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Abstract

Exploring the ocean bottom has always been an area of gneatific and environ-
mental concern. However, study of the underwater envirerime until recently was
very difficult due to the extreme conditions. With the adwest underwater photo-
graphic equipment surveillance of the sea bed is now easdlijzable. The quality,
however, of underwater images is still worse than that ofgesashot in the air and
images usually appear hazy. This thesis deals with the gmobF underwater surveil-
lance of a scene. The quality of the recording obtained bygdneera deteriorates over
time due to problems like dirt/water on the lens and the gteiegecting the camera,
which is why the camera must be cleaned regularly. The dithernlens as well as
floating particles create a blur and noise in the frames of¥itheo. This projects’ main
goal is to remove the blur effects from the underwater vidé@sa secondary goal we
wish to develop a method that uses the temporal informatfitimeovideo as well as the
knowledge of when the camera was cleaned. The method pribposes study solves
the problem in two stages. It first removes any noise thatasgmt in the recordings
and then deals with the blur effects. For the denoising staggiation of the BM3D
algorithm [8] was developed. Several different approashex® implemented for the
deblurring problem based on the multiframe blind deconvotumethod described in
[1]. Evaluation of the algorithms was held for both artiflcéend real degradation of
the frames.
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Chapter 1
Introduction

Since the invention of the first “amphibious” camera in 19&®interest in underwater
videography for ecological and recreational reasons heatlgrincreased. Despite the
technological advances in the equipment the quality of omder images and videos
is still much worse than that of images shot in the air becatige limitations imposed
by the physical properties of the water medium. Underwatenss are characterized
by their poor visibility due to the fact that as light travellseper into the water it gets
exponentially attenuated. This results in images and wdbat are hazy, dark and
have bad contrast.

In surveillance systems there is the added deterioratitimeafecordings over time,
due to dirt/water build up on the lens and the glass protg¢hie cameras. The deteri-
oration is far worse in the case of underwater surveillaremabse of the vast amount
of dirt and floating particles present in the water.

Underwater image processing has received considerabl#iatt over the last few
decades due to its challenging nature and its importandééoenvironment. Improv-
ing the underwater image quality can be separated into tifereint problems known
as themage restoration problerand theimage enhancement problem

Image restoration aims at estimating the true scene by rexgdve noise and in-
verting the degradation process. Doing this usually regubuilding mathematical
models of the degradation and using various signal praegdstering techniques.
Classical image restoration methods are Wiener filterirdytdimd image deconvolu-
tion. An example of the results of image restoration is showFigure 1.1.

On the other hand image enhancement aims at making the imawesaestheti-
cally pleasing through subjective criteria and withouyired) on complex mathematical
models. Colour correction, contrast and brightness aujeist are good examples of
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Figure 1.1: Example of underwater image restoration [2].

image enhancement methods. An example of the results oficotrection can be
seen in Figure 1.2.

fa)

Figure 1.2: Example of colour correction of an underwater image. a) original image b)

colour corrected image[2].

The purpose of this research is to restore the video recdogiegh underwater
surveillance camera back to its original quality using&@aoins of state of the art meth-
ods. Focus will be laid on dealing with the video restorapooblem and not on video
enhancement. The data consists of video sequences whdgg dateriorates with
time as more dirt gathers on the lens. This deterioratiorbeambserved in Fig. 1.3.

The deterioration of the images can be split into two diffietgpes. The first is a
local blurring of the image in places where there is dirt.sTiblur can’t be considered
stationary throughout the sequence as it sometimes tenslsiftaslightly back and
forth depending on the the water currents. The second i€nbat is present from
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Figure 1.3: Frames taken a) with recently cleaned lens b) lens with particles and dirt

on.

either floating particles or camera measurement noisergeimahe analog-to-digital
conversion or during the quantization). In order to mamtdie video quality at a
standard that allows for the monitoring of underwater emvwinent the lens must be
cleaned in regular intervals. This procedure is costly aedrequency with which it is
performed could be reduced if the image is restored usingémastoration techniques.

Some video restoration techniques deal with each frame ideosequence sep-
arately thus ignoring the temporal relationship betweemseoutive frames. In the
surveillance problem, where the camera is stationary amddbne doesn’t change sig-
nificantly from one instant to the other past frames hold ahale information. This
project aims to develop a denoising and deblurring methodhi® surveillance prob-
lem that makes use of this information. In order to furtheplei this information
an attempt is made to utilize the frames recorded when ther@ahans has been re-
cently cleaned. These frames are easy to detect since kihgevid when the camera
is cleaned is available.



Chapter 2
Background

In this chapter the video restoration problem is more $yridefined. It is divided
into the two separate problems of video denoising and viddmudring. These two
problems are mathematically formulated and popular mettiod solving them are
analysed and discussed.

2.1 Degradation Models

The purpose of image or video restoration is to reverse afgctiethat alter an image
or frame. There are many forms of deterioration that can beetied in different ways.
If an assumption is made that the original frame is corruptdg by additive noise as
seen in Figure 2.1 then we have what is known as the denoisafdggm. This problem
is described by the equation (2.1), whéie, y,t) is the original framen(x,y,t) is the
noise term andy(x,y,t) the measured frame.

n
f
¥ SIS

Figure 2.1: Degradation model assumed in the simple case of the denoising problem.

g(x.y:t) = f(x y,t) +n(x y,t) (2.1)
The effect this sort of degradation has to an image is shoviigare 2.2. As we
can see noise appears as randomly-spaced speckles in an iN@ge can be caused
by various reasons such as quantization errors, compressirs or high camera ISO
sensitivity.
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(i) Original image (i) Noisy image

Figure 2.2: Example of an image being corrupted by additive noise

In cases where blur is also present we have the deblurrirggmoshown in Fig-
ure 2.3 and described by (2.2) for each time instant.

Figure 2.3: Block diagram for the degradation model assumed in the case of the de-

blurring problem.

at(xy) = he(x,y) * fr(x,y) +ne(xy), (2.2)

wherehy(x,y) is the degradation point spread function at time instaentd x is the
convolution operation

fxh= % f(xy)h(x—my—n).
(n,m)
In this case the corrupted image is obtained by passing thmakimage through
a blurring system and then adding noise to it. An example efsthrt of degradation
this causes to the image is shown in Figure 2.4.
In this problem it is evident that a lot more details of the gaare lost compared
to the case of just additive noise.
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(i) Original image (ii) Degraded image

Figure 2.4: Example of image degradation in the problem assumed in image deblurring.

2.2 Denoising Methods

Video denoising methods can be split up into spacial(se&id.1) and temporal meth-
ods (section 2.2.2) based on whether they use the templatbreship between frames
in the video sequence or not. Although temporal methods rbeker use of this infor-

mation provided by videos they are usually more complex agdire motion compen-
sation in order to avoid artifacts created when blending@tiogr pixels from different

frames.

2.2.1 Spacial Denoising Methods

Spacial denoising video methods are image denoising metygolied on each frame
separately. Typical ways of solving the denoising probleenta apply linear or non-
linear filtering to the image. This filtering can take placéath the space or frequency
domain.

2.2.1.1 Low-pass Filtering

The most common type of filtering used in images is the linearpass filtering. The
simplest linear filter is perhaps the mean filter. It is basedhe assumption that ad-
jacent pixels are likely to be similar to each other. It is ierpented with the standard
sliding window approach using a convolution mask. The tesiuthis convolution is
that each pixel in the image will be replaced by the averages @ight neighbours. A
generalization of the mean filter is the space domain avegagter, which does not
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need to weight all neighbours equally. Good examples ofratpacial-domain aver-
aging filters are the 5-point weighted averaging filter ared@aussian filter. Some of
the masks used in these filters are shown in Figure 2.5. Tlogonowith these sorts of
filters is that they tend to blur edges and details of the sceéhis problem gets worse
as the size of the convolution window increases.

0 1/8 o
1/4 1/4
1/8 1/a 1/8
1/4 1/4 0 Vs 0
(i) 2 x 2 convolution mask used in mean filtering (i) 5-point weight averaging

Figure 2.5: Examples of convolution masks of space domain averaging filters

It is easier to understand how these low-pass filters workobkihg at the fre-
guency components of the images. Frequencies in imagesspomd to the rate of
change in pixel intensities across an image. Low frequenmerespond to the large
features of an image (e.g. homogeneous regions) wherdagéguencies correspond
to rapid pixel changes that occur in an image (e.g. noisee®dd herefore the origi-
nal image will usually have more energy in the low frequesi¢ien in the high ones,
whereas the noise will have more energy in the high freq@sndihis property can be
easily verified by looking at the frequency representatiba aoiseless image taken
from our underwater recordings (Figure 2.6ii).

