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Abstract

This project aims firstly to segment fish components from fish images captured by

underwater camera in Taiwan. A tail segmentation algorithm was developed which

used curvatures of boundary points to find a set of candidate positions of tail joint.

The algorithm firstly located one tail tip and iteratively searched through the candidate

locations to find the other tail tip and then the joints between tail and fish body. A

backup tail segmentation was also implemented which tracked the sudden changes

in the row length of each column and took the send the sudden change as the tail

segmentation column.

For each segmented tail, it was rescaled, rotated and transferred into the common

coordinate system. Principal components analysis was used to reduce the dimension-

ality from 900 to 10. These 10 principal component features along with other 9 image

moment features were combined as the feature set. In order to improve the classifi-

cation accuracy and use less features, sequential forward selection was implemented

to select the best set of features. After all these procedures, 12 features were selected

and used to represent tails. An overall tail classes classification accuracy of 73.7% was

achieved by using a Naive Bayes classifier.
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Chapter 1

Introduction

1.1 Motivation

The study of marine ecosystems is becoming more and more important for under-

standing the underwater environments. Although human beings have been studying

and benefiting from the rivers, lakes, oceans for thousands of years. Unlike other parts

of the world, the underwater world is still more than a mystery to us. Certainly there

are lots of stories about mysterious lives living somewhere under the water, For ex-

ample the famous ′monster′ Nessie in Loch Ness. Every now and then, the news of

unknown species discovered in the water could be heard. Nobody knows how many

species there are under the water, and how big the population is. Thus the study of

marine ecosystem could help people in monitoring the underwater world, estimating

the population and species, following their movements.

Studies nowadays are always based on videos and images captured by underwater

cameras. However the amount of information is a very headache problem. The infor-

mation is too much for human experts to process, people will easily get overwhelmed

by viewing that amount of videos and images. And it is not a also not a sensible which

wastes way too much time and resources. The development of computer programs that

can reduce the workload of people become essential. It’s better to have computers work

on those tedious parts, such as segmenting fish components, tracking fish movement,

and have human experts work on more high-level works.

This thesis develops the algorithms of segmenting fish components from detected

fish images, investigates the possible methods of clustering fish components, such as

the tail and develop classifiers that can discriminate different fish tail shapes.
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Chapter 1. Introduction 2

1.2 System Overview

The Fish4Knowledge project aims to build a platform that could coordinate computer

vision, semantic web, database management and query and workflow techniques, in

order to facilitate non-programming scientists working on their studies. The project

investigates methods for capture, storage, analysis and query of multiple video streams

of undersea environment video, so that useful information could be efficient extracted

and presented to the scientists. Below is the logo of the Fish4Knowledge project:

Figure 1.1: Fish4Knowledge Logo

At the moment, there are 10 embedded video cameras set undersea in Taiwan ob-

serving and recording the underwater environment. Video data captured by these cam-

eras are used as source data in the project. However for each camera, 20 gigabytes

video data are generated per hour and with 12+ hours of useful daylight 100 terabytes

of data are generated each year. The amount of data is too massive to be processed

efficiently. The project investigates methods for extracting useful information from

videos, storing information in an efficient and meaningful way, so as to build a flexible

architecture for data acquisition and analysis.

The project aims to research on the following objectives:

• Detecting targets in noisy environments.

• Characterising interactions between the targets.

• Recognising fish species by integrating multiple perspectively distorted views.

• Exploiting ontologies to interpret user queries.

• Exploiting ontologies to convert queries into workflow sequences.

• Storing and accessing massive amounts of data in a timely manner.

• Integration of the research in a publically usable web tool.

• Creation of a fish database suitable for behavioural and environmental studies.
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• Training of staff in cross-disciplinary methods

1.3 Research Objectives

The project aims to explore and achieve three main objectives, each of which represents

a different prospective of the problem. And step by step, they build on each other.

Below are the objectives of this project:

• locating and extract fish component

• representing fish component efficiently

• classifying fish component using selected properties

Firstly, this project plans to segment fish components from extracted fish images.

Fish is divided into four components, namely head, tail, upper body with dorsal fin and

lower body with ventral fin. In this project, all research are concentrated on tail part.

Secondly, the project aims to find an efficient way to represent shapes of compo-

nents other than using all pixels. Common features for each component are planned

to be found, so that later a fish could be represented as a combination of different

component features.

Lastly, two types of classification problems are to dealt with. The first problem is

the fish component classes classification which classify fish component into different

component classes. The second problem is to classify species of fish using component

features.
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1.4 Thesis Overview

The thesis is developed into five chapters, each of which focuses on one different aspect

of the project. The thesis states the various algorithms and techniques used in research,

evaluates the performance and provides possible future work.

Chapter 2 introduces the relevant researches and techniques that have been done

previously and briefly discusses the limitations in their researches and their differences

between this project. The data used in this project is also discussed and presented in

this chapter.

Chapter 3 presents the image processing techniques and algorithms used in the

fish component segmentation stage. The algorithms are mainly focused on tail seg-

mentation.

Chapter 4 illustrates the features used to represent fish components and discusses

the methods for feature selection. The classifier is also discussed in this chapter.

Chapter 5 focus on the evaluation all previous algorithms. It starts with evaluating

the performance of component segmentation. Then the classification results of fish

component are also examined. Future work and conclusion is also discussed in this

chapter.



Chapter 2

Background

This chapter introduces the relevant researches and techniques that have been done

previously. The limitations in their researches and differences between this project

are also briefly discussed. Previous work that related to the Fish4Knowledge is firstly

introduced. Then followed by other work about fish classification and component seg-

mentation. Data used in this project is also discussed and presented in this chapter.

2.1 Literature Review

2.1.1 MSc Project of Rory McGrath[9]

In this MSc project research, numbers of properties were explored to represent fish

images and feature selection procedures were applied in order to achieve a good clas-

sification results. The data used in this project was a set of fish tracking video, which

consisted of the movements of 4 fish species. Other than the tracking video, the coor-

dinates of detected fish and binary masks of detected fish were also provided. Ground

truth information of fish species was manually labelled.

After adjusting all fish into the common orientation, different feature properties

were generated. Colour features were extracted using histograms which represented

the general colour information of fish. Texture features were co-occurrence matrices

of each two different colour channels. Shape features were extracted using Fourier

boundary descriptors and complex moments. Altogether, a total of 2242 features were

extracted for each fish image.

A sequential forward feature selection method was then used to select a small set of

features in order to achieve a better classification result and a robust fish representation.

5
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K-Nearest Neighbour was used for both feature selection and fish species classification.

At last an overall accuracy of 70.6% was achieved.

This research produced relatively good results, although this could highly relate to

the difference in colour between different species and also there were only 4 species.

In general the research explored a set of features that could be used to represent fish

and algorithms.

2.1.2 R. Larsen et al[8]

The research in this project was conducted on the fish species classification. Both shape

features and texture features were used for the classification, which were derived from

an active appearance model[3]. Principle Component Analysis[1] was then applied to

these two features sets which were then weighted by their variances. Predictions were

made by comparing principal component scores with a pairwise Fisher discriminate

analysis.

The data set used in this paper consisted of 20 cod, 58 haddock, and 30 whiting.

Altogether there were only 108 fish. The landmarks used in active appearance model

were manually annotated, which included fish eye, spine and general boundary. By

training on these annotated fish images, active appearance model would be enable

to locate landmarks automatically for new fish. The overall classification accuracy

achieved in this project was 76%.

One of the limitations of this project was that fish images were taken on dead

fish by a standard colour CCD camera under a standardized white light illumination.

The environment was fully under control, which could not be generalized to images

captured by real-time marine monitors.

