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Abstract—Visual tracking is a topic on which a lot of scientific
work has been carried out in the last years. An important
aspect of tracking algorithms is the performance evaluation,
which has been carried out typically through hand-labeled
ground-truth data. Since the manual generation of ground truth
is a time-consuming, error-prone and tedious task, recently
many researchers have focused their attention on self-evaluation
techniques for performance analysis. In this paper we propose a
novel tool that enables image processing researchers to test the
performance of tracking algorithms without resorting to hand-
labeled ground truth data. The proposed approach consists of
computing a set of features describing shape, appearance and
motion of the tracked objects and combining them through a
naive Bayesian classifier, in order to obtain a probability score
representing the overall evaluation of each tracking decision. The
method was tested on three different targets (vehicles, humans
and fish) with three different tracking algorithms and the results
show how this approach is able to reflect the quality of the
performed tracking.

I. INTRODUCTION

In the automatic video analysis, key roles are played by
object detection, tracking and recognition (e.g. [1], [2], [3]).
Object tracking consists of following an object in the video
across consecutive frames; in other words, a tracking algorithm
has to be able to recognize that two regions in two different
frames represent the same object. Many different approaches
have been studied on how to solve object tracking, from
the widely-used algorithms based on Kalman filters [4] or
particle filters [5] to the most recent ones based on multiple
learning instance [6] or Level Sets [7]. Although the newest
tracking approaches are very reliable and powerful, there is a
major problem when dealing with tracking evaluation, i.e. the
creation of ground truth necessary to train, test, and compare
the performance of tracking algorithms. Indeed ground-truth
generation is very time-consuming, error-prone and tedious to
users, who basically have to analyse manually each frame of
a video and label each association between objects. For this
reason, some research groups are putting efforts on develop-
ing self-evaluation-based approaches, which typically evaluate
tracking decisions by analyzing how regularly and smoothly
an object moves (for example, a sudden change of direction of
an object is considered an indication of bad tracking) or how
its appearance changes (e.g. big variations in the shape ratio
or in the histogram may indicate that the algorithm lost the
object and is following a wrong one). The existing approaches
can be classified into three main categories: 1) Feature-based

[8] that analyse the internal state or output (shape ratio, area,
speed, color and direction variations) of tracking algorithms,
2) Hybrid-based [9], [10] that combine several temporal and
non-temporal features to get an assessment of each tracking
decision and 3) Trajectory-based [11] that exploit intrinsic
information of the generated trajectories to measure the quality
of a track. The existing approaches show two main limitations:
domain-dependence, since most of the existing approaches [8],
[9], [10] identify empirically the features to be used and their
contribution to the final evaluation, and algorithm-dependence:
some approaches [11] use a-priori knowledge on the algorithm
to be tested, making the method dependent on the specific
application.

In this paper we propose an on-line method to test tracking
algorithms without ground-truth data that analyses the regular-
ity of motion, shape and appearance of each tracking decision
and combines this information through a naive Bayesian
classifier, in order to obtain a probability score representing
the overall evaluation of that tracking decision. The results
show how this approach is able to reflect the performance
of tracking algorithms on different target motion patterns:
vehicles that show a highly constrained 2D motion; people,
who have more degrees of freedom than vehicles, but tend
to move in 2D in a regular way, and fish, which have a
typical erratic movement in 3D which is not constrained in
any directions. Moreover, the use of the Bayes classifier has
allowed us to establish the contribution of each feature to the
final evaluation score, indicating that motion-based features
do not allow to distinguish good tracking decisions from bad
ones.
The remainder of the paper is as follows: in Section II
we present our approach for online empirical evaluation of
tracking algorithms; in Section III we show the results ob-
tained by applying the proposed approaches on a set of hand-
labelled videos; finally concluding remarks are given in the
last Section.

II. SELF-EVALUATION OF TRACKING ALGORITHM

The proposed online-evaluation method uses motion, shape
and appearance features computed at every frame and fed to
a Bayesian classifier to obtain a probability of correctness for
each tracking decision. The considered features are:

• Difference of shape ratio between frames: this score
detects rapid changes in the object’s shape, which might



indicate tracking failure. This value is high if the shape
ratio (R = W

H , W and H being, respectively, the width
and the height of the bounding box containing the object)
between consecutive frames t−1 and t keeps as constant
as possible:

Rmax = max {Rt, Rt−1}
Rmin = min {Rt, Rt−1}

shape ratio score =
Rmin

Rmax

• Difference of area between frames: similarly to the pre-
vious score, this value indicates whether the area of
the tracked object has a sudden change between two
consecutive frames. It is computed in the same way as
the shape ratio difference score.

