridEngine and LSF )

### Heterogeneous Computing Architecture

• We are developing the components of job dispatcher on top of two queuing systems, Grid Engine on VM group and LSF on Wind Rider



**NARLabs** Proposed Components with GridEngine API

- drmaa\_job\_submit
  - drmaa\_job\_submit <"your\_job [your\_parameters]" > ["SGE parameters"]
  - drmaa\_job\_submit "/bin/date" "-p 1024"
- drmaa\_job\_status (return value: job id) – drmaa\_job\_status <your\_job\_id>
- drmaa\_job\_control
  - drmaa job control <your job id>
     <DRMAA CONTROL TERMINATE</li>
     DRMAA CONTROL SUSPEND
     DRMAA\_CONTROL\_RESUME>
- Job dependencies:
  - drmaa\_job\_submit <"your\_job [your\_parameters]" > [ "hold\_jid your\_job\_id"]



Proposed Components with LSF API

- lsfb\_job\_submit(returned value: job id)
  - Submit your job to LSF queuing system
  - lsfb\_job\_submit <"your\_job [your\_parameters]">
- lsfb\_job\_status
  - Get job status from job\_id
  - lsfb\_job\_status <your\_job\_id>
- Isfb\_job\_control
  - To send stop, kill, resume signal to submitted job
  - Isfb\_job\_control <your\_job\_id> <SIGSTOP | SIGKILL | SIGCONT>
- Job dependencies:
  - To run a job upon the completion of specific job
  - lsfb\_job\_submit\_jd <"your\_job" > < "the job\_id you want to wait for" >

### Job status code



| Code                   | Meaning                                      |
|------------------------|----------------------------------------------|
| JOB_STAT_PEND = 0x01   | job was pending                              |
| JOB_STAT_PSUSP = 0x02  | Pending job was suspended                    |
| JOB_STAT_RUN = 0x04    | job is running                               |
| JOB_STAT_SSUSP = 0x08  | Running job was suspended<br>due to overload |
| JOB_STAT_USUSP = 0x10  | Running job was suspended by owner           |
| $JOB_STAT_EXIT = 0x20$ | Terminated with error                        |
| JOB_STAT_DONE = 0x40   | Terminated without error                     |
| JOB_STAT_PDONE = 0x80  | Post job was done<br>successfully            |



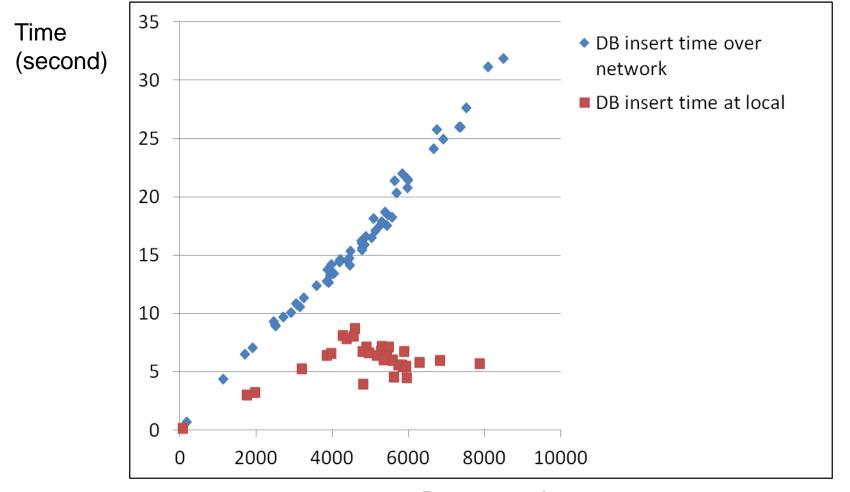
#### Summary of major database tables and their physical size

|                       |           |               | Note                                                     |
|-----------------------|-----------|---------------|----------------------------------------------------------|
| Table Name            | Row count | Physical Size | Note                                                     |
| fish_detection        | 1445.41M  | 322.26G       | Abstracted information of detected objects in each frame |
| fish_species          | 663.93M   | 24.67G        | Correlated of fish object to species catalog             |
| fish                  | 124.28M   | 21.01G        | Abstracted information of detected fish objects          |
| traj_species          | 97.29M    | 3.58G         | Correlated tracking trajectory to species catalog        |
| frame_class           | 11.61M    | 2.65G         | Classification of video quality detailed to frames       |
| fish_species_cert     | 32.55M    | 1.29G         | Summary of detection/recognition certainty               |
| summary_camera_3<br>9 | 7.13M     | 1.24G         | Aggregation of information on camera id                  |
| summary_camera_4<br>6 | 7.12M     | 1.24G         |                                                          |
| summary_camera_3<br>8 | 6.31M     | 1.10G         |                                                          |
| summary_camera_3<br>7 | 4.46M     | 0.78G         |                                                          |
| summary_camera_4<br>2 | 4.31M     | 0.75G         |                                                          |
| summary_camera_4<br>4 | 1.49M     | 0.26G         |                                                          |
| summary_camera_4<br>3 | 0.83M     | 0.15G         |                                                          |
| video                 | 0.63M     | 0.14G         | Records of raw videos                                    |
| processed_videos      | 0.78M     | 0.12G         | Records of progress of video processing                  |
| summary_camera_4<br>1 | 0.63M     | 0.11G         |                                                          |
| summary_camera_4<br>0 | 0.28M     | 0.05G         |                                                          |
| video_class           | 0.53M     | 0.04G         | Classification of video quality                          |



### Status of SQL database

- Database server is stable and running 24x7
- Able to support massive processing:
  - More than 2000 computing processes query to database, constantly having more than 100 processes doing insertion at same time into a huge table with ~1.5x10<sup>9</sup> rows.