We can see that the red areas, which correspond to the higbyeoentent are
situated in the centre of the plot where the low frequenaies lais also obvious that
there are still few high frequencies that have a significaetgy content.

Applying the fast fourier transform (FFT) to the degradedgag(x,y) will pro-
duce the frequency representation of that im&ge, v). Filtering can then be carried
out by multiplying this with the frequency response of a Ipass filter (Butterworth,
Gaussian, etc.) like the one shown in Figure 2.7 which gresttenuates the high
frequency coefficients. This multiplication in the freqagrdomain corresponds to
convolution in the spacial domain according to the well kngwoperty of the convo-
lution theorem { xg = FG).

This produces an outpé#t(u, v) given by the following equation

F(u,v) = G(u,v)H(u,v), (2.3)
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(i) Image taken from underwater recordings (ii) Frequency representation of the image

Figure 2.6: A clean image along with its frequency representation. The red areas
denote high energy content and the blue areas denote low energy content. Frequencies

increase as we go from the middle of the plot to the edges.

Figure 2.7: Frequency response of a Gaussian low-pass filter.

wherel—ﬁ(u,v) is the frequency response of the filter. Finally, the invdnsear
transform is applied to return to the spacial domain. Appyiow-pass filtering in
the frequency domain gives a more intuitive approach dubkedect that it allows for
visualization of the frequency components.

An non-linear alternative to the mean filter is the widelydiggedian filter, which
replaces each pixel in an image with the median of its sudimgnpixels. This filter
performs better than the averaging filters for salt and peppe noise and does not
suffer as much from blurring effects. It does however tengedorm poorly when
the number of noise pixels consist of more than half of thedain pixels. A more
sophisticated version of this algorithm can be found in [Bhe results of mean and
median filtering can be seen in Figure 2.8.



Chapter 2. Background 9

(i) noisy image

(iii) mean filter (7 x 7 mask) (iv) median filtering

Figure 2.8: Filter performance for an image corrupted with gaussian noise with zero

mean and 0.05 variance

2.2.1.2 Patch Based Methods

All low-pass filtering techniques share a common problent stems from their as-
sumption that natural images have more information in theflequencies than in the
high frequencies. Noise however will affect equally allfieeents. Thus removing the
high frequency coefficients will eliminate more noise thanal but any information
in the high frequencies is lost and any noise in the low fregies persists.

A category of image denoising methods that is gaining popule that of patch
based image restoration methods. These methods try to fimthspatches within
the image and use their spacial redundancy to denoise thgeimehis is based on
the assumption that images will contain small patches tteatjaite similar due to the
repetitive patterns or elongated edges in a scene. Thisngsgisun is usually valid for
most natural scenes. The first patch-based method that eai®drwas thdlon-local
meansalgorithm [4], which does not make the assumption of higlgdency noise.
Non-local means gets its name from the way that it operatessdigns a window
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(patch) centred around each pixel in the image and measwesnilarities between
the patches. Each pixel is then estimated as a weightedyevefrall the other pixels in
the image. The weighting of each pixel depends on the siityilaf its patches to the
reference patch, which is determined by a distance meashigis better understood
by the example shown in Figure 2.9.

Figure 2.9: Example showing how patch similarity affects the weighting of the aver-
age. Weighting of qp will be larger than that of gz due to its patch’s similarity with the

reference patch. Image taken from [4]

In this example we want to estimate the value of the pixel pwsighted average
of other pixels in the image. Itis safe to assume that NL-raedl give a large weight
w(p,q1) to pixelq; since it is evident by inspection that the patch centredraddhis
pixel is very similar to the patch from the reference pixellp.correspondence with
this similarity rule, the pixelp will probably be assigned a small weightp, q2).
Therefore pixel p will end up taking a value that is much cidsay;.

2.2.1.2.1 BM3D Denoising Method = The latest development in patch based algo-
rithms is the BM3D algorithm, which is currently considetbd state of the art in im-
age denoising yielding very impressive results. The BM3@hoé, much like the non-
local means, uses of a distance measure to assess theigjrbidween two patches.
BM3D has two denoising steps in order to ensure better nethaction.

In the first step BM3D performs an exhaustive search on thgénta find similar
patches for every patch in the image. The patch size can vahyygpical sizes are
8 x 8, 16x 16 or 32x 32. Once the similar patches have been determined they are
grouped together to form blocks. Blocks can contain oveitagppatches.

Next, collaborative filtering is performed on the blocks toguce estimates of the
patches. The first stage in this collaborative filtering ipéoform a linear transform
on the block so as to get its frequency representation. Tamstorm will obviously
have to be a 3 dimensional transform since the blocks are Bid ig followed by noise
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reduction via thresholding the transform coefficients.slikicalled hard-thresholding
and is a special case of magnitude thresholding. Magnitudsholding as its name
implies compares the magnitude of the transform coeffisigmia threshold and sets
them to zero if they are less. It is based on the assumptiomé#taral images are very
likely to have only a small number of high frequency non-zegefficients. Noise does
not usually contain a lot of energy so it is expected that dfte additive noise these
high frequency coefficients will still be rather small. $&gtthese small coefficients
back to zero will eliminate some high frequency componerith wery little signal
information but maintain high frequencies that corresptonetiges. There is ,however,
a trade-off since components that contain both noise anthkigill not be affected
by the thresholding some noise will still be present in thagew The inverse linear
transform is then applied to obtain the estimates of theksloGome representative
technigues that use magnitude thresholding can be fourtd,ifg], [7].

When the collaborative filtering is finished, we get an esteriar each patch and
a number of estimates for each pixel (due to the fact that iked ppay be present in
more than one patch). In order to have a single estimate gfie, an aggregation
of the estimates is performed. This is a weighted averageendech pixel estimate is
weighted according to the number of maintained coefficienits block after the hard
thresholding. This concludes the first denoising step.

The second step is basically a modified repetition of the $irep, which uses as
inputs the previous block estimates and creates blocksllwasthem. Similarly to the
first step, collaborative filtering is performed on the biedhly this time the filtering
is done using a Wiener filter instead of hard-thresholdinge §roup estimates are
obtained by performing the inverse transform and then fisahmtes of the patches
are made using aggregation. As mentioned earlier the perpbthe second step is
to further denoise the basic patch estimates. The wholeedure followed by the
algorithm can be seen in Fig.2.10.

Patch-based algorithms generally perform better tharr otie¢hods and have the
added advantage of being easily transformed into tempafabwdenoising methods.
However, the exhaustive search they perform to identifylaimpatches usually makes
them far slower and worse for on-line applications.
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Noisy Step 1 _« Basic estimate Step 2
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Figure 2.10: Flowchart of the BM3D algorithm showing both steps that lead to obtaining

noiseless images.[8]

2.2.2 Temporal Denoising Methods

Temporal denoising methods are better suited for videoidergpbecause they make
use of the fact that scenes will not change too much from freanieame but the
noise will probably not be present in the same pixels. Befbeediscovery of patch-
based methods temporal denoising methods consisted otwerglex algorithms us-
ing wavelet filtering and some sort of motion estimation tmpensate for any motion
blur from moving objects in the scene [9]. Their complexityra with their unimpres-
sive results made them unappealing and as a result apphsatpproached the denois-
ing of video as a series of independent single frame dergpminblems. After the in-
troduction of NL-means, the potential of patch-based mittor temporal denoising
was made evident. Most of the temporal patch-based metrerflsr'm searches both
in space and time to find similar patches and perform patskdaestoration using
these similarities. This is better understood by lookingigure 2.11.

The figure illustrates how similar patches (green squamaspe found in different
frames of the sequence as well as in the same frame. Due taiine rof patch based
methods the only thing that has to be modified in order for thework using multiple
frames is the search for similar patches. The filtering ofoidtehes can be the same as
the one done in spacial patch-based methods.

2.3 Deblurring Methods

Blur is a very common problem in video sequences that can igechby a variety of
different reasons such as moving objects, unstable camemsen due to the atmo-
sphere. Blurry images can be seen as a result of applyingviith similar properties
to those of a low-pass filter on the original framigéx,y) of the video. The impulse
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Figure 2.11: Example showing how temporal patch-based methods find similarities be-

tween patches belonging to different frames.

response of this filter h(x,y) is also known as the point sprfeaction (PSF) of the
blur. The output frameg (x,y) are calculated by doing

g (x,y) = he(xy) * fr(x,y)

or equivalently in the frequency domain by

Gt(u,v) = Hi (u,v)R(u,v),

WhereG(u,v), Ht(u,v), R(u,v) are the 2D fourier transforms @f h and f respec-
tively.