Another limitation was that the landmarks of fish in the training set were manually

annotated. So the variations of the model was highly constrained by the training im-

ages, it was unable to generalize well to unknown fish. Besides, the data used in this

project was quite small, so the result was not very reliable.

2.1.3 C. Spampinato et al[16]

In this paper research was carried on fish classification and fish movement tracking.

For the classification task, both texture features and shape features were used. Tex-

ture features included statistical moments of the gray-level histogram, spatial Gabor

filtering and properties of the co-occurrence matrix. Shape Features were extracted
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by using the Curvature Scale Space transform and histogram of Fourier descriptor of

boundaries. Moreover, An affine transformation was applied so that fish in 3D could

be represented by multiple views. PCA was later used to reduce the dimensionality of

feature sets.

The dataset used in this paper contained 320 images of 10 species. For each species,

14 fish images were acquired from underwater cameras in Taiwan and 18 images ob-

tained by affine transformation[10]. Besides, another test set contained 100 images of

10 species were also used for evaluation. An overall classification accuracy of 92%

was later achieved.

The research explored extracting both texture features and shape features to rep-

resent fish image, and achieve a very good classification result. Using affine images

to describe arbitrary views in video sequence was brilliant idea. However, using more

affine images than original images seems inappropriate. It is better to have more origi-

nal images to capture variations in the data set instead of using too many affine images.

2.1.4 T. Cootes et al[4]

In this paper, the idea of the famous Active Shape Model was first introduced. The

models started with labelling the training set images with a specified number of points.

Then points of training samples were rescaled, rotated and transferred into a com-

mon coordinate system so that a point distribution model was created. A multivariate

Gaussian distribution was used to model intensity changes along the marked points.

Principal component analysis was then applied to the point distribution model in order

to generate a more efficient representation.

For a new unlabelled image, the Active Shape Model iteratively searched through

candidate locations by the tuning the parameters of principal components. Local

searches were proposed by the Gaussian distribution. Different resolutions were also

considered by smoothing and sub-sampling.

Several examples of Active Shape Model were also presented, which included bot-

tle shape modelling, hand shape modelling and heart chamber modelling. The per-

formances of modelling and automatic localising were very impressive. However, all

images were in the similar conditions where model shapes and intensity differences

between background and foreground were almost identical. In comparison, there are

thousands of 2-D fish images captured while swimming, the variations of fish shapes

are much difficult to model. Besides, different species usually have much distinct con-
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tours.

2.1.5 S. Sclaroff et al[15]

In this paper, research in object deformable shape detection were carried out. The

object segmentation was achieved by model-based region grouping. At first a tem-

ple model was build which could be deformed into different shapes by tuning shape

parameters. Then for a new colour image, the standard region-merging algorithm was

applied which produced a raw segmentation result. An edge map was computed for the

image which were later used constrains for region merging. Different region grouping

hypotheses were tested by fitting the template model to the region. Iteratively various

alignment and deformation parameters were tuned in order to match the region. At last

a set of best region grouping hypotheses were used along with the raw segmentation

result to generate the final segmentation result.

A set of segmentation examples were also presented in the paper, which all achieved

favourable results. However the problem of this system is the computational complex-

ity. The hypotheses testing takes too much computational effort in order to find the

optimal region grouping hypothesis.

2.2 Data

The image data given for this project are based on the outcome of previous work on

the Fish4Knowledge project. The image data are basically fish extracted from video

sequences by [12] and manually labelled fish species. There are 6874 RGB fish images

of 15 species in the data set. Below are some examples of RGB images:

Figure 2.1: Examples of fish images

The fish images have been pre-processed so that the positions of fish are standard-

ized. Fish are always at the centre of images and are placed horizontally left to right.
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Other than the RGB images, the segmented binary fish images are also provided. And

below are the corresponding binary fish images:

Figure 2.2: Examples of binary images

Because of so many uncertainties of these fish images, such as the variation of

lighting condition, body movements while swimming, background (open sea or over-

lap with other fish), the binary images segmentation results are generally good but not

perfect. As could be seen from above images, the fish bodies are dilated, sometimes

contain parts of other fish and more importantly the details of fish tails are lost during

the segmentation procedure.

Moreover, fish in this project are supposed to be 2-D images and are best obtained

when fish are parallel to the camera. However, due to the abundance of fish images,

this is not always the case. Below are the comparison of ideal fish images and the

unhelpful fish images:

(a) Ideal Images (b) Unhelpful Fish

Figure 2.3: Comparison of Ideal and Unhelpful Fish Images

At the moment, a set of useful fish images are manually selected from the dataset.

Ideally a machine learning classifier should be trained and applied to select images

when tracking the movement of fish. All the following segmentation and classification

procedures are processed on this selected dataset, which contains 4945 fish images of
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15 species. Among all 15 species, one species takes about half of the whole popula-

tion. The top several species almost dominate the whole populations,which shows the

dataset is quite unbalanced. In order to achieve a reliable classification performance,

additional attention is paid when selecting the training and test set.
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2.3 Summary

In this chapter, previous researches and approaches about fish classification, deformable

object segmentation and representation were discussed and summarized. Although

there is no previous research done in the fish component segmentation so far, these

previous researches have been very inspiring.

Data used in this project was also illustrated along with the limitations. The main

characteristic of fish images in this project is the low resolution compared with other

researches, which makes the project very special. Because small number changes in

pixel values would not make much difference in high−resolution images, but that could

affect a lot in low−resolution images.



Chapter 3

Fish Component Segmentation

This chapter deals with the image processing techniques and algorithms used in the

fish component segmentation stage. The algorithms are mainly focused on tail seg-

mentation.

3.1 Component Segmentation

As discussed before, ideally after extracting the body contour, the fish should be seg-

mented into 4 parts, namely head, tail, upper body with dorsal fin and lower body with

ventral fin. Below is an example of the ideal fish component segmentation.

Figure 3.1: Example of component segmentation

3.1.1 Fish Boundary Extraction

The first step of component segmentation is the boundary extraction, which extracts

and smooths the contour of the fish and make it ready to compute curvatures[11] along

the fish contour.

12
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3.1.2 Boundary Tracking

After extracting the raw boundary of fish, a boundary tracking algorithm is then applied

in order to achieve a smoothed and clear boundary.

The main idea of the boundary tracking algorithm is quite simple and clear. The

tracking algorithm firstly computes the middle column of the raw fish contour and then

starts the tracking with the upper boundary point in that column. Below is an example

to illustrate the boundary tracking.

Figure 3.2: Boundary Tracking Algorithm

The red point in the image is the centroid of the raw boundary points, the blue line

shows the column of the centroid and the green cross above the centroid is the starting

point of the tracking algorithm. The algorithm continues tracking the boundary point

anti-clockwise.

The next visited point is the nearest point within a specified gap size and the point

between the gap is also filled. If there is no point within the gap size in the anti-

clockwise direction, then it continues tracking from the start point in the clockwise

direction. If there is no next visited point in both directions, then the algorithm stops

the current curve tracking and starts another tracking from a random point that has not

been visited. The tracking algorithm stops when all raw boundary points are visited,

so a list of tracked curves is found.

If the endpoint of a curve is nearly connected to another curve within a specified

distance, the gap is filled and curves are connected. Also a threshold is used to remove

curves that are very short. In the end, the tracked boundary is smoother than the raw

boundary and has no gaps. Below is the comparison between these two contours,

where the black curve is the raw boundary and the red curve is the smoothed boundary.
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Figure 3.3: Raw Contour(Black) and Smoothed Contour(Red)

(a) Raw Contour (b) Smoothed Contour

Figure 3.4: Raw Boundary VS Smoothed Boundary

3.1.3 Curvature Calculation

After retrieving the smoothed fish contour, the next step is to compute the curvature

of each point along the boundary. The reason why computing curvatures of boundary

pixels is to find the corners of the fish contour. By doing that, important locations, such

as tail tips, the joints points of tail and body are supposed to be located.

