

#### Project Teams

- Univ of Edinburgh admin: Fisher
- Univ of Edinburgh vision: Boom
- Univ of Edinburgh workflow: Chen-Burger, Yang
- Univ of Catania: Giordano, Spampinato, Palazzo
- National Applied Research Laboratories: Lin
- Centrum voor Wiskunde en Informatica: Hardman, Ossenbruggen, Beauxis-Aussalet

## **Review: Overall Project Goals**

 Acquire, process and store massive video datasets: Proposal: 10 cameras, 2 years, 365 days, 12 hours/day, 3600 seconds/hour, 5-10 frames/second

| Item                          | Plan                | Actual             |
|-------------------------------|---------------------|--------------------|
| Frame rate                    | 10                  | 5                  |
| Frames                        | $3 \times 10^9$     | $1.5 	imes 10^9$   |
| Bytes of compressed raw video | $2 \times 10^{14}$  | $1 \times 10^{14}$ |
| Detected Fish                 | $10^{10}$           | $1.4 \times 10^9$  |
| Result data (bytes)           | $10^{11} - 10^{12}$ | $4 \times 10^{11}$ |
| Processing                    | -                   | 400 core-years     |

2. Develop methods based on **ontologies and semantic web** concepts for allowing non-programming specialists access to massive datasets.

Achievements: see User Interface demonstration

3. Build a **working prototype** by month 24, leaving last 12 months for evaluation and developing additional query answering capabilities.

Achievements: prototype built and evaluated, second version built, to be demonstrated here

4. Work with marine biologists to produce **useful answers to biological questions**.

Achievements: Many discussions and demonstrations, some early stage technology transfer, no exciting discoveries from the data (so far)

#### **Biologist Empowerment: Questions we can answer**

- 1. What species and numbers of fish appear, filtered by the user's choice of time of day, week of year, by year, camera, location?
- 2. What is the relative abundance of different species?
- 3. Show examples of videos, detections and classifications.
- 4. What other species were also present when species X was seen?
- 5. Are the observed numbers of species X increasing in the past 3 years?

#### Key Scientific Achievements

- 1. Computer vision methods for target detection and tracking in difficult environments, and for accurate species recognition in greatly unbalanced datasets.
- 2. New ways to present large amounts of time varying information through a complex facet-based user interface
- 3. Technological development of memory, processor, and task control systems suited for management of large amounts of computation.
- 4. Ontologies and vocabularies for goals and image processing to implement a virtual workflow model.

- 5. SQL based complete and abstracted storage representations for access in massive datasets
- 6. Control algorithms that allow on-demand as well as routine processing in a complex multi-processor context, where tasks fail occasionally (software, hardware, communications, etc).
- Massive public fish database, 600 Gb, 23 species, 1.4 billion fish images, possibly the largest analysed public image database in the world.

# Year 3 Goals

- Enhance the detection and tracking algorithms: DONE
- Extend the species recognition algorithm to more species and higher accuracy: now 23 most common species, up from 10 last year
- Complete system integration (workflow and user interface): DONE
- Evaluate system performance: DONE
- Enhance system to increase data analysis and query answering speed: DONE, but could use more
- Evaluate usability by marine biologists: DONE
- Catch up with all previously recorded videos: detection 100%, recognition 50%, est 2 months more processing

# Technical Overview

## Camera Views





HoBiHu-3



Processing through 30 June 2013.

## Video Quality Classification

Algorithm to classify video quality, for detector selection 93% accurate

524086 videos, 87K hours:

Normal (14%)

Complex Background (7%)

Algae on Lens (9%)

Blurred Water (35%)

Highly Blurred Water (12%)

Encoding Errors (21%)

Unknown (1%)

# Fish Detection and Tracking

- Difficult environment: algae, moving plants, changing lighting, caustics; small image size 320x240, low frame rate
- But: fixed cameras and background models
- 1.44 billion fish detections, 145 million tracks
- Detection F<sub>1</sub> rate: 0.81
- Frame-to-frame Correct Tracking Decision Rate: 82%