Deblurring is in fact an inverse problem, which aims at reireg the effects of the
blur PSF. If the PSF is known then the problem can be solvetjushat are known
asimage deconvolutiotechniques whereas if the PSF is unknown thénd-image
deconvolutiormust be applied.

2.3.1 Deconvolution Methods
The quickest and most naive way to do non-blind image dedatiga is called inverse

filtering. Inverse filtering calculates the original scen¢he frequency domain as
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One can immediately detect a problem herédds, v) becomes very smaﬂﬁ ap-
proaches infinity. This can be avoided by not allowkhgu,v) to become smaller than
a threshold, although if too many coefficientstéfare lost then the image appears
distorted. This effect can be seen in Figure 2.12.

(ii) blurred image with an averaging filter

(iii) Deblurred with inverse filter with threshold (iv) Deblurred with inverse filter with threshold

at 0.05 at 0.3

Figure 2.12: The effect the lower bound has on the reconstruction of inverse filtering.

As we can see if the lower bound is small enough the recongiruis quite ac-
curate. However there is also another more significant protdssociated with this
method. Inverse filtering is basically a form of high-pas®fjlmaking it very sensi-
tive to additive noise which is almost always present in #anir his issue can be seen
in Figure 2.13 and renders inverse filtering virtually ussléor real applications. A
solution to this problem is presented by Wiener filter dectutvon [10]. Wiener filter-
ing finds an optimal compromise between inverse filtering@dambising. The Wiener
filtering is a linear estimator based on the orthogonalitg@ple, which makes it the
optimal linear estimator with respect to the least squames.el he frequency response
of the Wiener filter is shown below

W(U V) _ H*(U,V) %g(U,V) (24)
T HUY)|? Sygluv) + Sin (U V)
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(i) Blurred image with additive noise (ii) Result of inverse filtering

Figure 2.13: The effect that additive noise has on inverse filtering

WhereH (u,v) is the frequency response of the blur PSF &glu,v), Sy, (u,v)
are respectively the mean power spectral density of theadegrimage(x,y) and the
noisen(x,y). A better interpretation of the Wiener filter can be obtaitgdwriting
(2.4) as

1 IH(uv)|?
W(u,v) = (2.5)
WY | P+ 2
It is easy to see that in the case of very high signal to noise (BNR= S1“Y)) the

&Jg(uvv)
term inside the square brackets approaches 1 and the filleruignbeing the inverse

filter m As the noise at certain frequencies increases the termeiribe square
brackets also drops. This shows how Wiener filtering attezsufsequencies depending
on their noise content. The result of applying Wiener fitigrto a noisy and blurry
image is shown in Figure 2.14. We can see that the result ®fittéring produces an

image that is much clearer than the original and has not biéerted by the noise.

(i) Blurred image with additive noise (ii) Deblurred image using wiener filtering

Figure 2.14: The result of applying Wiener filtering to an image with motion blur and

additive noise

Another approach for non-blind image deconvolution comsidhe observed im-
age pixelsg[x,y| as realizations of random variables that can be describexjbint
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probability densityP(g, ). It then tries to find an imagé that maximizes the likeli-
hoodP(g|f). Unfortunately this is in general an ill-posed problem. Ausion to this
problem is to introduce additional constraintsfarSome methods do this by introduc-
ing a prior distribution for the clean imad¥ f), which incorporates any knowledge
we have abouf. Due to this prior these methods are calkalyesian deconvolution
methodEL1l]. The posterior distribution can then be computed ufages rule as
follows.

P(flg) O P(gf)P(f) (2.6)

In order to find the most likely imagé from this distribution we have to calculate
its mean. However, this is a multi-dimensional distribotiwhose integral is hard
to compute analytically. Therefore sampling methods siectha Gibbs sampler or
Metropolis-Hastings are used to estimate the mean.

Finally there is also the regularization approach for daing-blind image decon-
volution. This approach tries to solve the following regidad minimization problem
(penalizing large values dj, wheref, g are the clean and observed images written in
vector form and is a blurring matrix.

min|[Kf —g||* + o ]}, (2.7)

It therefore tries to find the original imadethat after the blur is closest in the least
square sense to the obseved imgge

2.3.2 Blind Deconvolution Methods

Wiener filtering requires a significant amount of knowledféhe system. It assumes
that the power of the noise is known but more importantlydpuiees exact knowledge
of the blurring PSF. In most real applications, however ihisrmation is unavailable
or is hard to obtain. This is the reason why blind deconvolutechniques have been
widely researched. Some of the most representative metiaodse found in [12], [13]
[14].

There are two ways to perform blind image deconvolution. @ag is to extract
the blur PSF based on exterior information and then proceqeetform non-blind
deconvolution using the aforementioned techniques. Is ¢thse a parametric blur
model may be used to identify the most likely PSF from the olz®n. The other
approach tries to simultaneously estimate the PSF andatignage. Most algorithms
that do this use an alternating approach to iterativelytiflethe PSF and the image.
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Blind image deconvolution is an extremely ill-posed probleecause it requires to
solve the following equation

g(x,y) = h(x,y) = f(x,y) +n(xy),

which has as unknowns the blurring PS&nd the clean imagke Multiple image blind
deconvolutionmmethods try deal with this problem by usingndependent observations
of the scene. The problem is therefore described by thedoilpsystem of equations.

g1 =hyixf+n1(xy)
g2 =hox f +1n2(xy)

(2.8)
Om = hm* f +nNm(X,y)

By doing this these methods now only have to solve a system efjnations with
m+1 unknowns, which is more well-posed. A variation of theltiframe approach
proposed in [1] will be used in this project and is analyse8eaation 3.4.



Chapter 3
Methodology

In this chapter we describe a method to perform video restoran the underwater
surveillance problem described in Chapter 1. This metheodbeasplit into the two
steps of denoising and deblurring. The details of the allgoriare described and the
motivation behind the key design decisions is explained. eart has been made
to use as much information from past frames as possible utithaking the method
insensitive to gradual changes of the scene.

3.1 General Algorithm Description

Our temporal restoration method relies on the fact that teee in sequential frames
does not change too much. In our underwater recordingsesa@aometimes have a lot
of activity due to fish that are swimming in the sea. The first ai the frame restora-
tion is to extract as much information about the scene aslgesw/hich is difficult to
do when the fish are present. This is the reason why a backdgsubtraction algo-
rithm is used as a preprocessing step to remove fish from greescrhis will aid in
both the denoising and deblurring of the scene.

The dirt on the camera lens seems to create non stationahbloes in the frames.
In addition some noise is present from the camera quardizati floating particles.
This problem could be treated as a deblurring problem bueasodstrated in Section
2.3 the presence of noise affects the quality of the decatienl algorithms. Therefore
first a denoising step is added in order to improve the quafitiie deblurring. This is
why emphasis is put on removing the noise without introdgi¢oo much additional
blur. The algorithm chosen for the noise removal is a patteld method which uses
patches taken from multiple frames. As seen in Figure 34 dbenoising algorithm

18
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will have as inputs the frames produced after applying thekdpapund subtraction
algorithm on the recordings.

It was mentioned in Chapter 1 that the blur in the sequenceélzaconsidered sta-
tionary as it is affected by the water currents and any motidine scene. Nonetheless,
the blur in sequential frames can be considered similar.P3fes that are responsible
for the blurring of each frame in the recordings are unknowra $lind deconvolu-
tion technique must be used. The multiframe blind decoriariumethod from [1]
was chosen for the deblurring. This deblurring was appleea dictionary containing
recent frames produced by the denoising stage mentioneg amal produces an es-
timate of the original scene as well as estimates of the lBksPfor each frame. It
is possible to incorporate information from past clean farby adding them to the
dictionary as shown in Figure 3.1.

Finally, once the PSF estimates of the blur are availabledhe used to restore the
foreground via non-blind deconvolution. The deblurrecefpound is then replaced
onto the original image estimate. The entire procedure @htlethod can be seen in
Figure 3.1.

past clean frames

ngis;#’biz«rr}'frames denoised blurry frames deblurred frames

without foreground without foreground without foreground restored frames
Background .I Patch-based| . Blind Image
Subtraction Denoising - Deconvolution

P.S‘ ‘\mr blind
Demmolmmn
I deblurred
foreground objects

foreground objects

Figure 3.1: Steps followed by the proposed method to obtain the reconstructed frames

of the video

3.2 Background Subtraction

The fish that are swimming in the frames generally obstrueasiof the scene and
are very mobile so they can’t be considered part of the backgt. In order for the
method that is proposed in this chapter to work, the fish haugetremoved so that
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they do not interfere with the process identifying the bl@HPOnce the PSFs have
been estimated the fish can also be deblurred using nondsicmhvolution, assuming
that they are affected by approximately the same blur ascirees

There are various background subtraction techniques Hrabe used to obtain
the foreground in cases where a static camera is observiogrne s The background
subtraction algorithm that is used here for achieving thithe one proposed in [15].
This method builds a statistical model for the backgroumshe@nd classifies the pixels
that do not fit the model as foreground. The classificationleadone based on the
following thresholdR.