The equation for computing the curvature of point u = {x,y} is:

k(u) =
x′y′′− x′′y′

(x′2 + y′2)
3
2

(3.1)

where x′ and y′ represent the first derivative of x and y, x′′ and y′′ denote the second

derivative of x and y.
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However, curvatures computed boundary points are always very sensitive to local

corners and the values can be very extreme. So the logarithm function is used to

normalize curvatures:

knormalized =

{
log(k) if k ≥ 1

− log(2− k) if k < 1
(3.2)

For a fish image as below:

Figure 3.5: A Sample Fish Image

The curvatures of boundary points can be plotted as:

Figure 3.6: Curvature Plot of a Fish Sample

As shown in the above image, the curvatures of contour points change quickly

along the fish boundary. And those extreme points in the peaks are assumed to be the

important corner points which are candidate locations for tail tips and the joints of tail

and body. Then the next task is to locate these extreme points.
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The search algorithm is quite simple which is a linear search method. It starts

with a positive flag indicating extreme point with positive curvature is supposed to be

found. Then it loops through the curve points if the curvature keeps increasing. When

the curvature of a point drops and the change of curvature exceeds the threshold value,

that point is regarded as a positive extreme point and the flag changes into negative.

It continues looping through the curve points, but starts looking for an increase in

curvature. When the curvature starts increasing, a negative extreme point is found and

the flag changes back to positive. The algorithm keeps repeating this procedure until

all points in the boundary have been visited.

After running the algorithm described above, all extreme points could be located

as follows:

Figure 3.7: Extreme Curvature Points of a Fish Sample

The red cross(+) of above image represents the positive extreme points, and the

green star(*) shows the negative extreme points. As could be seen, some local extrema

with small changes in curvature are ignored. If we plot these extreme points back to

the fish contour, then:
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Figure 3.8: Extreme Curvature Points in the Fish Contour

(a) Positive Extrema (b) Negative Extrema

Figure 3.9: Positive Extrema VS Negative Extrema

3.1.4 Tail Segmentation

The tail segmentation is based on the outcome of previous steps. Previously the contour

of fish is smoothed and extracted from the binary fish image. Then the curvature of

each point on the fish boundary is calculated. The extreme corner points have also

been located when looping through the curvatures. Then these points with the largest

curvatures are marked as extreme points, in other words they are candidate points of

the joint points of tail and body.

Below are some examples of fish curves extracted by the tracking algorithm along

with extreme curvature points. The fish contour is in blue and the extreme points are
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marked as green stars(*) and red crosses(+). Green stars(*) represent extreme points on

convex curves with negative curvatures, while red crosses(+) represent extreme points

on concave curves with positive curvatures.

Figure 3.10: Fish Contours and Extreme Points for Different Samples

Observing the above images, joint points are always the green stars(*) and tail

tips are always the red crosses(+). Then the locations of these extrema, especially the

negative extreme points, can be regard as the candidate location of joints.

After locating these candidate points, finding the joint points is closer. But still a

lot of work needs to be done. Ideally joint points are supposed to be the two extreme

points on convex curves which are green stars(*) shown in the above images. However,
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due to the variation of species and difference in each fish, directly locating joint points

by looping through the negative extreme points is not possible. Because the rankings

of these joint points by absolute curvature value vary by fish species, directly using

this information is not very reliable. So a different approach has to be adopted.

From the previous chapter, fish are assumed to be horizontally located from tail

to head. So the tail is always on the left under this assumption, then locating the tips

of tail fins is easier and more reliable. The tail segmentation algorithm starts from

locating tip points and then searches through the joint points based on these located

tail tips. At first it takes the leftmost positive extreme point as the one of the two tips.

The algorithm continues searching through the positive extreme points from left to

right, which aims to locate the other tip point.

By observation, it can be concluded that tail tips usually have the top positive cur-

vatures. So many of the candidate locations could be threshed out by ranking the

curvatures. And the closest qualified positive extreme point which also satisfies the

minimum and maximum distance criteria is regarded as the other tail tip. And by

comparing the row values of these two points, the upper tip and lower tip could be

distinguished.

The next step then is to locate the joints, and this time only the top m negative(

green *) candidate points are examined. The assumption made in this step is that the

joints are supposed to be the negative extrema which are the closest to the tail tips.

The algorithm starts searching each joint from either tip separately. From the upper

tip, it searches in a clockwise direction and picks the closest one. From the lower tip,

it searches in an anti-clockwise direction. The two that are closest to the tip points are

selected as the joint points.

Figure 3.11: Joints Search Example
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A constraint of distance between these two joint points is added, so that the joints

should not be too far away from each other. If joints do not satisfy the constraint and

the algorithm fails to locate the joint points, then a backup segmentation procedure is

used.

This backup algorithm is straightforward and less accurate, but it works alright

to be a backup. It assumes that fish are located horizontally, and joint points are at

the same column. The algorithm sums up the binary fish image by column and then

calculates the first derivative of column sums. Below is the relation of column number

and column sum for a sample fish:

(a) Sample Fish Image

(b) Column Sum Plot (c) First Derivative of Column Sums

Figure 3.12: An Example of Backup Tail Segmentation

Ideally joint points should have a strong response to the change of column sum,

because the width of tail is always smaller than that of body. So by taking the deviation

and ignoring the small changes, the joint points could be located. The extreme point

locating procedure works very similar to the one used in previous tail segmentation

algorithm which also eliminates the impact of small changes. After peak points are

located, the algorithm treats the second peak value of column sums(from left to right)

as the segmentation column. Then tail is segmented vertically by that column.
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After the previous stage, either two joint points are located or a vertical line is

retrieved. In either way, the segmentation line could be represented as:

a1r+a2c+a3 = 0 (3.3)

or

c = a4 (3.4)

So for every pixel in the binary fish image, if the pixel lies in or on the left of the

line, then it is preserved in the segmented tail image. Otherwise it is removed. This

procedure might end up with several unconnected part. In order to fix this problem,

one more step is to fill in small gap and eliminate small regions.

Below are examples of tail segmentation using two different algorithms:

Figure 3.13: Example of Tail Segmentation

The green curve in the right image is the smoothed fish curve after curve generat-

ing. The red are joint points located by the tail segmentation algorithm. And the blue

line is border line for segmentation. The image on the left is the segmentation result.

Figure 3.14: Example of Backup Tail Segmentation

The image on the left is the segmentation result. In the right image, the red vertical

line represents the column used to segment the tail.
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3.2 Summary

In this chapter the algorithms and techniques used in fish component segmentation

were explained. At first the boundary tracking algorithm used to extract a smoothed

fish boundary was introduced. Then the method to compute the curvature of each

boundary point of smoothed fish contour was discussed. After that two tail segmenta-

tion algorithms were illustrated, one of which was the principal method and the other

as backup algorithm.

After all these procedures, fish tails were segmented which would then used as the

dataset for the classification problems. The result and evaluation of tail segmentation

are reported and discussed in Chapter 5.1.



Chapter 4

Classification

This chapter illustrates the features used to represent fish components, discusses the

methods for feature selection and explains the classification procedure.

Two types of classification are considered in this project. The first classification

problem is to classify features into different shape classes(see figures 4.1-4.3), which

is based on the component categorizing results. It focuses on the classification of each

fish component. The inputs are the features of each component, such as PCA projection

and other properties. The outputs are the shape categories of each component.

The second classification problem is to distinguish different species of fish based on

component features. This time instead of classifying the shapes of each component, the

species of fish are trained and classified. For the fish species classification problem, the

input set is the combinations of PCA projections and other features of fish component

and the output is the species of fish.

