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ABSTRACT

In this paper we present an algorithm for visual object detec-
tion in a underwater real-life context which explicitly mod-
els both the background and the foreground for each frame
— thus helping to avoid foreground absorption into similar
background —, and integrates both colour and texture features
(which have proved effective in overcoming the limitations of
colour-only appearance descriptors) into a covariance-based
model, which provides an elegant way to merge multiple fea-
tures together and enforce structural relationships. A joint
domain-range model combined to a post-processing approach
based on Markov Random Field takes into account the spa-
tial dependency between pixels in the classification process,
unlike the classical pixel-oriented modeling techniques. Our
results show the effectiveness of this approach in the under-
water environment, which presents a lot of variety in scene
conditions, objects’ motion patterns, shapes and colouring,
and background activity.

1. INTRODUCTION

The recent technological progress in digital video analysis, in-
formation storage capabilities and high-speed computer net-
works, along with the decrease of the costs of camera de-
vices, have led to a wide diffusion of video-surveillance [1, 2].
Lately, the use of cameras to record video clips of wildlife en-
vironments is gaining more and more attention: in fact, this is
a non-obtrusive way of studying animal populations in their
natural habitats, for reasons which may include endangered
species monitoring and hunt/fishing control (e.g. the AQUA-
CAM project'), community landscape management and sus-
tainable management of natural resources (e.g. the ECDD
Comoro Islands project?), ecosystem health evaluation, and
the study of animal individual and population behaviour (the
latter two being part of the purposes of the Fish4Knowledge
project’, e.g. see [3]). This approach is expected to produce
a huge amount of video data available to biologists and re-
searchers, which however may turn out to be a disadvantage
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when it comes to analyzing it. In order to tackle this prob-
lem, many solutions for automatic video processing have been
proposed by the scientific community, aiming at minimizing
human supervision in the video analysis task, thus reducing
drastically the amount of time required to extract information
from the available material.

All of these approaches necessarily rely on object detection
modules, which produce evidence on the presence or absence
of potential targets in a video sequence, typically by identi-
fying moving elements in the scene. The classical tendency
in the development of a motion detection algorithm consists
in applying background modeling techniques to build an es-
timated image of the scene without objects of interest, and
comparing each new video frame to this model to identify
foreground areas. However, backgrounds rarely are perfectly
stationary, because of noise, camera motion, environmental
conditions, and other factors. Moreover, modeling only the
background implies that if an object — or part thereof — has
similar colors as the background region on which it lies, it will
unavoidably be detected as part of it. These considerations
lead to two conclusions: first of all, it is necessary to explic-
itly model the foreground as well; in this way, for example,
a dark red object moving from a blue background to a light
red one will be still detected due to the closer resemblance to
the foreground model than the background one. Furthermore,
this example proves how color similarities may not be suf-
ficient to discriminate between background and foreground
pixels accurately; other works, such as [4], showed the im-
portance of introducing texture information in the models, to
further accentuate the differences between regions belonging
to distinct objects. This requirement is even more important
in real-life unconstrained contexts, as highlighted in Porikli’s
characterization of object detection algorithms under extreme
conditions [5].

In this work, we propose an approach for modeling both the
foreground and the background and for integrating texture
features into the models by using covariance matrices, due
to their intrinsic capability to describe both spatial and sta-
tistical information of an image region. At each new frame,
a Kernel Density Estimation (KDE) exploits the current mod-
els to build two probabilistic maps which are transformed into
a binary motion map by means of a MAP-MRF approach.



The proposed algorithm was evaluated on real-life underwater
videos in uncontrolled and unconstrained conditions, which is
a much harsher application context than most human/urban-
centered environments. In fact, underwater videos are typ-
ically characterized by the presence of moving background
(e.g. plants), fast lighting changes (due to the gleaming of the
sun on the water surface and the sea bed), low contrast images
(murky water, algae on the camera lens, storms and typhoons,
etc) and in general have a relative low quality in terms of im-
age resolution and video frame rate, due to bandwidth limita-
tions between the cameras and the storage servers.