_ p(BGXY) _ p(xV|BG)p(BG)
~ p(FGXY) — p(xV[FG)p(FG)
The prior probabilities of the foreground and backgroupdG) andp(BG)) are

(3.1)

set accordingly depending on the knowledge we have of theded scene. The den-
sity p(xm\FG) can be set to uniform if nothing else is known about it. Whethgixel
corresponds to background or foreground is determinedéfollowing decision rule

p(x"|BG) > cihr, (3.2)

whereci, is a threshold that can be tuned.
The background model is trained on a set of past imagebhis estimated model
P(xV|x® BG) is assumed to be a mixture of Gaussians as shown below

M
PXUIXY,BG) = S Tin\ (X, kim, Ol (3-3)
m=1

Modelling with a multi-modal distribution allows us to aaot for cases where the
background is not stationary but is characterized by snttdl.j This is ideal for the
scene of our problem, which is affected by underwater cisrehhis method is also
adaptive and is able to cope with changes in the scene illtioimand the introduction
or removal of background objects. To do this the trainingsepdated by the addition
and removal of images. A suitable time period T is chosen anaiging set is formed
X — {XO),X(tfl)

the conditional probabilityP(xV)| x() BG) is recalculated. The parameters for the

.. x=T1 - At every time instant the training sgtV) is updated and

number of components as well as the number of frames kepeitraiming set were

decided by performing a grid search and judging based onuahéssessment of the
masks. The number of gaussians used was 5 and the trainiogrdained 100 frames
at each time instant.
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This method produces a mask of the foreground which contgpeskles due to
some pixels being falsely classified as foreground. The nmgken cleaned by
performing the open binary operation (erosion followed Bgtibn of pixels) twice.
Sometimes the fish are not fully detected by the algorithnmee the image is cleaned
from the speckles the binary operation close (erosionviath by dilation of pixels)
is performed three consecutive times to ensure full detedaf the fish. This means
that the mask sometimes also contains part of the backgnoeadthe fish. However,
this is still preferable to having fish present in the imagkicl would deteriorate the
performance of the denoising and deblurring. The resulte@background subtrac-
tion can be seen in Figure 3.2. The algorithm has correctwptifled the fish on the

(i) Clean frame (if) Mask with speckles (iii) Cleaned mask

Figure 3.2: Resulting mask obtained by the background subtraction algorithm in both

the clean and dirty version.

left of the image, although it has also detected some of tle&dvaund as well. It
must be noted that the background subtraction improvesoehwith time so after
some frames it will very accurately detect the fish (this i@vahin the case of additive
noise below). The background subtraction was also testédeoblurred frames with
slightly less accurate results. The results for a blurrathé can be seen in Figure 3.3

The background subtraction also works when noise is presatiough it requires
a larger transition period until the mask is accurate. M&sks two different frames
corrupted by artificial white gaussian noise with 20 unitsvafiance are shown in
Figure 3.4.

As we can see although the foreground is not correctly dedeat the start of the
sequence it improves and by the 100th frame it is very aceutdtis transition period
is not long considering that it corresponds to 4 seconds ideowvhich runs for hours.
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(i) Clean frame (ii) Mask of foreground

Figure 3.3: Clean mask obtained from using the algorithm on a blurry frame.

(iif) Noisy 100th frame in the sequence (iv) Mask of the 100th frame of the sequence

Figure 3.4: Improvement of the model of the background subtraction algorithm with
time. Masks of noisy frames improve with time as the model gets trained on more and

more data.

3.3 Denoising Step

The goal for the denoising stage is to create a method that theepast frames of
the sequence. It is reasoable to assume that noise will featt ah the same pixels
over time, which is why we expect a temporal method to be batid¢ar as denoising
Is concerned. A patch-based algorithm is proposed due tsitiyglicity with which
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it can be modified to deal with videos. The stages of this stepe&plained in the
following sections.

3.3.1 Grouping Stage

Typical variations of the BM3D algorithm used for video desmog usually substitute
the spacial search for similar patches with a temporaliapsearch [16]. This search
can be very computationally expensive and is usually nagdogown to a smaller area
to improve the speed of the algorithm. In the surveillanad@m however it is fairly
certain that the scene being monitored does not change verl mith time. It is safe
to assume that patches located in the same place in diffeseames will be similar.
We therefore propose a method that does not search for sifralmes but instead
groups together patches that are located in the same ardfesdrd frames. In order
to produce a method that is adaptive and can cope with gradiaial changes in the
scene such as lighting changes or slight swaying of the sgditecks were created
using a dictionary containing only a few of the latest frames

The aforementioned similarity assumption is invalid ifidhare fish present in the
patches. The background subtraction is responsible fonfyrahy fish and removing
them. Initially the idea of not including patches with fishtime groups was tested but
this sometimes resulted in having groups with no patchedalthee constant presence
of fish. This meant that the group-based filtering couldn’applied. It was therefore
decided to keep all the patches but replace the foregrouxelspin them with the
median of the pixel values of another dictionary that isiatly larger than the one
used for the grouping.

In general, this approach greatly decreases the complekitile algorithm by
avoiding the computationally demanding search step andges us with almost iden-
tical patches within a block. An example of patches that aoeged together using
this method can be seen in Figure 3.5.

It is evident from the figure that the blocks grouped by thishud look very sim-
ilar. The blocks that were generated did not contain oveitappatches for simplic-
ity. The classical BM3D algorithm uses overlapping patdiosgenerate more similar
patches, however in the case of the surveillance problesnghiarely an issue since
there are many similar patches.
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Figure 3.5: Patches found within the same block using the grouping algorithm.

3.3.2 The Collaborative Filtering Stage

The second stage in the denoising step is that of collalverfiiering and is basically
the stage where the noise reduction takes place. Once thkshdme obtained a 3D
linear transform is applied to each block in order to get teqdiency representation of
the image. There are multiple linear transforms that canslee but it is convenient to
use a separable transform. Separable means that the N domartsansform can be
calculated as a separable product of N sequential 1D transfalong each dimension.
The transform that was chosen was the Discrete Cosine BramgDCT) who’s 2D
version is shown below

Ny—1N2—1 m/ 1 n/. 1
Xy ko = i; j; Xi,| cos{N—l (I + 5) kl} cos{N—2 (j + 5) kz} ) (3.4)

It is evident from (3.4) that the DCT is separable, whichwidor the calculation
of the 3D DCT as one 2D DCT for each patch in the block and one Cb Blong the
“temporal” dimension of the block.

Once the transform coefficients have been found they are a@dpo a threshold
Athr @nd if they are smaller they are set to zero. This is the sangetheesholding used
in the classical BM3D algorithm, which helps attenuate tbis@&. The parametgy,
depends on how much smoothing we wish to apply. Large valtiag,owill mean
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better denoising but more blurring of the edges and smallegabfA:,, will result in
persistent noise. The optimal value 7qf, for most cases was found to bel @.

Finally the denoised blocks are obtained through the imviengar transform. The
filtering procedure described above is used in the case gfgrale images. In the
case of color images the collaborative filtering must beiadgb each color channel
separately. The choice of colorspace for the images doesaffeat the algorithm so
the standard RGB was used.

3.3.3 Aggregation Stage

The blocks obtained after the collaborative filtering contidhe estimates of their

patches. The easiest way of reconstructing the denoisepkimauld be to concatenate
the patch estimates that correspond to the current frame.r&ult of this operation

can be viewed in Figure 3.6.

Figure 3.6: Reconstruction of a frame using only the patch estimates from the block

that correspond to that frame. The resulting image suffers from artifacts.

Itis immediately noticeable that the noise has been sutdbsdealt with. The re-
construction, however seems to have slightly unnaturastt@ns from patch to patch.
This happens because blocks will have a different numbegtafrred coefficients de-
pending on the homogeneity and the amount of noise that septen them. Some
blocks will therefore lose more detail than others. Thigeifis usual for patch based
methods using magnitude thresholding. For this reasoregggjon of the patches sim-
ilar to the one in BM3D is performed. One can consider thigagation as a form of
weighted averaging of pixels that are in the same positiadnrbdifferent patches of
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a block. In the case of non-overlapping blocks then weigltisb& equal and this
will be the same as applying smoothing via a mean filter fohgmaxel across multiple
frames. The effects of this averaging are shown in Figure 3.7

Figure 3.7: Reconstruction of a frame using aggregation of all the patch estimates of

the blocks.