The dataset for these classification problems consists of 15 fish species and each

species has 20 fish images. This dataset is used for both the principle component

analysis and feature selection.

4.1 Naive Bayes

A Naive Bayes classifier[17][14] is used to learn and distinguish between fish species

and component classes. The Naive Bayes classifier is a simple probabilistic model

based on Bayes’ theorem which assumes that attributes are conditionally independent

of each other. Bayes’ theorem:

P(C|A) = P(A|C)P(C)

P(A)
=

P(A|C)P(C)

∑
c

P(A|C)P(C)
(4.1)

23
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If A = {a1,a2,a3, ..,an} denotes an instance of a property, bi denotes each value of ai

and C denotes the class label, then the Naive Bayes classifier could be represented as

follows:

P(C = c j|A) =
P(a1,a2, ...an|C = c j)P(C = c j)

P(A)
=

∏
i

P(ai = bi|C = c j)P(C = c j)

P(A)
(4.2)

where P(C = c j|A) represents the probability of instance A belonging to class c j,

P(C = c j) is the prior probability of class c j and P(ai = bi|C = c j) is the probabil-

ity of attribute ai belonging to c j in the training set with value bi. When taking the

logarithm, the probabilistic model of Naive Bayes can be written as:

logP(C = c j|A) = log(
∏
i

P(ai = bi|C = c j)P(C = c j)

P(A)
) (4.3)

= ∑
i
(logP(ai = bi|C = c j))+ logP(C = c j)− logP(A) (4.4)

The last term logP(A) is identical for the same instance and could be eliminated when

comparing the posterior.

In general, the Gaussian distribution is used here to model the probability distri-

bution of continuous data. Using the maximum likelihood solution, parameters of the

Gaussian distribution could be estimated from the training data. And in this project, the

Gaussian distribution is another assumption for Naive Bayes. The univariate Gaussian

distribution is:

N(x|µ,σ2) =
1

(2πσ2)1/2 exp{− 1
2σ2 (x−µ)2} (4.5)

where µ is mean of the distribution and σ is the standard deviation, which could be

both estimated from the training set.

The disadvantage of Naive Bayes is the conditional independence assumption which

assumes that every attribute is independent from each other when conditioning on the

class label. The conditional independence assumption is very weak and not true in

most cases, but surprisingly the Naive Bayes classifier usually achieves a relatively

good result and is quite popular in many research fields.

One key advantage of Naive Bayes classifier is that it does not need to estimate the

full covariance matrix and only standard deviations of each class if using the Gaussian

distribution. In another sense, the Naive Bayes classifier requires a small amount of

training data in order to estimate the parameters. Unlike estimating covariance matrix

which takes at least N instances to estimate an N feature covariance matrix, a Naive

Bayes classifier needs as few as 2 samples to estimate the parameters.
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Another advantage of the Naive Bayes is its training speed which is very promising

compared with other popular machine learning classifiers. In this project there are 15

species in the dataset, and there will be hundreds of species in the real underwater

environment. While using a binary classifier, such as a Support Vector Machine and

Artificial Neutral Network, would take much more time than the Naive Bayes classifier.

As this project is more about researching on features used to represent fish, rather

than the classification of fish species, a Naive Bayes classifier should be capable of

achieving the goal.

4.2 Tail Classification

Tail classification is based on the segmentation results. For each fish image, the tail is

located and extracted from the image. And the feature properties are calculated and

selected to represent each tail. Two types of classifications are applied based on these

selected features after that. One is classification of the fish species, which is a 15-

class classification problem. The other is the classification of the tail shapes, which

categorizes the similar tail shapes as the same class.

Figure 4.1: Fish Species Classification

Figure 4.2: Component Type Classification

4.2.1 Tail Classes

After observing the fish images in the dataset, fish tails are categorised into 3 classes

based on their shapes. The categorization is not derived from a biological point of

view, but it makes sense. Still it is better to have some professional biologists work on
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the clustering of tail shapes, which would be more systematic and handy when dealing

with hundreds more species.

These tail categories are later used as the class labels in the tail shape classification

problem. Below are some examples of the RGB fish images and their extracted tail

images.

Figure 4.3: Examples of Fish Tail Type 1

Above are some examples of type 1 tail which consists 5 out of total 15 species.

This type of tail has a forked shape and can be symmetrically split from the middle

point. There are two obvious tips at the end of the tail. Regardless the detailed differ-

ences between these species, their tails all have the ’v’ shape.
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Figure 4.4: Examples of Fish Tail Type 2

Above are some examples of type 2 tail. This type of tail has no obvious tips at the

end and has a triangular shape. In the dataset type 2 consists 9 out of total 15 species.

Compared with type 1 shape and type 3 shape, type 2 shape is neither forked shape nor

looks like stick with no caudal fin. That is the most logical concern to categorize fish

species into type 2.

Figure 4.5: Examples of Fish Tail Type 3
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Above are some examples of type 3 tail. As could be seen, this type of tail looks

like a stick and there is no obvious caudal fin at the end of the tail. And this type of tail

is relatively rare in the current dataset, only 1 species belongs to this category.

4.2.2 Features

4.2.2.1 Tail Image Transformation

After having the fish tail segmented from the fish image, features used to represent

each tail are generated. But before generating any properties, another essential step is

applied which is aligning each segmented tail image into the same coordinate system.

Below is the example of the common tail coordinate system:

Figure 4.6: The Common Coordinate System of Tail

As shown in the above example, all tail images are rescaled, rotated and translated

into the 30× 30 matrix, so that the differences caused by scale, rotation can be ad-

justed. For each point X in the original image, the new position Y in the common tail

coordinate system can be calculated as:

Y = s∗ (R∗X +T ) (4.6)

where s is the scale factor, T = (rt ,ct)
′ is the translation vector and R is the rotation

matrix which can be written as:

R =

[
cosθ −sinθ

sinθ cosθ

]

In order to standardize the reshaping procedure, the two joint points calculated in

the segmentation step are used. These two joint points are always placed at (10,30)
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and (20,30) in the new coordinate system. If A = (r1,c1) and B = (r2,c2) represents

the position these two points in the original image, the scale factor s can be calculated

easily as:

s =
10
|AB|

where |AB| is the length of vector ~AB, and if we denote the unit vector of ~AB as (u,v),

then the rotation matrix could be calculated as the solution of the following equation:[
cosθ −sinθ

sinθ cosθ

]
×

[
u

v

]
=

[
1

0

]
And the solution is : [

cosθ

sinθ

]
=

[
u

v2+u2

−v
v2+u2

]
=

[
u

−v

]
(4.7)

Then translation vector could be calculated as:

T =
1
s
×

[
10

30

]
−R×A =

1
s
×

[
10

30

]
−

[
cosθ −sinθ

sinθ cosθ

]
×

[
r1

c1

]
(4.8)

Below are some examples of the tail images after transformation:

Figure 4.7: Examples of Reshaped Tails

Column one is the RGB colour image; Column two is the binary fish image; Column

three is the fish tail image after segmentation and before transformation; Column four

is the tail image after transforming into the new coordinate system.



Chapter 4. Classification 30

4.2.2.2 Principal Component Analysis

After transforming all tail images into the same coordinate system, all transformed tail

images are 30× 30 matrices. Each tail image now contains 900 attributes, which are

too many for the classification problems. Principal component analysis is applied in

order to reduce the dimensionality. And the reduced feature vector will be then used

as part of the feature properties.