In the remainder of this paper, Section 2 describes in de-
tail the modeling and detection processes; Section 3 shows
the performance of the algorithms, computed on a set of man-
ually labeled underwater videos; finally, Section 4 presents,
respectively, conclusive considerations on the proposed work
and some ideas concerning its current limitations and the fu-
ture developments we plan to experiment.

2. METHOD

The joint domain-range model described herein is inspired by
the work presented in [6]. In the original work, the back-
ground and foreground models are defined in a 5-dimensional
pixel feature space, namely the (z,y) coordinates and the
(R, G, B) colour channels. In order to describe our variant
of the model, it is necessary to explain how we represent each
pixel’s information first.

Given the pixel p at location (z,y), a squared neighbour-
hood of size w x w is extracted, and for each pixel belonging
to this subset a feature vector is computed, which contains:
the (z,y) coordinates, the (R, G, B) colour channels; the H
channel in the HSV colour space; the first four statistical mo-
ments of the Local Binary Patterns (LBP) [7] histogram over
the pixel’s neighbourhood.

Given this set of feature vectors, the corresponding covariance
matrix C , is computed. In order to convert this structure to
a scalar value (which will be used as main appearance feature
in the joint domain-range model), we give an overall estimate
of the pixel’s neighbourhood variance as:
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where 7 is the order of C , (i.e. the length of the feature
vectors used to compute it) and {\; ,;} is the set of
Cy,y’s eigenvalues.

Each pixel p is then represented as the (x,y,v) vector,
and the joint domain-range model consists in the correspond-
ing 3-dimensional space, on which the pdfs of the back-
ground and foreground models are built. This is performed
by means of Kernel Density Estimation [8]: given the sets
¥y = {b1,b2,...,bp} and ¥y = {f1, f2,..., fm}, respec-
tively containing all background and foreground samples, the

i=1l...n

corresponding pdf s can be approximated as:

P(plvn) =~ > o (p—bi) @)
1=1

P (plyy) = %Zw(p—fi) 3)
=1

where ¢ (x) is a KDE kernel function with the usual proper-
ties of unitary integral, symmetry, zero-mean and with iden-
tity covariance, such as a multivariate Gaussian.

In order to reduce the dimensionality of the model ma-

trices and the frame processing time, the Binned KDE [9] is
used, i.e. the image space ((x, y) coordinates) and the appear-
ance space (v coordinate) are quantized into a relatively small
X xY x V space. Of course, this also requires that the KDE
kernel be discretized; in this work, a vector kernel along the v
dimension is used. Therefore, the model structures we use are
two P, and Py matrices, having size X XY x V, representing
at all times the current values of P (p|iyy) = Py(z,y,v) and
P (plty) = P¢(z,y,v), respectively.
This representation allows to achieve three objectives: first
of all, a spatial dependency relationship between pixels is
introduced, due to KDE; secondly, the foreground model is
managed separately from the background’s, according to the
principles mentioned in Section 1; finally, texture features are
seamlessly integrated to colour information into a unique de-
scription.

2.1. Model Creation

When the algorithm is started, the first IV frames are used to
initialize the background model. For each pixel in each frame,
a (z,y,v) vector is computed — appropriately quantized for
the Binned KDE — and the discrete KDE kernel is applied at
its location, thus increasing the {P, (z,y,v = Av)} a0 n
model cells, where 2n + 1 is the length of the kernel vector,
by the appropriate quantity (e.g. the maximum value in the
center, at Av = 0, and progressively decreasing values as
Awv increases). After this procedure has been completed for
all pixels, the P, matrix is normalized by the total number of
pixels used for the initialization.

At this stage, the background model P is not left empty,
although no foreground pixels have been detected yet, but is
set to Py (z,y,v) = =, for each (x,y,v) cell in the model,
where v is a low value (in this work we used 0.1), account-
ing for the possibility of observing any uniformly distributed
pixel value at any locations. The background update proce-
dure, which will take into account the properties of the ob-
jects which appear in the following frames, is described in
Section 2.3.