3.4 Deblurring Step

Once the frames have been denoised then the deblurringateale place. For this
step we use the algorithm proposed in [17] and [1]. This allgar is a multi-frame
blind deconvolution method that makes use of multiple insagféhe same scene taken
from slightly different angles (slightly misaligned image This method was chosen
for two reasons. Firstly, it can be used with consecutivenéa from our recordings as
well as clean frames. Using clean frames allows for bettémesion of the image as
well as the blur. Secondly, it accounts for any swaying mmoaad minor changes in
the scene caused by underwater currents in the scene.

3.4.1 Method Description

It was mentioned previously that this deblurring methodsuselictionary of recent
frames from the video in order to deblur the current frameis therefore required
to solve the following ill-posed system of equations forR8Fsh;, h, - - -hy, and the

original imagef.
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g1 =hixf+n1(xy)

g2 =hox f+1n2(Xy)
(3.5)

Om = Dmx f +Nm(X,y)
In order to solve this system the method imposes certaini@nts to the problem by
minimizing a regularized energy function shown below.

E(f,hl,---hm>:%,Zlnhi*f—gi||2+AQ<f>+vR<h1,---hm>, (3.6)

whereQ(f) andR(hy,---hm) are regularization terms that impose constraints on the
original image and PSFs respectively. The parameéteasdy are positive numbers
which penalize the solutions df andh;. In order to find the a minimizer of (3.6)
alternate minimizations d& are performed with respect foandhg, - - - hy,. The terms
Q(f) andR(hy,---hy) are chosen to be quadratic and therefore convex, which makes
finding the derivativesk?E and EE easier. This helps the alternating minimization
algorithm (AM) perform a variation of steepest descent ofeoto minimize the energy
function.

AM first descends in the image subspace until it reaches anmhmi@E =0) and
then performs optimization in the blur subspace in a dioecthat is orthogonal to
the one it had previously. This is repeated until convergerithe iterative steps are
summarized by the equations shown below

e Iststep:f"=arg rrflirE(fnfl, {hy,--hm}" 1)

e 2nd step{hy,---hn}"=arg min }E(f”, {hy,---hm}"1)

1, m

These two equations end up being linear and are easy to Jdteenergy function
is not a convex function with respect foandh; so it is not guaranteed to converge
to a global optimum. In the first step of AM, the minimizatio® done using the
conjugate gradients method and then the solutions areefiltey the constraints. The
second step involves calculating the blur PSF, which is namshller in size than the
image and therefore can be performed as a constrained raation without being too
computationally demanding.

The values of the regularization parametgrandy can be determined through
analysis but in our case are tuned manually to suit the pmolaie hand via visual
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assessment of the output frames. The optimal values of fheseneters vary from
problem to problem and have to be tuned for each sequence.

It must be noted that this method assumes that the size of $ks B known.
However the method will still function well if the size is aestimated (the extra coef-
ficients will be very close to zero), although there is the tgfaover-fitting. However
if the size is underestimated then the method will not be abtkeal with the problem
well. Fortunately the size of the PSFs can also be tuned sisalassessment.

Once the blur PSF has been estimated it can be used to debliardground that
was removed by the background subtraction. This assumethéhfssh will have been
blurred in the same way as the rest of the image. The debl@wredround is then
overlaid on top of the deblurred frame to produce the finaireses.

3.4.2 Method Variations

The above method can be implemented as described in thepsesection to deblur
the frames, however some different variations of the methe@ also considered.

3.4.2.1 Patch Based Variation

The first variation of the method tries to adopt a patch bappdoach by dividing the
frames into patches and forming blocks using the correspgnohtches from other
frames in the dictionary. It then proceeds to apply the dedloion algorithm on
each block separately to produce an estimate of the blocke#lsag/ an estimate of
the local PSF. The reason behind this decision was to dehltthét local blur that is
present in some sequences. Due to the fact that both locagllabal blur were present
in our dataset (Figure 3.8) the developed algorithm givesutfer the choice between
patch-based or whole-image deconvolution.

The subject of local blur is a very difficult one, which has pet been researched.
The problem with local blur is that it is most likely caused ltiple PSFs that
operate on small patches of the image. If the blind image mexdotion algorithm is
applied to the whole frame then it will try to attribute theubthat is present in the
image to only one PSF. This is futile since the same PSF canfebponsible for a
blurry part of an image as well as a non blurry part. This isrd@son why it is worth
trying to use a patch based approach.
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(i) Frame with global blur (ii) Frame containing local blur

Figure 3.8: Examples of local and global blur in the recordings.

3.4.2.2 Variation using Clean Frames

The second variation of the algorithm is based on the fadtkhawledge of when
the camera was last cleaned is available. Therefore, ctaares can also be inserted
in the deblurring algorithm’s dictionary so as to extractrenmformation about the
scene. By adding a clean frame we hope to influence the digoiit producing a
reconstruction that is closer to the it. This can only be dbttee algorithm correctly
understands that the clean frame is indeed close to thenatigtene and thus assigns
to it a function that is close to the Dirac Delta, since contioh of any signal with the
Dirac Delta produces the same signal.

If the method described in section 3.4.1 is used as it is litproduce estimates of
the PSFs and the original scene that are directly influengebedclean frame. Thus,
estimate of the original scene will end up being an averagheeblurred frames
and the clean frame. It would be preferred ,however, if otimege of the original
scene is not directly influenced by clean frames. The reastmat clean frames are
taken from too far in past and do not reflect the current sioatf the seabed. This
would make our algorithm insensitive to any minor changethascenery such as
slight movements and illumination changes.

A more indirect way for using the information of the cleamfies must be found.
It is proposed that only the PSF estimates, obtained by the-frame deconvolution
algorithm, be used and not the estimate of the scene itsetfig# contains part of the
clean image). The PSF estimate of the blur in the currentdraam then be used in
conjunction with the current blurred frame to produce ameste of the original scene
via non-blind deconvolution. This way the clean frame aBeaur estimate of the
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original scene indirectly through the blurring functiomyAchanges in the illumination

or any details that were present in the blurry frames wili¢fiee be maintained. The
reconstruction that is obtained from directly using thenlé&ames in the estimate and
the reconstruction that indirectly uses the clean framasesseen in Figure 3.9.

(i) Reconstruction obtained from directly using (ii) Reconstruction obtained from indirectly us-

the clean frames in the estimate. ing the clean frames in the estimate.

Figure 3.9: Examples of reconstructions obtained from i)directly ii) indirectly using clean

frames.

The reconstruction that is obtained directly from the clé@mes seems better
than the one that indirectly uses them. However, this resuttificial and is caused
by the averaging of the clean and blurry frames(this is whgesof the local blur also
disappears). In order to produce an adaptive algorithmdbiaectly represents the
current state of the scene the indirect approach must be whéch does not produce
much inferior results.



Chapter 4
Experiments and Evaluation

In this chapter the experiments held with the proposed naettith be presented and
assessed. Experiments were held to show the performanke pfaposed method on
the blurry sequences. Additional tests with artificial detation were also held to
determine the performance of each stage in our method (siegéieblurring). The

outline of the chapter is as follows. First the denoisingatgm will be tested on sets
with generated noise and compared to other methods. Thepettiemance of the

deblurring algorithm is assessed for frames that were ptecuby artificial local and

global blur. Finally the results produced by the whole aldpon on our real data will

be presented and discussed.

4.1 Methods of Evaluation

It is very important to establish a measure with which to eatd the quality of the

video reconstruction. When assessing the quality of fraomesmust usually have an
idea of what the original noiseless frames look like. Theersamilar the reconstructed
video is to what is assumed to be the original sequence ther le¢ quality it has. Two

videos are considered similar if their respective framesdentical on average.

If we possess the original clean frames then we can use nesasuch as the Mean
Squared Error (MSE) or Peak Signal-to-Noise Ratio (PSNR¥sess the quality if the
reconstruction. These measures are termed “objectivetatie fact that they do not
depend on human judgement, which varies depending on ansgpeosonal aesthetics,
but are based on a pixel by pixel differences of the frames.

The mean squared error (MSE) has been the most widely useditatise perfor-
mance metric in signal processing. It is computed accorthirigrmula (4.1).

31
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1N|\/|

MSE= Wi;jzgsoriginal (i, J) — Seconstructedi, ) (4.1)

PSNR is another form of the MSE whose use is even more widadfioe image
applications. The formula for this is seenin (4.2).