Amax = max {At, At−1}
Amin = min {At, At−1}

area ratio score =
Amin

Amax

• Histogram difference: this feature evaluates the difference
between two appearances of the same object by compar-
ing the respective histograms (analyzing independently
the three RGB channels and the grayscale versions of
the two objects). Given histograms Ht and Ht−1, the
corresponding score is computed as:

255∑
i=0

min {Ht (i) , Ht−1 (i)}
max {Ht (i) , Ht−1 (i)}

• Direction smoothness: assuming a trajectory is as good
as it is regular and without sudden direction changes, this
value keeps track of the direction of the object in the last
frames and checks for unlikely changes in the trajectory.
It is computed as:

direction smoothness =
|θ1 − θ2|

180

where θ1 and θ2 are the angles (with respect to the x
axis) of the last two displacements of the object. For
simplicity, we use θ1 − θ2 in the formula, although the
actual implementation handles the case of angles around
the 0◦/360◦ boundary.

• Speed smoothness: similarly to the previous feature, this
value checks whether the current speed of the object
(i.e. the displacement between the previous position and
current one) is similar to the average speed in the object’s
history. Let Pt and Pt−1 be the last two positions of
the object, we compute st = ||Pt − Pt−1||, so that st
represents the last displacement (speed) of the object, and
compare it with the average speed s̄ in order to compute
speed smoothness as:

smax = max {st, s̄}
smin = min {st, s̄}

speed smoothness =
smin

smax

• Texture difference: mean and variance of Gabor filters at
different scales (2, 4, 8, 16) and orientations (0◦, 45◦, 90◦,
135◦) are computed from two consecutive appearances
and compared. Given two feature vectors v1 and v2, this
value is computed as the Euclidean norm between the
two vectors: √√√√ n∑

i=1

(v1 (i)− v2 (i))
2 (1)

The vector made up of these values for each tracking
decision is then given as input to a naive Bayes classifier,
which computes the probability of the considered tracking
decision being good. Naive Bayes classifier use Bayes theorem
to estimate the posterior probability that a feature vector
belongs to a certain class, given the estimated distributions
(typically, as in this case, assumed Gaussians) of each feature,
for that certain class.
For our purpose, we define two classes “good tracking”
(GT) and “bad tracking” (BT) describing a tracking decision
whose motion/appearance/shape properties are more likely to
derive, respectively, from a correct or a wrong association
by the tracker. After training the Bayes classifier on these
two classes, the evaluation process consists in computing
the above-described feature vector at each tracking decision,
feeding it to the classifier and then reading the matching
probability between the vector and the GT class; this value
is then returned as the performance score for that tracking
decision.

III. EXPERIMENTAL RESULTS

The video base used to test the performance of our on-
line evaluation method consisted of 15 videos (30 fps, spatial
resolution 320 × 240, 24-bit color depth), depicting three main
targets:

• 5 videos from Caltrans Live Traffic Cameras1: the main
targets were cars, trucks and motorcycles whose motion
was constrained to the lanes of a highway.

• 5 videos from the CAVIAR dataset2 showing people
walking in closed environments (e.g. shopping centre);

• 5 underwater videos from the Fish4Knowledge3 project’s
dataset. The recorded scenes depict fish swimming in
unconstrained real-life environments.

The choice of the different application domains was moti-
vated by the need to train the classifier on as many different
scenarios as possible, in order to avoid its performance to be
biased by the targets’ motion patterns. The ground truths for
the CAVIAR videos can be found on the project’s website, and
it includes information on the position, orientation, bounding
box and behaviour hypotheses of the targets. The ground
truth for the underwater and vehicular traffic videos were
hand-labeled by us using the Video Performance Evaluation
Resource (VIPER) [12], and they include information on the

1http://video.dot.ca.gov/
2http://homepages.inf.ed.ac.uk/rbf/CAVIAR/
3http://fish4knowledge.eu