Principal Component Analysis[4][1] is a popular tool for feature selection and fea-

ture reduction, which projects features onto a different space. When using PCA, the

mean image patch will firstly be calculated:

X̄ =
1
N

N

∑
n=1

Xn (4.9)

Then subtract the mean value and calculate the covariance:

S =
1

N−1

N

∑
n=1

(Xn− X̄)(Xn− X̄)T (4.10)

Then the eigenvectors of the covariance, E = [e1,e2, ...,eN]:

Sei = λei (4.11)

New attributes are represented as:

Y = ET (X− X̄) (4.12)

As there are 900 attributes in the transformed tail image, there are then 900 principal

components. In order to reduce the dimensionality, the top M features should be se-

lected instead of using all features. Below is the plot of percentage of variation covered

in the principal components against the number of eigenvectors used:

Figure 4.8: The Plot of Cumulated Variation of Eigenvectors
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Below is the short version which covers the top 80 eigenvectors:

Figure 4.9: The Plot of Cumulated Variation of Top 80 Eigenvectors

Percentage of Variation 65% 75% 80% 85% 90% 92% 95% 98%

Number of Eigenvectors 12 24 35 49 74 88 118 168

Table 4.1: Percentage of Variation Using Different Number of Eigenvectors

The table above shows the explicit numbers of principal components which cover

the corresponding percentage of variations. And in this project, top 10 eigenvectors

are used to reduce the dimensionality. So that after PCA, there are 10 new attributes

left which is much smaller than the original 900 attributes.

4.2.2.3 Image Moments[2]

Other than the 10 attributes selected after principal component analysis, image mo-

ments are also used as feature properties to represent the tail. These moments are ap-

plied to the tail image after transformation. And for an image I, below is the equation

to calculate the raw moment:

Mi j = ∑
x

∑
j

xiy jI(x,y) (4.13)

So that Area could be represented as:

Area = M00 = ∑
x

∑
j

I(x,y) (4.14)
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And the centroid (x̄, ȳ) can be calculated as:

(x̄, ȳ) = (
M10

M00
,
M01

M00
) (4.15)

Then central moments which are also regarded as the translational invariant moments

can be calculated as:

µpq = ∑
x

∑
j
(x− x̄)p(y− ȳ)qI(x,y) (4.16)

Divided by the area, the scale invariant moments can be computed:

si j =
µi j

µ
(1+ i+ j

2 )
00

(4.17)

Altogether there are 19 properties to represent a fish tail:

Properties Number Description

1-10 New features after principal component analysis

11 Area of the tail: Area = M00 = ∑x ∑ j I(x,y)

12 Compactness of the tail: Compactness = perimeter2

4πarea

13 Scale invariant moment s11

14 Scale invariant moment s20

15 Scale invariant moment s02

16 Scale invariant moment s21

17 Scale invariant moment s12

18 Scale invariant moment s30

19 Scale invariant moment s03

Table 4.2: Features Used to Represent Tail
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4.2.3 Feature Selection

After computing the PCA projections and calculating the image moments, all together

there are 19 features. As described above, these features consist of 10 PCA projec-

tions using the top 10 eigenvectors, 7 image moments, 1 area and 1 compactness. In

order to have a relatively good classification performance with less features, feature

selection algorithms are tested and used. In fact, two types of feature selection algo-

rithms are used. One is the sequential forward feature selection and the other is the

information gain. Either of them is used separately to select a subset of features and

the classification performances of these selected features are also compared.

The data set used for both sequential forward selection and information gain consist

of 15 fish species with 20 images for each species. The reason why using fish species

dataset other than component classes dataset for feature selection is because that the

fish species classification problem is more difficult to tackle. As only one set of features

is supposed to represent a fish component, the one derived from the fish species dataset

should be more generalizable than the other.

4.2.3.1 Sequential Forward Feature Selection

Sequential Forward Feature Selection[13][5] is an iterative selection method that starts

with an empty subset and adds one feature into the subset each time. One by one, the

subset of features is selected which aims to achieve the best classification performance.

At each iteration, every feature that has not been included into the subset is trained and

tested along with the selected subset. The feature that achieves the best classification

accuracy is then added to the subset and excluded from the remaining features.

The sequential forward selection is an exhaustive selection algorithm which tests

all combinations of every unselected feature with the selected subset.It is more like a

conceptional idea than a solid algorithm which could derive different versions depend-

ing on the implementation details. As the sequential forward selection highly depends

on training data, different training sets would usually produce different selections. So

in this project, a number of trials of the algorithm are evaluated and the termination

criterion for the sequential forward selection algorithms is when the expected number

of features have been selected.

The reason why using a fixed number of features as the termination criterion in-

stead of choosing a flexible number of features when the performance decreases, is

because that the total number of candidate features is relatively small (only 19 fea-



Chapter 4. Classification 34

tures) and exhaustively try different number of features will no take too much time. By

exhaustively selecting all 19 features, a ranked list of features with their classification

accuracies can be obtained, then it is easier to evaluated these results over a flexible

number of features.

Below is the pseudo code of the sequential forward selection algorithm:

main

generate N train (2/3 data) sets A and test (1/3 data) sets C

for i = 1 : N

train_classifier(A)

evaluate_classifier(C)

end

report max, mean and std dev of classifier

train_classifier(A)

generate M train (1/2 of A) sets T and validation (1/2 of A)

sets V

for i = 1 : M

do forward_selection estimating parameters using T

end

pick best classifier of M

Algorithm 1: Algorithm for Forward Selection

In the implementation, 100 sets of training data and testing data are firstly generated.

For each set of training data, a forward selection procedure is applied, and a set of

selected features is generated.

However, as each time the training set is different, the result of a single selection

result is a little bit different. After 100 runs of the forward selection procedures, 100

set of selected features are generated.
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Below is a figure of the classification results for validation sets. The X axis shows

the number of selected features, and Y axis shows the classification accuracy. The

red crosses connected by blue line are the classification accuracy averaging over 100

validation sets, The black crosses above the blue line are the maximum classification

accuracies, while blue crosses below the blue line are the minimum classification ac-

curacies. The circles between the maxima and minima are the positions of standard

deviation.

Figure 4.10: Classification Performance

The image below is a histogram of the number of features that achieve the best

classification results for the training set. The X axis shows the number of selected

features, and Y axis shows the number of sets that also use the corresponding number

of features.

Figure 4.11: Histogram of Number of Selected Features (Training Sets)
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Another histogram is also generated which shows the number of features that

achieve the best results in the validation set:

Figure 4.12: Histogram of Number of Selected Features (Validation Sets)

Both the two histograms shows that by using 12 features the classifier usually

achieves its best performance. It is very likely that there are about 12 most valuable

features. In order to find out these top 12 features, the first 13 features (in case not to

miss one valuable attribute) of each selection result are examined. The procedure is

very simple which just counts the number of appearances for each attribute and selects

the top 12 features.

Below is a histogram that shows the number of appearance of a specified attribute

in 100 selected feature sets. The X axis shows the index of the corresponding attribute

which could be referred in table 4.2 and the Y axis show the number of appearance:
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Figure 4.13: Attribute and the Number of Appearance in the Feature Sets

The above histogram can also be represented as the following table:

Attribute Index 1 2 3 4 5 6 7 8 9 10

Number of Appearance 93 33 100 94 80 71 88 95 12 22

Attribute Index 11 12 13 14 15 16 17 18 19

Number of Appearance 2 100 48 88 100 100 14 61 99

Table 4.3: Attribute Index and the Number of Appearance in the Feature Sets

Attribute 15, 16, 3 and 12 appear in every selection set and attribute 19, 8, 4 and 1

also have relative large number of appearances in the selection sets.