(4.2)

2
PSNR= 10-log;, (MAX' ) ,

'MSE
whereMAX; is the maximum pixel value in the image. The MSE is widely used
signal processing due to its simplicity, the fact that itasgmeter free and inexpensive
to compute. It is also a natural way to describe signals sr@uepresents the energy
of the signal. PSNR and MSE are different forms of the sanmgthithough the reader
must be careful to notice that while a low MSE signifies a beditmilarity the opposite
holds for PSNR (a high PSNR is better).

It must be mentioned that there are many cases where MSE/R&N®Rrong in
assessing the quality of an image. This stems from the fatttbey are based on
pixel by pixel differences. Thus the are affected by sevabrs such as illumination
changes, translation etc. This can be understood via anp&dnom [18] shown in
Figure 4.1.

This example shows why relying only on “objective” metricsght not be the
correct thing to do when judging the quality of the reconstinn. For this reason
examples of frames will be presented to back up any claimsitadpaality. Surveys
where also conducted with people who judged the quality efithage. Of course
when the data permits the PSNR will also be presented.

4.2 Denoising Experiments

Our denoising algorithm was tested on several sequencésvaiying amounts of

blur that where corrupted by additive noise in order to detee how well it performs

against other popular denoising techniques. Due to theHhatthe noise levels in the
initial video were not very high the denoising experimen&eheld with frames that
where artificially corrupted by noise. This also allows fongarison of the results of
the denoising with the original frames. Experiments welld bising various types of
noise and noise levels. The proposed denoising algorittoongared to the median
filter (using a 3-by-3 neighbourhood) and the BM3D method.esehtwo denosing
methods where chosen for the comparison because of thé&d¢hey are the state of
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MSE=0, S5IM=1 MSE=306, S5IM=0.928 MSE=303, SSIM=0.987 MSE=309, SSIM=0.57¢6
CW-535IM=1 CW-55IM=0.938 CW-55IM=1.000 CW-53IM=0.814

(a) (b} (c) {d)

MSE=313, SSIM=0.730 MSE=309, 55IM=0.580 MSE=308, 55IM=0.641 MSE=694, S5IM=0.505
CW-S8IM=0.811 CW-8SIM=0.833 CW-58IM=0.603 CW-55IM=0.925

(&) (@ (h)

= ==
—

MSE=E71, 55IM=0.404 MSE=590, S5IM=0.549 MSE=577, 55IM=0.551

MSE=873., 55IM=0.399
CW-55IM=0.833 CW-55IM=0.933 CW-S5IM=0.917 CwW-35IM=0.918

{i) ] L]

Figure 4.1: Comparison of image fidelity measures for Einstein image altered with differ-
ent types of distortions. (a) Reference image.(b) Mean contrast stretch. (c) Luminance
shift. (d) Gaussian noise contamination. (e) Impulsive noise contamination. (f) JPEG
compression. (g) Blurring. (h) Spatial scaling (zooming out). (i) Spatial shift (to the
right). (j) Spatial shift (to the left). (k) Rotation (counter-clockwise). (I) Rotation (clock-

wise) taken from [18]

the art spacial denoising methods for different types o$@oDur proposed denoising
algorithm has to make use of the background subtractionnimve the fish from the
image. The fish were then replaced for the comparison witlotigegnal frames. All
the images used in these experiments had pixel intenstbesdsas double precision
floating point numbers in the range |6 1].
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4.2.1 Experiment with Additive Gaussian Noise
4.2.1.1 Frames Corrupted by Weak Noise

In this experiment a sequence of frames was corrupted wihiegl zero-mean gaus-
sian noise with a standard deviation of 0:0&he chosen test sequence contained 400
frames and was assessed using the Mean Peak Signal-tofRatdise The results are
shown in Table 4.1 and Figure 4.2

Algorithm MPSNR (R channel) MPSNR (G channel) MPSNR (B cledpin

BM3D 35.8792 dB 36.4760 dB 36.4194 dB
Median filter 25.5234 dB 25.5068 dB 25.5633 dB
Proposed method 32.8452 dB 33.5798 dB 33.5922 dB

Table 4.1: PSNR of the tested methods for each channel averaged over 400 frames

The results show that the patch based methods clearly dotpethe median filter.
The proposed variation of BM3D gives a slightly worse PSNpared to the clas-
sical BM3D algorithm. The difference between the PSNR oftth@ images is small
enough so that it does not signify that one is necessarilgibtan the other. In fact
the difference could be attributed partly to the fact thatmoeposed method is highly
dependent on the background subtraction. If the backgreuhttaction fails then the
fish that will be present in the patches will affect the deimgisand the PSNR. This
phenomenon is very rare although there are some framesia$pacthe beginning
of the sequence ( where background subtraction is still aot &ccurate) where this
happens. An example of a case where the background subtrdatis is shown in
Figure 4.3.

In order to obtain a qualitative measure for the quality a teconstructions a
survey was held where people where shown frames of eachstegotion and where
asked to vote for the one that was closest to the originabthi 11 people were shown
frames of the original sequence and frames that were prddwsgiag each of the meth-
ods and to choose the method that produced the closest tegim to the original.
Frames were chosen so that they did not contain significearsrom the background
subtraction. The survey revealed that 55% of those askddrpcethe reconstruction
of the classicl BM3D, followed by 45% who chose our propospdraach. Median
filtering received no votes.

Limages have pixel intensities in the range [0,1]
2The average PSNR for all three channels is presented folisitygvhen they are all similar.
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(i) Original frame taken from underwater (i) Frame corrupted by zero-mean gaus-
recordings sian noise with a standard deviation of 0.04.
PSNR= +27.72dB

SRR 0

(i) Denoised frame using BM3D.PSNR= (iv) Denoised frame using median filtering
+34.62dB PSNR= +2827dB

(v) Denoised frame using the proposed method
PSNR= +34.88dB

Figure 4.2: Example of denoising of a frame from the sequence for the proposed

method, BM3D and median filtering
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200107090 ES )

(i) Frame denoised with bad background sub-(ii) Intensity image of pixel by pixel difference
traction PSNR= +25.31dB for cases when the background subtraction

fails

Figure 4.3: Example showing how a non detected fish causes bad image reconstruction

4.2.1.2 Frames Corrupted by Strong Noise

In order to test the denoising capabilities of our algorifanther it was tested on a very
noisy sequence and its performance was compared to othesdepmethods. Frames
were corrupted with an additive zero-mean Gaussian noigeavstandard deviation
of 0.08. By adding more noise we can also test the robustrfefge dackground
subtraction. The PSNR was not measured for the initial feamigere the background
subtraction was still initialising. The mean PSNR of the B30 frames in a sequence
of 400 is shown in Table 4.2. An example of the noisy and dextbisames from each
method can be seen in fig:examples 2nd experiment.

Algorithm MPSNR (R channel) MPSNR (G channel) MPSNR (B cledpin

BM3D 31.8202 dB 32.2101 dB 32.1059 dB
Median filter 21.5965 dB 21.6732dB 21.7424 dB
Proposed method 31.9018 dB 32.3546 dB 32.3765 dB

Table 4.2: PSNR of the tested methods for each channel averaged over 200 frames

Once again the results show that median filtering is far wihrae the patch based
methods producing a very blurry result that is still affectsy noise. Our proposed
variation of BM3D performs similarly to the classical BM3p@oach. The mean
PSNR for our method is slightly better than that of the BM3[prach, although
once again this difference is negligible. This is why we halg® resorted to a survey
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(i) Original frame taken from underwater (i) Frame corrupted by zero-mean gaus-
recordings sian noise with a standard deviation of 0.08.

PSNR= +25.05dB
2T SN

(i) Denoised frame using BM3D.PSNR= (iv) Denoised frame using median filtering
+31.17dB PSNR= +26.58dB

(v) Denoised frame using the proposed method
PSNR= +33.1dB

Figure 4.4: Example of denoising of a frame from the sequence for the proposed
method, BM3D and median filtering (3 x 3neigbourhoodl
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where it was revealed that 64% of those asked prefered opoped approach to the
other methods. The classical BM3D received 36% of the vatelsnaedian filtering
received no votes. It is interesting to note that the meanAP8M approach was not
affected as much as the others by the increase in noise. Preeimrent with salt and
pepper noise that follows will explain why this happens.

4.2.1.3 Results for Various Sequences

In order to get a better understanding of how the denoisimfppas for various se-
quences and with different levels of noise a series of erpanis were performed. The
PSNR for the three methods that were tested are shown in Zghle

Datasett BM3D Median filter Proposed method
35.1287dB 24.8604 dB 28.1805 dB
2 30.8360dB 21.4010dB 27.7212 dB
3 36.6946 dB  26.4626 dB 30.1201 dB
4 32.7210dB 21.8886 dB 29.5727 dB
5 38.7728dB 26.9526 dB 36.0280 dB

Table 4.3: PSNR for the denoising methods tested on various datasets.