### SQL database Performance Tuning

### Statistic report from database server log

| Questions                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Total 162.57M 95.5/s                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Com_ 375.09M 220.3/s %Total: 230.73               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -Unknown 370.01M 217.3/s 227.60                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMS 157.32M 92.4/s 96.77                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| COM_QUIT 163.37k 0.1/s 0.10                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Slow 5 s 827.36k 0.5/s 0.51 %DMS: 0.53 Log: ON    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DMS 157.32M 92.4/s 96.77                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| SELECT 56.40M 33.1/s 34.69 35.85                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| INSERT 52.60M 30.9/s 32.36 33.44                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| UPDATE 48.23M 28.3/s 29.67 30.66                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| REPLACE 81.83k 0.0/s 0.05 0.05                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DELETE 1.21k 0.0/s 0.00 0.00                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Com_ 375.09M 220.3/s 230.73                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| stmt_execut 106.37M_62.5/s 65.43 communications!! |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                   | Total $162.57M$ $95.5/s$ Com_ $375.09M$ $220.3/s$ $\%$ Total: $230.73$ -Unknown $370.01M$ $217.3/s$ $227.60$ DMS $157.32M$ $92.4/s$ $96.77$ COM_QUIT $163.37k$ $0.1/s$ $0.10$ Slow 5 s $827.36k$ $0.5/s$ $0.51$ DMS $157.32M$ $92.4/s$ $96.77$ Select $56.40M$ $33.1/s$ $34.69$ $35.85$ INSERT $52.60M$ $30.9/s$ $32.36$ $33.44$ UPDATE $48.23M$ $28.3/s$ $29.67$ $30.66$ REPLACE $81.83k$ $0.0/s$ $0.00$ $0.00$ Com_ $375.09M$ $220.3/s$ $230.73$ stmt_prepar $106.37M$ $62.5/s$ $65.43$ Too many |





Data records



### **Bottleneck and solutions**

Data insertion to huge table is time consuming

 solution: packed insertions into one bundle and then send to database server once instead of sending them one by one.

ex:

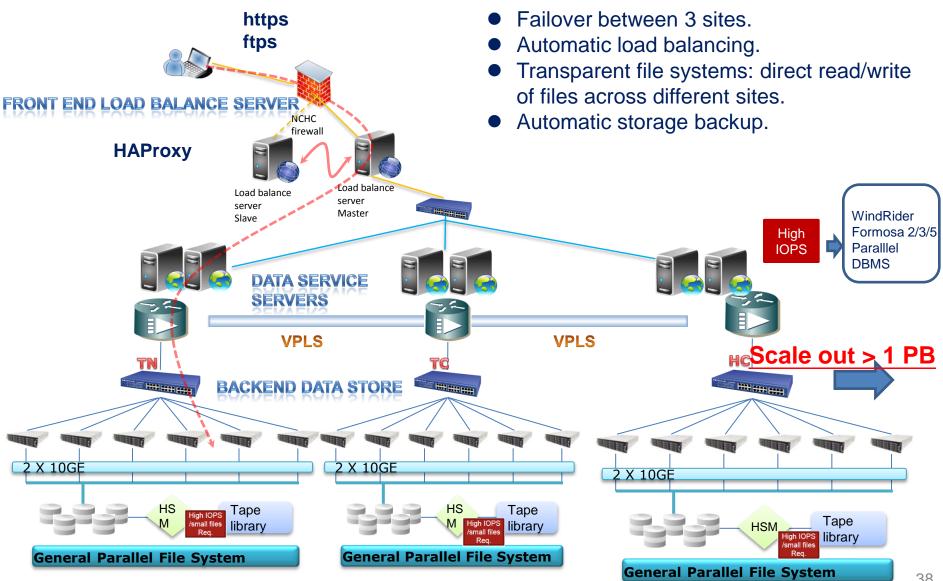
insert into TABLE (a,b,c,d,e,f) values
 (aa,bb,cc,dd,ee,ff),(aaa,bbb,ccc,ddd,eee,fff),(...),(...)
instead of
insert into TABLE (a,b,c,d,e,f) values

insert into TABLE (a,b,c,d,e,f) values

(aa,bb,cc,dd,ee,ff)

insert into TABLE (a,b,c,d,e,f) values

(aaa,bbb,ccc,ddd,eee,fff)




- Disk IO and Network Latency
  - Migration of database server to a machine with larger capacity and lower network latency to HPC server
  - Move data store to SAN disk. Gain 1GB/s write, and 192MB/s read performance result from the move, and dramatically boosted efficiency of the detection processes that writes results into database heavily.
  - 4th July up and running, no deadlock happened while few thousands of detection processes were busy running. Made possible of finishing detection and classification on all videos.

### Conclusions

- Provide tera-scale video data and sustainable infrastructure of compute, store, network and services to the F4K system with quality.
- Innovative data-intensive heterogeneous and distributed data infrastructure.
  - Multi-stage Data Streaming technology enables scalability and local intelligent for underwater monitoring systems.
  - Hybrid analytics platform: "Cloud" (VMs) + "Supercomputer".
  - Hierarchical memory cache method speed up query performance up to 100x
  - Enable big table operations over ~1.5x10<sup>9</sup> records and achieve the tera-scale analytics through the hybrid analytics platform.
- Further impact: reference the system to build peta-scale data analytics platform.

### Peta-scale data system for Earth Science Knowledgebase