bounding box and the contour of the targets. However, for
our purposes, the bounding box is the only information we
used, since it allowed us to compute all the above-described
features.
The Bayes classifier was trained with data coming from 9
videos of our video base (3 for each category). The samples
related to the “Good Tracking” GT class were generated by
computing the feature vectors on correct tracking decisions
taken from our ground truth dataset, whereas samples for
the “Bad Tracking” BT class were artificially generated by
either making mis-associations between regions in consecutive
frames belonging to different objects, or by randomly trans-
lating and modifying the correct object region.
The test phase was performed on the 6 remaining videos (2
for each category) and was meant to assess how the proposed
method is able to reflect: 1) errors in tracking decisions by
applying it to our ground truth data where error was artificially
introduced from 10% to 50%, 2) the performance of tracking
algorithms by assessing the quality of the tracks computed by
three state of the art algorithms. Moreover, the performance
of our method were compared with the ones obtained when
the features, described in the previous section, were combined
through a weighted mean (as performed by most of the existing
approaches [8], [10]) and the ones achieved by the method
proposed by Erdem et al. in [9]. Since the last two approaches
are domain-dependent we set their parameters in order to
achieve the best performance for each target. Fig. 1 shows this
comparison in terms of average evaluation score achieved for
each target (vehicle, people and fish) when the three methods
were applied to our ground truth data as the tracking error
varies. These results reflect that: 1) the evaluation scores of
the proposed method are the highest when using ground-truth
tracking information, with a slight decrease from the most
constrained environments (e.g. vehicles in a highway) to the
least constrained ones (e.g. fish in real-life environments) and
2) when adding tracking noise, the results lower sensibly,
although our method tends to reflect better the tracking errors
showing an almost linear behavior.
To test the reliability of our method in assessing the per-
formance of tracking algorithms, we performed tracking on
ground truth objects (on the same video set) with three state-
of-the-art algorithms: CONDENSATION [13], CAMSHIFT
[14], and covariance-based tracking [15]. Table I shows the
performance of these three algorithms when compared against
the ground truth on the 16 videos in terms of Correct decision
rate (CDR)4 normalized between 0 and 1 and the average
evaluation scores achieved, respectively, by the proposed ap-
proach (AESBC), the approach that uses the weighted mean
(AESWM ) of the features instead of the Bayes classifier and
the Erdem et al. approach (AESE).

4Let a “tracking decision” be an association between an object at frame t1
and an object at frame t2, where t1 < t2; such tracking decision is correct if
it corresponds to the actual association, as provided by the ground truth. The
correct decision rate (CDR) is the percentage of correct tracking decisions of
a tracking algorithm when compared with ground truth tracks.

Figure 1. Comparison of the proposed in terms of average evaluation score
when the three methods were applied to the ground truth data at varying of
tracking errors.

(a) p (area ratio|C) (b) p (direction smoothness|C)

Figure 2. Distributions of the features area ratio and
direction smoothness in the two classes GT and BT

The last evaluation aimed at understanding the contribu-
tion of each feature to the tracking evaluation score. The
use of the Bayes classifier allows us to have a thorough
understanding of the features that influence the final evalu-
ation, unlikely existing approaches where the features to be
used are identified empirically. Figure 2 shows how the fea-
tures area ratio and direction smoothness are distributed
in each of the two classes (i.e. the p (area ratio|C) and
p (direction smoothness|C) distributions, where C is the
class label – either GT or BT).

As it is possible to notice the direction smoothness
feature showed an overlap between the classes GT and BT,
thus indicating that it does not provide useful information
for discriminating a good tracking decision from a bad one,
whereas area ratio is able to distinguish among the two
classes. This holds for all the motion-based features, i.e.
direction smoothness and speed smoothness and Fig. 3
shows that the results in terms of average evaluation score
changed slightly (showing very similar trends) when the
motion-based features were not used.



Vehicles Human Fish

CDR AESBC AESWM AESE CDR AESBC AESWM AESE CDR AESBC AESWM AESE

CONDENSATION [13] 99.1 99.0 86.8 93.2 97.8 97.4 84.8 89.8 94.5 80.2 73.3 79.4
CAMSHIFT [14] 98.8 99.0 86.7 93.2 95.2 96.3 85.1 90.1 91.7 76.3 71.4 75.2

Covariance-based [15] 99.6 99.1 87.2 93.9 98.0 97.4 84.2 90.3 96.7 80.1 74.8 77.3

Table I
TRACKING RESULTS ON THREE DIFFERENT TARGETS COMPARED WITH THE AVERAGE EVALUATION SCORES ACHIEVED, RESPECTIVELY, BY THE

PROPOSED APPROACH (AESBC ), THE APPROACH THAT USES THE WEIGHTED MEAN (AESWM ) OF THE FEATURES INSTEAD OF THE BAYES CLASSIFIER
AND THE ERDEM et al. APPROACH (AESE )

Figure 3. Comparison in terms of average evaluation score when we used,
respectively, all the features and only the most relevant ones.

IV. CONCLUDING REMARKS

Object tracking is one of the most important processing
blocks in computer vision systems. In recent years, we have
been assisting to a proliferation of tracking algorithms; how-
ever one of the main problems, still unsolved, in object
tracking research is the performance evaluation, which is a
difficult and tedious task especially if it is based on hand-
labeled ground truth data. In order to address this need, in
this paper we have proposed a probabilistic self-evaluation
approach that gives a score to each tracking decision. The
experimental results have shown how the proposed method
is able to reflect the quality of tracking decisions and the
performance of different tracking algorithms also under ex-
treme conditions such as in underwater scenes. Moreover, the
results have also shown that shape and appearance features
(differently from the motion-based ones) are discriminant of
good and bad tracking decisions. As future work, we are
planning to develop a similar approach to test performance
of object detection algorithms and to publish the systems on a
web-platform in order to allow researchers to test and compare
their algorithms’ performance and to share the results with the
whole community.
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