The results are similar across all the recordings. The icl@sBM3D approach
usually has a slightly larger PSNR than our proposed methadhacan partially be
explained by the failing of the background subtraction fertain frames. In order to
provide a more subjective qualitative assessment a sunvdgsto the ones performed
in the previous sections was held for each data set. Theseduhe surveys that were
held for the qualitative assessment of the frames are showalile 4.4.

The surveys reveal that for the majority of the tests our psepl method produced

Data set BM3D Median filter Proposed method
28% 0% 72%
2 36% 0% 64%
3 45% 9% 56%
4 36% 0% 64%
5 56% 0% 44%

Table 4.4: Percentages of people who voted for each of the competing methods.



Chapter 4. Experiments and Evaluation 39

a more aesthetically pleasing result, although the numbgeaple that preferred the
the classical BM3D method is not negligible. The main probkbat people found

with the classical BM3D approach was that it tended to blerdatails in the scene a
bit more than our approach. This can be attributed to thetffettthe classical BM3D

groups together patches that may be vary slightly in somaildeind these details
might be lost during the filtering stage.

4.2.2 Experiments with Salt and Pepper Noise

This experiment deals with the removal of salt and peppesenorlhis noise consists
of random light and dark pixels appearing in the images. #iue of noise is typically
caused by timing errors in the digitization process. Thehoe$ were all tested in
a sequence of 400 frames that were corrupted by “salt andepefype noise which
affected 2 percent of the frame pixels. An example of a noiayné and denoised
frames from each method can be seen in Figure 4.5.

Algorithm MPSNR (R channel) MPSNR (G channel) MPSNR (B cledpin

BM3D 27.1202 dB 26.2101 dB 26.1059 dB
Median filter 19.5965 dB 18.6732 dB 18.7424 dB
Proposed method 30.9018 dB 30.3546 dB 31.3765dB

Table 4.5: PSNR of the tested methods for each channel averaged over 200 frames

It is evident from the above examples that the classical BM&8Dt cope with the
“salt and pepper” noise. This happens because “salt andepeppise consists of
outliers that will greatly affect the grouping stage of thassical BM3D. Due to the
fact that BM3D fails in its search to find similar patches ther can't create blocks or
creates blocks of patches that are not very similar. The anddtering is known to be
one of the best methods for dealing with “salt and peppers&oHowever, as we can
see the proposed approach also deals well with the noise h@ppens because groups
are formed without performing a search. Once the blocks@radd then the noise
will be filtered out during the hard-thresholding stage of algorithm. In addition
our approach manages to better maintain the details ofainesis compared to median
filtering. A survey held with 11 people revealed that our 70hose asked preferred
our proposed approach to that of median filtering, whichiveck30% of the votes.
The classical BM3D method as expected received no votes.
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(i) Original frame taken from underwater (ii) Frame corrupted by “salt and pepper” noise

recordings. with a density of 2%. PSNR= +25.05dB
: 4] i 7 g e T :

(i) Denoised frame using BM3D.PSNR= (iv) Denoised frame using median filtering
+26.17dB PSNR= +19.58dB

(v) Denoised frame using the proposed method
PSNR= +321dB

Figure 4.5: Example of denoising of a frame from the sequence for the proposed
method, BM3D and median filtering (3 x 3neigbourhoogl
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4.3 Deblurring experiments

In order to test our deblurring algorithm we conducted expents using the denoised
non-blurry frames, which contained no fish, obtained from phevious steps. Then
various types of artificial blur were added to them. Experita@vhere conducted with
both artificial global and local blur.

4.3.1 Performance on Artificial Global Blur

This section presents experiments that were performedannefs that were corrupted
by adding artificial global blur. In order to cover most casé®lur that might have
occurred in our frames, experiments were held for threedifit types of global blur.
The first type of blur is one that has a Gaussian PSF that dtaysame throughout
all the frames of the video. The second type of blur examihegbssibility of a PSF
that is close to Gaussian but exhibits some deviation framé& to frame. Finally, the
last experiment deals with the case of motion blur, wheredtfextion of the motion
changes from frame to frame.

4.3.1.1 Gaussian Blur throughout all Frames

In this experiment we blurred three of our denoised framedasning no foreground
and blurred them with the same Gaussian PSF with a varianteanll corrupted by
zero-mean Gaussian noise with a variance 001. We call this a global blur because
it is not limited to a section of the image but affects the rentinage. The effects of
this blur as well as the deblurred image we get from the pregosethod are shown
in Figure 4.6.

The reconstruction seems to be quite sharp and similar torigenal and has a
PSNR that is larger than that of the corresponding blurmé&alt is expected that the
algorithm will have also recovered the PSF of the blur. Annegke of the recovered
PSFs is shown beside the original PSF of the blur in Figureram the comparison
of these two images we can see that the algorithm has managedréctly estimate
the form of the PSF. The two PSFs were compared by the pix@htsl measures and
were found to have a MSE of@?24 and PSNR 0f40.14dB.
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(i) An example of a non blurry denoised frame (i) The blurred and noisy frame. PSNR=
corrupted by gaussian blur and additive gaus- +21.9dB

sian noise

(iii) Deblurred frame using the proposed ap-
proach. PSNR} 26.94dB

Figure 4.6: Example demonstating the restoration we get when dealing with frames

corrupted with the same global blur.

(i) PSF of the blur that was applied to the (ii) Estimated PSF of the blur using the pro-

frames. posed method.

Figure 4.7: Comparison between the estimated PSF and the actual PSF of the blur.
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4.3.1.2 Frames Blurred by Varying Gaussian Blur

In this experiment the Gaussian PSF generated from thequestep was corrupted by
additive noise to produce three similar blur PSFs that wbel@pplied to each frame
in the sequence. The frames where also corrupted by addiogreean Gaussian noise
with a variance of @MO01. This experiment is closer to our assumption that tbe bl
may change slightly from frame to frame. The blur PSFs predubis way can be
observed in Figure 4.8 along with the effect they have onrtés@és of the dictionary.

(i) Blur PSF of the 1st frame (ii) Blur PSF of the 2nd frame (iii) Blur PSF of the 3rd frame

in our deblurring dictionary. in our deblurring dictionary. in our deblurring dictionary.

2011 TA A AN R

(iv) Blurred frame corre- (v) Blurred frame corre- (vi) Blurred frame corre-
sponding to the 1st frame in sponding to the 2nd frame sponding to the 3rd frame in
our deblurring dictionary. in our deblurring dictionary. our deblurring dictionary.

Figure 4.8: Blur PSFs produced by adding noise to a Gaussian blur PSF. The resulting

blurred frames based on the PSFs.

These PSFs are all generated based on the same Gaussiantbéue Islightly
different between them. This results in frames being btuirea slightly different
manner. An example of how a reconstruction is obtained usidigtionary with the 3
blurred frames shown in Figure 4.9.

The results show that the algorithm managed to reverse thet®bf the blur and
produce frames that are quite similar to the original. Thereded PSFs that corre-
spond to those in Figure 4.8 are shown in Figure 4.10.

It is evident that the PSFs recovered by the proposed metaeel taptured the
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(i) An example of a clean denoised frame. (i) The blurred and noisy frame. PSNR=

+27.76dB
IR

(iii) Deblurred frame using the proposed ap-
proach. PSNR+31.19dB

Figure 4.9: Example demonstating the restoration we get when dealing with frames

corrupted slightly varying global blur.

(i) Estimated PSF for the blur(ii) Estimated PSF for the blur (iii) Estimated PSF for the blur
of the 1st frame in our deblur-of the 2nd frame in our de- of the 3rd frame in our deblur-

ring dictionary. blurring dictionary. ring dictionary.

Figure 4.10: Blur PSFs estimated by the proposed method.
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structure of the original PSFs well. The PSNR for each PShatt was found to be
around 38 B. Which means that each PSF was quite accurately estimated.

4.3.2 Experiments with Artificial Local Blur

A problem with the underwater recordings is that sometimkesger amount of dirt
gathers only on specific areas of the camera. This causesg $dical blur (similar to
fog) in some parts of the frame. The fact that there are clatohes as well as blurry
patches in the same frame makes it hard for deblurring dlgos to estimate a single
blur PSF for the whole image. For this reason it was decidegkp@riment using a
patch based variation of the proposed multi-frame delsigrmethod. The patches
used for the following experiments where 80 by 80 pixels big.

4.3.2.1 Local Gaussian Blur

In this experiment an area in the frames was artificially tldrusing gaussian PSFs
and then also corrupted by zero-mean gaussian noise withanga of 00001. The
area that was affected by the local blur was chosen to benguaa for simplicity,
although in real data the local blurs can have any shape.egudts of the multi-frame
method used on patches as well as on the whole image can bangéguare 4.11.