Chapter 4. Classification 38

A list of attributes sorted by the number of appearance could be represented as:

Number of Appearance 100 100 100 100 99 95 94 93 88 88

Attribute Index 15 16 3 12 19 8 4 1 7 14

Number of Appearance 80 71 61 48 33 22 14 12 2

Attribute Index 5 6 18 13 2 10 17 9 21

Table 4.4: Attribute Index and the Number of Appearance in the Feature Sets

So the 12 features selected by sequential forward selection are:

Attribute Index Attribute Description

15 s02 scale invariant image moment s02

16 s21 scale invariant image moment s21

3 e3 projection using the 3rd eigenvector

12 compactness compactness of the tail

19 s03 scale invariant image moment s03

8 e8 projection using the 8th eigenvector

4 e4 projection using the 4th eigenvector

1 e1 projection using the 1st eigenvector

7 e7 projection using the 7th eigenvector

5 e5 projection using the 5th eigenvector

6 e6 projection using the 6th eigenvector

14 s20 scale invariant image moment s20

Table 4.5: Features Selected by Sequential Forward Selection Algorithm
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4.2.3.2 Information Gain

Information Gain[7] is another very popular method that can be used to select im-

portant attributes from a set of candidate features. The Information Gain is actually

another term for Kullback−Leibler divergence, which is widely used in information

theory and machine learning. A typical example of Information Gain is the decision

tree where it is used to pick an importation node when building the tree. In information

theory, the entropy H of a discrete random variable X with possible values x1, ...,xn and

probability mass function p(X) is represented as:

H(X) =
n

∑
i=1

p(xi) log
1

p(xi)
=−

n

∑
i=1

p(xi) log p(xi) (4.18)

If C denotes all classes and A represents an attribute then Information Gain could

be expressed as:

In f ormationGain(C,A) = H(C)−H(C|A) (4.19)

The expected value of In f ormationGain(C,A) is the mutual information I(C;A) which

is the information gained from learning on the state of attribute A.

The advantage of Information Gain over Forward Selection is that the computa-

tion cost is much lower which does not require the classifier to train and test using

different combinations of features. The only thing it needs is to deal with all kinds of

probabilities and conditional probabilities in the dataset.

However, Information Gain pays too much attention to attributes that could best

separate class labels. Sometimes that could cause problems and select misleading

attributes. If there are a large number of distinct values for an attribute, for example

an attribute for people names which are very distinct from each other, the Information

Gain of that attribute will be very high. But very likely that attribute is not very helpful

for classification.

The Information Gain is actually not implemented in this project, instead Weka is

used to fulfil the Information Gain function and evaluates the selected features with

5-fold cross-validation.

After running the Information Gain on the whole dataset and ranking attributes by

their gain values, below is the table of ranked attributes (the result is achieved by the

Weka implementation):
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Rank Attribute Description

1 e4 projection using the 4th eigenvector

2 s02 scale invariant image moment s02

3 s20 scale invariant image moment s20

4 compactness compactness of the tail

5 s21 scale invariant image moment s21

6 e5 projection using the 5th eigenvector

7 e7 projection using the 7th eigenvector

8 e6 projection using the 6th eigenvector

9 e2 projection using the 2nd eigenvector

10 e3 projection using the 3rd eigenvector

11 e1 projection using the 1st eigenvector

12 s12 scale invariant image moment s12

13 s11 scale invariant image moment s11

14 s03 scale invariant image moment s03

15 s30 scale invariant image moment s30

16 e9 projection using the 9th eigenvector

17 e8 projection using the 8th eigenvector

18 area area of the tail

19 e10 projection using the 10th eigenvector

Table 4.6: Table of Ranked Attributes by Information Gain

N Top Features Classification Accuracy N Top Features Classification Accuracy

1 15.7% 2 26.1%

3 23.7% 4 28.1%

5 29.8% 6 32.1%

7 35.1% 8 35.8%

9 32.1% 10 34.8%

11 34.1% 12 34.1%

13 32.8% 14 33.8%

15 32.8% 16 32.8%

17 32.8% 18 33.8%

Table 4.7: Classification Accuracy Using Top N Features



Chapter 4. Classification 41

Above is a table of classification accuracies using different number of top features

ranked by Information Gain, and the classification accuracies are achieved by 5-fold

cross-validation. The classification accuracy of using the top 8 features achieves the

best performance, which is 35.8%. These features include e4, s02, s20, compactness,

s21, e5, e7 and e6.

When comparing with the 12 features selected by sequential forward selection, a

very interesting finding is that these 8 features are all included by the forward selection

algorithm although their order of importance might be different. The forward selection

algorithm adds another 4 features into the dataset, and achieves a classification result

of 37.5% (the result is also achieved by 5-fold cross-validation using Weka), which is a

little better than the Information Gain. As a result, the 12 features selected by sequen-

tial forward selection is then used for the two classification tasks. The classification

results are discussed in Chapter 5.2.
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4.3 Summary

In this chapter, two types of classification problems for this project were introduced.

The advantages and disadvantages of Naive Bayse were also compared and discussed.

When precessing fish tails, all tail images were rescaled, rotated and transferred

into a new coordinate system of size 30× 30. Principle component analysis and image

moments were then used to generate a set of features. The algorithms and equations

for these computations were also illustrated and discussed.

In order to have a robust represent of fish tail, a sequential forward feature selection

algorithm was developed and used to improve the classification accuracy and use less

features. In comparison, Information Gain was also used to evaluate and select a set of

candidate features.
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Evaluation

This chapter evaluates all results of previous algorithms. It starts with presenting the

results of those algorithms and then evaluates the performance. Performance of com-

ponent segmentation is first evaluated. After that feature selection results and the corre-

sponding classification results are reported and evaluated. This includes the classifica-

tion of fish component categories and the classification of fish species using component

features.

5.1 Segmentation Performance

All segmentation results are evaluated against two sets of the ground truth data, one of

which is produced from annotating component in the RGB fish images and the other is

annotated in binary fish images after fish extraction. As the component segmentation

algorithms are applied to the binary images, the ground truth results generated from

the binary images are used as the actual measurement of performance. In contrast, the

ground truth results generated from RGB images are regarded as the ultimate measure-

ment of performance, because the provided binary masks are not perfectly generated

and sometimes important details are not captured. The reason why having two ground

truth data is to measure the general segmentation performances using bias data and at

the same time compares the results with the perfect segmentation.

However, ground-truth data for segmentation result is not provided and has to be

manually annotated point by point. And there are thousands of fish images, it takes too

much time and effort to annotate all fish images. So a compromising approach is to

randomly select a reasonable amount of images from each species and then manually

annotated each fish component. In this project, 20 fish from each species are randomly

43
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selected and altogether there are 300 fish images. The annotating work is done through

an active shape model tool written in C++ by Dr Tim Cootes1.

5.1.1 Performance Measure

In order to evaluate the segmentation result, a measurement of good segmentation

performance must be defined first. If the segmentation outcome is denoted as S, and

the ground truth as G, then the segmentation accuracy is measured as[6]:

P(S,G) =
|S∩G|
|S∪G|

=
|S∩G|

|S|+ |G|− |S∩G|
(5.1)

where |.| represents the operation of computing the area. |S∩G|measures how well the

part is segmented by calculating how much area of ground-truth structure is detected.

|S∪G| actually performs as a normalizing factor which constrains the segmentation

accuracy to be in [0,1]. So that this measurement is invariant to the size of the area to

be segmented.

For a list of segmentation results, the correctness of segmentation can be justified

by setting up a threshold. If the segmentation accuracy is above the threshold, then

this sample is counted as a correctly segmented result. Otherwise, it is incorrectly seg-

mented. Thus for the list of segmentation accuracies A and threshold t, the percentage

of satisfaction p could be computed as:

p(A, t) =
∑

a∈A
f (a, t)

|A|
(5.2)

where a represents the accuracy of a segmentation result, |A| is the total number of

instances and f is:

f (a, t) =

{
1 if a > t

0 otherwise
(5.3)

The percentage of satisfaction gives an idea about how much portion of segmenta-

tion result in the evaluation set could be regarded as correctly segmented using different

thresholds.