2.2. Classification

As new video frames become ready, the current appearance
of the observed scene is analyzed to identify areas which



present (non-background) motion. In particular, the probabil-
ities that each pixel belongs to either the background or the
foreground are computed. Thanks to the discrete KDE repre-
sentation of the models, such computation is straightforward,
since the probability that pixel p = {z,y, v} belongs to the
background or the foreground models are simply P, (z,y,v)
and Py (z,y, v), respectively.

Then, a candidate motion binary map M (z,y) is built
where each pixel is classified according to the log-likelihood
ratio:
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where p is the pixel vector at location (z,y); 0’s and 1’s in
the output motion map represent background and foreground
pixels in the current video frame. However, at this stage ob-
ject contours may not not be perfectly identified and noisy
spots are present in the motion map; for these reasons, a post-
processing step is required. This step aims at verifying that
the detected regions satisfy certain empirical requirements of
real-world objects, e.g. minimum size and spatial coherency.
In our work we use the MAP-MRF approach described in
[6] to process the log-likelihood ratio map, and compute a
final foreground map by removing mis-detections, filling and
smoothing contours, while preserving object boundaries.

2.3. Model Update

After pixel classification has been completed, it is necessary
to update the background and foreground models in view of
the current image data.

2.3.1. Background update

The background update procedure consists in integrating the
current frame’s classification results into the KDE estimation,
namely the P (p|vy) = Py (2, y,v) function, with v, repre-
senting the current background KDE support points. In or-
der to take into account the possibility that new objects ap-
pear in the scene (or that background pixels are misclassi-
fied), we update the background model with all pixels in the
current image. We call this set ¢, curr. The P (p|¥p.curr) =
Py curr (2,9, v) function is computed from the 1y curr s€t US-
ing KDE estimation, the same way as the background ini-
tial model was computed in Section 2.1. A weighted mean
between the current background model P, (z,y,v) and the
Py curr (x,y, v) distribution computed from the current frame
is applied to compute the new background model:
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2.3.2. Foreground update

The foreground model is recomputed every time from the 1) ¢
set of pixels detected as foreground in the current frame.

As for the background, KDE is applied to estimate the
P; (pleoy) = Py (x,y,v) pdf. Similarly to what was done at
the model initialization step (Section 2.1), a small v constant
value is added to Py (x,y,v) (after which normalization is
performed) to account for the appearance of new objects in
the frame.

3. EXPERIMENTAL RESULTS

The proposed approach was tested using the I2R dataset [10]
which comprises 9 videos, recorded using a static camera, de-
picting a variety of scenes featured by camera motion, dy-
namic textures, and cyclic motion. We then compared our
approach with recent state-of-the-art approaches, in particu-
lar with MoG, the bayesian model proposed by Sheikh et al.
[6], the complex foreground model [10] , SILTP [4] and the
model described by Narayana et al. in [11]. The ground truth
on the standard datasets was available with the datasets them-
selves and consisted of 20 frames manually labeled for each
video sequence. The results were measured in the terms of
F-Measure defined as:
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where T'P, F'P and F'N are, respectively, true foreground
pixels, false positives and false negatives. The final F' score is
averaged between all the ground truth frames. We set the al-
gorithms’ parameters as follows: 7' =5, w = 7and X = 24,
Y = 36, V = 100. However, an adaptive mechanism has
been also adopted to change the parameters according to the
likelihood masks and image regions. This was justified by the
fact that, whereas, for uniform backgrounds (e.g. the street
or the river’s water) the number of bins of the model can be
kept low , in case of complex and dynamic backgrounds (e.g.
the trees or algae) this number must be sensibly higher, in or-
der to increase the cutoff frequency of the model given the
high frequencies in these regions. Table 1 shows the achieved
F-measures compared with some state of the art methods. Al-
though in some cases our algorithm performs slightly worse
than other approaches, on average it outperforms the state of
the approaches and its performance are more stable (lower
standard deviation) across the different scenes.