From visual inspection the two methods seem to have sinekults. The PSNR
for the patch-based approach is slightly improved from thwle frame approach.
Both of the methods have also sharpened the parts of the imagiele the patch. The
patch-based method has managed to deal a bit more with thieside the patch. This
reason behind this improvement can be understood whemlgaikithe PSFs shown in
Figure 4.12.

As we can see the frame based approach tries to find a singlthBSgan account
for the degradation and recovers a PSF that is not simildreéd3aussian PSF of the
blur. The patch-based approach however can recover thetigteuof the gaussian
blur for the patch where it belongs. The PSF for a patch notagoimg blur is closer
to a Dirac function, which we were expecting, since the frasneeasonably clear at
that region. Despite the effective identification of thaisture of the PSF the patch-
based approach can't correctly estimate the coefficienteeoblurring window and
as a consequence doesn't perform much better than thecalbapproach. This most
likely occurs because there is not enough high frequenoynmdtion present in smaller
patches for the deblurring problem to be effectively solved
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(i) Original frame of a sequence. (i) Frame containing a blurred region. PSNR=
+20.18dB

,_51 3
(iii) Deblurred frame using proposed method (iv) Deblurred frame using proposed method

on the entire frames.PSNR= +20.75dB on patches of the image.PSNR= +21.53dB

Figure 4.11: The results obtained from using the multiframe algorithm on patches in-

stead of whole images

() Blur PSF estimated by the(ii) Blur PSF estimated by (iii) Blur PSF estimated by
frame-based approach for thethe patch-based for a patch the patch-based for a patch

2nd patch in the dictionary. where the blur is present where the blur is not present

Figure 4.12: Blur PSFs estimated by the proposed method.

4.3.2.2 Local Motion Blur

It is assumed that sometimes blur in frames can occur duene swaying motion of
the scene. For this reason an experiment with local motionwés performed. The



Chapter 4. Experiments and Evaluation a7

motion is assumed to change direction between frames. Taaiethis frames were
locally corrupted by a motion blur whose direction anglee@ifrom frame to frame.
An example of a frame from the dictionary that is corruptedvmtion blur as well as
the reconstruction obtained via the frame-based and fmsbed deblurring algorithm
are shown in Figure 4.13.

LT TR 2 L1 -07=038 ) SR

(ii) Frame containing a region blurred with mo-

tion blur.
B2

(iii) Deblurred frame using proposed method (iv) Deblurred frame using proposed method

on the entire frames. on patches of the image.

Figure 4.13: The results of deblurring on frames corrupted by local motion blur

Both the reconstructions of the frame-based and patchdbalg®rithm shown
seem clearer than the blurred frame. The patch-based aybpihaa achieved a sharper
result, although its reconstruction suffers from somdauts.

4.4 Experiments with Real Data

The whole algorithm containing both the denoising and deinlg steps was tested on
blurry sequences recorded by the underwater camera. lollbe/ing experiment the
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original sequence is not available so the quality of the metraction was left for the
reader to decide. The basic algorithm proposed in this sheesiwvell as its proposed
variations will be tested on the real data. Therefore, then&-based as well as the
patch-based variation will be assessed. In addition fofrdmae based algorithm we
will examine two cases. In the first case the deblurring stesgs a dictionary con-
taining only the 3 recent blurry frames. In the second casal#blurring stage uses
a dictionary containing the 3 recent blurry frames and a &aaken from when the
camera was first cleaned. The experiments where conductedsequence of 100
blurred frames from our database. The blurs that are praséms example sequence
were both local and global blurs. The results of the vametiof our video restoration
method (patch-based, using clean frames) can be shownuneMgl4.

The deblurring algorithms seem to be able to deal with thbajlblur of the scene.
The frame-based approaches can't deal with the local bltlienmage as expected.
However, the patch based algorithm also struggles withdbal Iblur. A survey was
conducted with 11 people out of which 7 preferred the fraragebl reconstruction that
uses the clean frames and 4 preferred the frame-based apphad doesn’t.

The best result was obtained for the method that uses the ftlraes. The reasons
behind its success can be understood by looking at the ppiead functions that
where estimated for a clean and blurry frame. These along tvé estimated PSF
obtained without using clean frames in the dictionary amshin Figure 4.15.

The first thing that must be noted is that the algorithm esesia PSF for the clean
frame that greatly resembles a Dirac function. This is dyxadhat we were hoping for
because it means that it correctly detects that there isstinwoblur in that frame. This
also means that the the algorithm will attempt to find PSFsHerblurry frames that
through non-blind deconvolution with their frames will pece images that are close
to the clean frame. As we can see from Figure 4.15 the vaniasing the clean frame
has managed to retrieve a much more complex PSF that thé@atging only blurred
frames. Inserting the clean image in the dictionary actsaadaled constraint to the
minimization problem. For this reason we were able to retexregularization factor
y of the termR(hy, - - - hy,) in the optimization problem in (3.6). Thus a more complex
and accurate estimation for the PSFs is obtained that stiflyres valid results.
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(i) Original frame of a sequence containing lo- (ii) Clean image used in the dictionary (used
cal and global blur. only for the clean frame variation of the algo-

rithm).

(iii) Frame produced after the deblurring step (iv) Frame produced after the deblurring step

without clean frames in the dictionary. with clean frames in the dictionary.

e

(v) Frame produced using the patch-based de-

blurring step.

Figure 4.14: The results of deblurring on real blurry frames.
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(i) Estimated point spread
function corresponding to the
clean frame. The dictio-
nary used contains clean and

blurry frames

(ii) Estimated point spread

function corresponding to the
blurry frame.  The dictio-
nary used contains clean and

blurry frames.

(iii) Estimated point spread
function corresponding to the
blurry frame. The dictionary
used contains only blurry

frames

Figure 4.15: The estimated point spread functions of for the clean and blurry frames.
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Conclusions and Discussion

5.1 Conclusions

In the previous section the developed method was testedghra series of experi-
ments on data with artificial corruption as well as on reahddthe algorithm seems
to be able to improve the quality of the frames in most casesveer, it can usually
only deal with the global blur caused by floating particled &ght diffusion. There
are numerous conclusions that can be made based on the @Qhapter 4.

The denoising stage makes the algorithm robust and capifbieationing in cases
where the re is noise present in the scene. It is capableadit®itly dealing with most
types of noise due to the fact that it is a temporal method.allvantages of temporal
methods is made evident in the experiments of section 4.8pieit being a patch-
based algorithm it does not share the two main disadvanthgéshese algorithms
have. Firstly it does not require an exhaustive search iardaigroup patches together
which makes it more suitable for real time applications. ddedy it is able to deal
with large amounts of noise as well as “salt and pepper” ndiseperformance is in
most cases comparable to applying BM3D on each frame separeithout having
to perform the second step of Wiener filtering. This means ithdoes not require
knowledge of the variance of the noise, which in most casesisiown and hard
to calculate. The main disadvantage of this method is thest anly useful in the
surveillance setting.

The deblurring stage is able to deal with some of the bluréfthmes, although it
seems to struggle with local blur. Our proposed patch-beaedtion of the deblurring
algorithm can sometimes deal with local blur as shown forciee of artificial local
blur of section 4.3.2. Unfortunately, for the frames of tlealrsequences this prob-

51
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lem is still persistent. However, the problem of local blasot yet been solved by
researchers and we believe that a solution might still bsiplesusing a patch-based
approach.

Finally, incorporating the clean frames in the deblurringtidnary manages to
achieve quite impressive results when dealing with glohal b

5.2 Future Work

After having drawn the above conclusions about the methotelieve that there are
ways to improve the current algorithm. Firstly, the denagsstep could be modified
so that it permits overlapping and non-rectangular patchéss will hopefully help
in the elimination of the rectangular artifacts. Secontig deblurring problem that
is dealt with by the multiframe blind deconvolution apprbamuld be redefined so
that the blur PSF#4,h,---hy, are considered similar. This dependence of the PSFs
will result in solving an optimization problem for less urdkimns making the problem
simpler and less ill-posed. In the case where clean franeeadded to the dictionary
of the deblurring algorithm the optimization problem cobklsimplified by manually
fixing the PSF of the clean frame to be equal to a Dirac functios believed that this
would also improve the performance of the algorithm.

The patch-based approach could be modified to allow patdhres@ shapes and
sizes that can overlap. In order to accommodate these changeggregation method
of obtaining pixel estimates should be designed. Thesegdsamight be able to re-
solve some of the issues that the patch-based approachesttyistruggling with.
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