1http://www.isbe.man.ac.uk/ bim/software/am tools doc/index.html
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5.1.2 Ground-truth Tails

As discussed previously, two sets of ground truth data are used to evaluate the com-

ponent segmentation from different perspectives. For the tail segmentation, both the

ground-truth data generated from RGB fish images and that generated from binary fish

images are also used. In order to keep terms short, the ground-truth data generated

from RGB fish images is denoted as RGB ground-truth and binary ground-truth for the

other.

In order to achieve a relatively accurate ground-truth segmentation result and spend

less effort on this time-consuming annotating work, 9 points are used to represent the

annotated tail shape using RGB images for all species. Below is an example of the

model using 9 points:

Figure 5.1: Tail Representation Using 9 Points

In this model, point 0 and point 8 represents the joint points between tail and body

and point 2 and 6 are the tips of the tail fin. Below is an example of the ground truth

value projected onto RGB fish image:

(a) RGB Fish (b) Zoomed Annotated Tail (c) Zoomed Filled Tail

Figure 5.2: Example of Ground-truth Tail Annotated from RGB Images

For the ground truth segmentations generated from binary fish images, the proce-
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dure is much easier where only two joint points are needed as the segmenting points.

A partition line could then be defined by these two points where any pixel to the left

of that is preserved. This procedure is identical to the one used in segmentation stage,

but this time two joints are given.

(a) Joints of Tail and Body (b) Line Defined by Joints (c) Segmented Tail

Figure 5.3: Example of Binary Ground-truth

5.1.3 Segmentation Results

As has discussed above, 20 fish images are randomly picked from each species and

altogether there are 300 fish images. When running the tail segmentation algorithm,

a set of tail images could be retrieved. The images below are some examples of the

random selected fish image and their tail segmentation results.

Figure 5.4: Examples of Tail Segmentation

Images in the first row are RGB fish images, the second row is about binary image

after extraction and the last are the tail segmentation images. The first 4 columns are

samples that have relatively better performance and the last 2 colums are samples with

poor segmentation.
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When evaluating the tail segmentation result using both ground-truth tails, the fol-

lowing percentages of satisfaction under different thresholds can then be computed:

(a) Binary Ground-truth (b) RGB Ground-truth

Figure 5.5: Percentage of Satisfaction vs Threshold

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PoS 94% 89% 84% 78% 73% 63% 50% 24% 3%

Table 5.1: Percentage of Satisfaction (Binary Ground-truth)

Threshold 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

PoS 90% 85% 82% 73% 58% 34% 14% 3% 0%

Table 5.2: Percentage of Satisfaction(RGB Ground-truth)

The evaluation results retrieved by comparing with binary ground-truth tail can be

regarded as the actual performance of tail segmentation algorithm. As the tail segmen-

tation algorithm is actually performed on these binary fish images, the quality of fish

extraction directly effects the performance of the segmentation algorithm.

In contrast, the evaluation results using RGB ground-truth tail are seen as the ulti-

mate measurement of the segmentation algorithm, where limitations resulted from the

fish extraction are not considered. Therefore, by having this kind of comparison, the

gaps between perfect segmentations can also be evaluated.
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5.1.4 Analysis of Tail Segmentation Performance

When viewing from the plots of variate percentages of satisfaction, the tail segmenta-

tion result seems not very promising. While there are several reasons why producing

such a performance. Before analysing the factors behind the scene, a deeper analysis

should be conducted about the performance. Below is a combinations of evaluations

using two different ground-truth tails.

Figure 5.6: Percentage of Satisfaction vs Threshold

The blue line represents the percentages of satisfaction computed using binary

ground-truth tails, while the red line is compared with the RGB ground-truth tails.

X axis is the threshold value used to decide the satisfaction of segmentation, and Y

axis shows the corresponding percentage of satisfaction with different threshold.

As has discussed previously, the percentage of satisfaction is equal to the intersec-

tion area normalized by the union of the two areas. Because of the small resolution

of fish images(usually less than 200 pixels for a tail), a small amount of differences in

pixels could produce quite a big difference in segmentation satisfaction. For example

for a tail image of 200 pixels, if 40 pixels is incorrectly segmented, then the segmen-

tation accuracy drops quickly to 66% from 100%. Although 40-pixel difference is not

very distinguishable for human eyes. When analysing the percentage of satisfaction,

the value 0.7 seems to be a good threshold to measure a good segmentation result. In

this way, small pixel difference could be adjusted.

When using 0.7 as the threshold, 50% of tail images in the evaluation set can be

regarded as correctly segmented with binary ground-truth and 15% correct with RGB

ground-truth tails. The evaluation result derived by binary ground-truth is acceptable
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and much better than that derived by RGB ground-truth. This implies that the segmen-

tation algorithm works OK on the given binary fish images, but there is some distance

compared to the ultimate segmentation.

One point worth to be mentioned is that even when the threshold is set to 0.1,

there still a small portion of tails that are regarded unsuccessfully segmented. This

actually means no matter what the threshold is, the algorithm fails to localize the rough

position of some tails. By looking into details of this problem, two main reasons can

be concluded.

The first reason is that the tail segmentation algorithm is not very generic, which

takes several assumptions about the position and the pose of the fish. For example,

the algorithm assumes that all fish are perfectly aligned left to right, tail to head. And

the contours of fish are clear and detailed. However, comparing with the abundant

fish species and individual image, these assumptions seem to be too constrained and

not generic enough to apply well in most conditions. Here are some examples in the

evaluation set that do not satisfy these assumptions:

(a) Original RGB Fish images

(b) Extracted Binary Fish images

Figure 5.7: Outlier Fish Examples

The above images are not horizontally orientated as the previous assumption, some

of which are almost vertical.

Other than the orientation issue, the second reason is that the extracted binary fish

images are not very accurate. The shape of extracted fish is always dilated and some

details in the tail are lost during the extraction. Below are some examples of bad fish

extraction:
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(a) Original RGB Fish images

(b) Extracted Binary Fish images

Figure 5.8: Bad Fish Extraction Examples

So when comparing the segmentation result with the ground-truth data, the seg-

mentation result are always bigger in size and less detailed in the tail tips. If these

two main factors are considered in the evaluation and their impacts are ignored, the

segmentation performance could be improved at least 6%.

5.2 Classification Performance

In order to evaluate the classification performance, a separate dataset is used as the

test set for each classification tasks. In both dataset, 12 features are used to represent

each tail instance which are selected from the previous sequential forward selection

algorithm.

5.2.1 Tail Classes Classification

As introduced in Chapter 4.2, fish tails are categorized into 3 classes based on their

shapes. The tail classification task is to distinguish between these different tail classes.

5.2.1.1 Dataset

The fish images in the dataset are unbalanced which is dominated by several fish

species. When categorized into different tail classes, the tail classes are also balanced.

Type 3 tail is only observed in one fish species among all 15 species. In order not to

have a biased classifier which pays little attention to type 3, training set and test set are

picked as follows:
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Training Set Test Set

Type 1 40 100

Type 2 40 180

Type 3 20 20

Table 5.3: Data Sets for Tail Classes Classification

5.2.1.2 Result

After training on the training set of 100 tail images, the Naive Bayes classifier achieves

an average classification accuracy of 73.7% on the test set of 300 tail images. Below

is the confusion matrix of the classification performance, where the rows indicate the

classification results and the columns indicate the actual classes.