To test the effectiveness of the approach in detecting
fish in extremely complex and dynamic underwater scenes,
we used four videos 320x240 with 5 fps taken from the
Fish4Knowledge repository. Fig. 1 depicts the analyzed
scenes with Videol showing scenes with strong periodic
background movements, Video2 complex background and
dynamic textures, Video3 changes of luminosity and Video4
low contrasted scenes.

The ground truth was hand-labeled by using the tool
proposed in [12]. Benchmark comparisons are provided for



Video MoG  Complex Foreground [10]  Sheikh’s method [6] SILTP [4] Narayana’s method [11]  Our Method
AirportHall 57.86 50.18 59.21 68.02 71.28 73.43
Bootstrap 54.07 60.46 39.23 72.90 76.89 77.23
Curtain 50.53 56.08 59.74 92.40 94.07 91.18
Escalator 36.64 32.95 44.57 68.66 49.43 67.49
Fountain 77.85 56.49 57.31 85.04 85.97 88.12
ShoppingMall  66.95 67.84 71.24 79.65 83.03 75.67
Lobby 68.42 20.35 47.36 79.21 60.82 73.15
Trees 55.37 75.40 62.41 67.83 87.85 85.62
WaterSurface  63.52 63.66 84.66 83.15 92.61 89.71
Average 59.02 53.71 58.41 77.42 77.99 80.17

Table 1. F-Measure for different methods with the I2R datasets.
Video mMoG  Intrinsic Model ~ ViBe  Our Method

Video 1 75.68 35.60 85.81 78.56

Video 2 60.93 54.48 65.33 71.12

Video 3 71.98 78.10 78.78 82.15

Video 4 81.09 82.98 62.68 80.21

Average 72.42 62.79 73.15 78.01

(b) Video2

TR

(c) Video3 (d) Video4
Fig. 1. Shots from the set of four videos used to evaluate the
proposed method.

methods previously applied successfully to the same under-
water domain [13]: a modified version of MoG (mMoQG),
Intrinsic Model, ViBe and Sheik’s method (for which the
code was available online). The results are reported in Ta-
ble 2. Also on underwater video sequences, our approach
outperforms the existing approaches.

The results showed that modeling background and fore-
ground by covariance matrices of color and texture features
outperforms the existing approaches and is able to identify
objects in extreme conditions that are very unlike to happen
in scenes involving people or other object (for instance the
algae movements is not comparable to tree movements given
the morphology of the algae and the strong marine currents).

4. CONCLUSIONS

Although being tackled for decades now, the problem of
identifying moving objects in a video sequence is still open
to debate, especially in non-urban environments, where the

Table 2. F-Measure for different methods with the un-
derwater video sequences.

scene conditions cannot be controlled, the targets’ appearance
may be harder to distinguish than humans’ and is subject to
camouflage, and the background presents strong activity and
variability. In this work we propose an object detection algo-
rithm which aims at improving the accuracy of this task in the
above-mentioned conditions, with a specific reference to the
underwater environment. Our method has been devised based
on three ideas: firstly, as assessed in the recent literature, the
background and the foreground models have to be explicitly
separated; this helps to detect a moving object even when
it moves over a background with similar visual appearance
as the target, since the foreground model would be able to
describe it better than the background one. Secondly, there
are cases when colour features alone do not allow to fully
discriminate between background and foreground pixels; for
this reason, texture features have been integrated. Given the
intrinsic differences between these two kinds of features, a
covariance-based model has been adopted to merge the two
types of information, providing as a collateral effect a rep-
resentation which incorporates a structural description of a
pixel’s neighbourhood. Thirdly, in order to enforce further
the dependency between pixels in the same region, a joint
domain-range model based on Kernel Density Estimation and
a post-processing MAP-MRF framework have been used.
The results we presented show that the union of the above-
mentioned techniques yields excellent results in a harsh and
problematic environment as the submarine one.
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