# Current Species Ground Truth

|                                            |                                                |                                      | 4                                      | AN A                                   |                                         | 1                                      |
|--------------------------------------------|------------------------------------------------|--------------------------------------|----------------------------------------|----------------------------------------|-----------------------------------------|----------------------------------------|
| 01.Dascyllus<br>reticulatus<br>12174(4298) | 02.Plectroglyphido<br>don dickii<br>2683(1226) | 03.Chromis<br>chrysura<br>3556(1164) | 04.Amphiprion<br>clarkii<br>4049(1021) | 05.Chaetodon<br>lunulatus<br>2533(536) | 06.Chaetodon<br>trifascialis<br>188(78) | 07.Myripristis<br>kuntee<br>449(71)    |
| 08.Acanthurus                              | 09.Hemioymuus                                  | 10.Neoniphon                         | II.Abudefduf                           | I.Canthigaster                         | 13.Pomacentrus                          | 14.Zebrasoma                           |
| nigrofuscus<br>204(61)                     | fasciatus<br>241(58)                           | sammara<br>299(53)                   | vaigiensis<br>98(42)                   | valentini<br>147(28)                   | moluccensis<br>181(27)                  | scopas<br>85(19)                       |
| -                                          |                                                | Washing the                          | .0656.27                               |                                        |                                         |                                        |
| melapterus<br>42(16)                       | 16.Lutjanus<br>futvus<br>206(15)               | 17.Scolopsis<br>bilineata<br>49(8)   | 18.Scaridae<br>56(5)                   | 19.Pempheris<br>vanicolensis<br>29(6)  | 20.Pempheris<br>vanicolensis<br>21(6)   | 21.Neoglyphidodon<br>nigroris<br>14(6) |
| 22.Balistapus<br>undulatus<br>41(6)        | 25(6)                                          | 24.Chaetodon<br>lunuta<br>12(4)      | 23.Kyphosus<br>cinerascens<br>7(4)     | 26.Dascyllus<br>aruanus<br>4(3)        | 27. Anampses<br>meleogrides<br>8(2)     | 28.Siganus<br>spinus<br>6(2)           |
|                                            |                                                | -                                    | 0                                      |                                        |                                         | 0                                      |
| 29.Chaetodon<br>auriga<br>18(3)            | 30.Cheilinus<br>fasciatus<br>5(1)              | 31.Lethrinus<br>ornatus<br>12(1)     | 32.Scarus<br>rivulatus<br>7(1)         | 33.Chaetodon<br>speculum<br>5(1)       | 34.Plectorhinchu.<br>vittatus<br>12(1)  | s 35.Chaetodon<br>auripes<br>4(1)      |
|                                            |                                                |                                      |                                        |                                        |                                         |                                        |

35 species 27470 fish (8780 trajectory)

## 23 Species Recognised

23 most common species (99.7+% of observed fish)Accuracy on Ground Truth averaged over species: 75%Accuracy on Ground Truth averaged over fish: 97%

# **Recognition Processing Summary**

| Type            | Processed | Total  | Percent |
|-----------------|-----------|--------|---------|
| Algae           | 18993     | 49370  | 38%     |
| Blurred         | 68711     | 181965 | 38%     |
| ComplexScenes   | 36804     | 37404  | 98%     |
| EncodingProblem | 39626     | 108140 | 37%     |
| HighlyBlurred   | 27163     | 65024  | 42%     |
| Normal          | 75424     | 75806  | 99%     |
| Unknown         | 6111      | 6171   | 99%     |
| TOTAL           | 272916    | 524086 | 52%     |



# 96 Dedicated Processor Host + Supercomputer



Also doing 1000+ processor runs





Includes extended NAS storage to 206 Tb video, 400 Gb SQL







Fish Datection



## Dissemination

- Organised scientific workshops and special sessions: 5
- Journal publications: 6
- Conference publications: 41
- Journal special issues: 6
- Invited Talks, Posters and Exhibitions at Scientific Conferences: 15
- Potential collaborations: 10
- MSc theses: 6, PDEng: 1, PhD in progress: 4
- F4K web site: 7800+ hits

## Public Available Resources

- Shared source code: SourceForge
- 24 hour and 3 year data samples
- SecondLife Exhibition
- User Interface to full dataset
- Detection and Recognition ground truth
- ImageCLEF dataset

# Management

- Person-months Proposed: 261 Actual: 441
- Unspent budget: 201077 Euros

## **Completed Milestones**

All Milestones met





#### All Deliverables complete

## Full Consortium Meetings

- 1. Luxembourg December 2012
- 2. Taiwan April 2013
- 3. Catania September 2013
- 4. Luxembourg November 2013

Additional technical working meetings: Amsterdam, Paris, Taiwan

#### Post-project Plans

- Finish recognition processing
- Copy all recognition results to project website, for public use
- Fish4Knowledge book
- Collaborations for exploitation, especially Aquacam (Caribbean fish detection, recognition and 3D stereo fish sizes), Walailak (Taiwan) using F4K streaming techology
- Extending methods for evaluating and representing uncertainty.