Type 1 Type 2 Type 3

Type 1 42 58 0

Type 2 18 161 1

Type 3 0 2 18

Table 5.4: Confusion Matrix of Tail Classes Classification

When evaluating each tail class separately, the classification performance for each

tail class could be concluded:

Tail Class Classification Accuracy

Type 1 42%

Type 2 89.4%

Type 3 90%

Table 5.5: Classification Accuracy for Each Tail Class

5.2.1.3 Evaluation

The classification results for tail type 2 and type 3 were very good which were both

about 90%. In comparison, the classification performance for type 1 was quite poor

which was just about 42%. More than half the tails of type 1 were misclassified as type

2. 18 of 180 tails from type 2 were also misclassified as type 1 and 1 tail was classified

as type 3. Neither any instance of type 3 was classifier as type 1, nor the other way
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around which indicated that type 1 and type 3 were quite distinguishable. In contrast,

2 tails from type 3 were misclassified as type 3 which took 10% of total 20 instance.

Below are some figures of fish instances in 2-D feature space, the blue dots repre-

sent type 1 tails, red indicates type 2 tails and green for type 3:

(a) s02 (X Axis) vs s21 (Y Axis)

(b) compactness (X Axis) vs s20 (Y Axis)

Figure 5.9: Fish Instances in 2-D Feature Space

The above figures shows that type 3 instances (green) are usually linear separable

from the other two types. In contrast, type 1 and type 2 tails are quite correlated to each

other. The locations of type 1 and type 2 instances look like points drawn from two

Gaussian distributions with mean values close to each other, which are quite difficult
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to separable from each other.

When looking into details of type 1 fish tails, a very interesting point can be raised:

(a) Ideal Type 1 Tails (b) Bad Type 1 Tails

Figure 5.10: Ideal Type 1 Tails vs Bad Type 1 Tails

Again this raise the problem of segmentation and fish extraction. During the pre-

vious procedures, details for some of type 1 tails are lost leaving the tails imperfectly

segmented. Although this segmentation problem happens to other types, the structure

of type 1 tails makes it more easily effected than others. Type 1 tail usually has a

forked shape with two tail tips. However, the tail tips can be easily distorted into type

2 shapes. For example, a smooth algorithm, such as Gaussian smooth and dilation,

could lose details in tips so that a type 1 tail may look like type 2 tail.

In conclusion, the inseparable problem of type 1 and type 2 tails is caused by the

segmentation problem where details of fish tails are lost during the extraction proce-

dure. Many of type 1 tails end up having the shapes of type 2 tails. If the performance

of fish extraction was improved, the classification result would have a much better

result.

5.2.2 Fish Species Classification

For the fish species classification problem, the task is to explore whether the fish

species could be distinguished by their tail shapes. The goal is not to classify fish

species using the features of the whole fish, but only the features of tails.

The dataset used for evaluating the performance of fish species classification con-

sist 300 fish instances, each of which contains 12 features selected from the sequential

forward selection algorithm. For each fish species, there are 20 instances. The previous

dataset used for feature selection is used as the training set, and the separate dataset is

used as the test set.
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5.2.2.1 Result

The Naive Bayes classifier achieves an average classification accuracy of 30% on the

test set. Below is the confusion matrix of the classification performance and the clas-

sification result of each species:

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Species 1 3 6 1 0 0 1 0 2 0 0 4 0 2 0 1

2 4 8 1 0 0 0 0 0 2 0 3 0 2 0 0

3 2 1 8 5 0 0 0 1 1 0 0 0 2 0 0

4 1 0 5 2 0 3 3 0 1 0 5 0 0 0 0

5 0 0 2 2 7 1 1 2 1 0 1 2 0 0 1

6 0 1 3 3 2 7 1 2 0 0 0 0 0 0 1

7 3 1 1 3 4 3 1 0 2 0 1 1 0 0 0

8 2 2 0 0 0 3 0 5 1 2 3 1 0 0 1

9 3 2 1 1 1 0 0 0 2 2 3 0 1 0 4

10 2 3 1 1 2 0 1 0 2 6 1 0 0 0 1

11 0 3 0 0 0 0 1 0 1 0 13 0 1 0 1

12 2 0 0 3 5 3 1 0 0 2 0 4 0 0 0

13 4 5 0 0 0 0 1 0 1 0 2 0 5 2 0

14 0 0 1 0 0 0 1 0 0 0 1 0 0 17 0

15 0 2 2 3 1 2 1 2 0 0 5 0 0 0 2

Table 5.6: Confusion Matrix of Fish Species Classification

Fish Species Classification Accuracy Fish Species Classification Accuracy

Species 1 15% Species 2 40%

Species 3 40% Species 4 10%

Species 5 35% Species 6 35%

Species 7 5% Species 8 25%

Species 9 10% Species 10 30%

Species 11 65% Species 12 20%

Species 13 25% Species 14 85%

Species 15 10%

Table 5.7: Classification Accuracy for Each Tail Class
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5.2.2.2 Evaluation

The classification result of fish from species 14 had the best performance of 85% clas-

sification accuracy. This was actually not very surprising, because species 14 was the

one that categorized into tail type 3 which was quite different from other tails based

on the previous observations. Moreover, species 11 also achieved a very good result of

65% accuracy, which indeed was a little bit surprising. Species 1, 4, 7, 9, 15 achieved a

very poor performance which is about 10% and the performances of rest species were

quite moderate.

The classification accuracy of 30% is not acceptable, because tails of different

species have many features in common. It will be strange if the classifier achieves a

very good result, for example 70%. The result will indicate that fish are distinguishable

by only using tails, which is wrong in the current dataset.

The good classification result of species 11 also indicates that a different tail class

may exist in addition to the 3 tail types which are categorized previously. All the results

together give a positive response to the exploration of fish species classification using

tail features. Some fish species do have unique tail features compared with others.

5.3 Future Work

In general, results obtained by the segmentation algorithm and classification tasks were

reasonable. But as discussed previously, most of the negative effects came from the

binary masks. The binary masks of extracted fish were not very pleasant. For some

species, there were too many details lost in extraction which was the main reason why

so many type 1 tails were misclassified as type 2.

A better fish extraction algorithm should be developed which could reserve more

information around tail tips and fins. At the moment, binary fish were smoothed and

dilated which raised the difficulty of segmenting fish components. If more details can

be reserved, both the performance of segmentation and classification will be improved.

Moreover, deformable shape modelling methods, such as Active Shape Model,

should be instigated and explored more. So that a more generalizable model could be

developed to represent unknown fish.

The dimensionality difference between 3-D real fish and 2-D fish images may be

taken into consideration. Depending on the relative position of swimming fish and

cameras, fish images are quite different. For example, fish tails are always visible in
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fish images which would end up bad tail segmentation results.

5.4 Conclusion

The goal of this project is to explore methods to segment fish components, investigate

the possible methods of clustering fish components and develop classifiers that can

discriminate different component categories. In this thesis, a tail segmentation algo-

rithm was developed, which used curvatures of boundary points to find the candidate

tail joint positions. The algorithm firstly located one tail tip and iteratively searched

through the candidate locations to find the other tail tip and then the joints between tail

and fish body. A backup tail segmentation was also implemented which tracked the

sudden changes in the row length of each column and took the send the sudden change

as the tail segmentation column.

For each segmented tail, it was rescaled, rotated and transferred into the common

coordinate system. Principal components analysis was used to reduce the dimension-

ality from 900 to 10. These 10 principal component features along with other 9 image

moment features were combined as the feature set. In order to improve the classifi-

cation accuracy and use less features, sequential forward selection was implemented

to select the best set of features. After all these procedures, 12 features were selected

and used to represent tails. An overall tail classes classification accuracy of 73.7% was

achieved by using a Naive Bayes classifier.
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