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Abstract - The purpose of this paper is to present fish 

observation, detection, recognition and verification for 

processing video stream data in the real world. A distributed 

real-time high-definition underwater video stream system has 

been demonstrated in Taiwan for long-term fish observation. 

End users can real-time observe the high-definition 

underwater ecological environment via Internet. These video 

data is preserved to form a resource base for marine 

biologists. Based on the video data, fish detection is 

implemented. However, it is complicated in the unconstrained 

underwater environment, due to the water flow causes the 

water plants sway severely. In this paper, a bounding-

surrounding boxes method is proposed to overcome the 

problem. It efficiently classifies moving fish as the foreground 

objects and the swaying water plants as the background 

objects. It enables to remove the irrelevant information 

(without fish) to reduce the massive amount of video data. 

Moreover, we can acquire the images of multiple species of 

fish with varied angles, sizes, shapes, and illumination to 

construct a fish category database. Sparse representation-

based classification (SRC) based on compressive sensing is 

shown to be robust for face recognition in recent years. We 

propose a maximum probability of parting ranking method 

based on the framework of SRC for fish recognition and 

verification. Experimental results show that the data volume 

is reduced greatly, and fish recognition and verification are 

able to achieve high accuracy. 

Keywords: Compressive sensing, fish recognition, fish 

observation, sparse representation classification, real-time 

streaming. 

 

1 Introduction 

  The research of marine ecosystems is important for 

understanding environmental effects, but it is difficulty due 

to the inaccessibility of data. In this paper, a distributed 

architecture for real-time high-definition underwater video 

stream system is demonstrated for long-term fish observation 

on NMMBA (National Museum of Marine Biology and 

Aquarium), the Southern-most coast of Taiwan [10]. 

Presently, real-time video streams are accessible online via 

Internet broadcasting. Worldwide researchers and end users 

can now real-time observe the underwater ecological 

environment. The video data is also preserved to form a 

resource base for marine biologists. However, the stored data 

that it reaches 1 gigabyte per hour is huge for storage space. 

In our observation environment, fish does not always appear 

in the video frames. Thus, fish detection is implemented that 

can remove the irrelevant information (without fish) to 

reduce the data volume. 

Although many applications for object detection and tracking 

have been proposed, application in uncontrolled conditions, 

i.e. in real-life underwater systems, remains a challenge [3]. 

Fish detection and tracking is complicated by the variability 

of the underwater environment. The water plants may be 

regarded as foreground objects as result of the severe sway 

from interference of the water flow, which is able to result in 

the complexities and difficulties to discriminate moving fish 

and swaying water plants. In this paper, we propose a 

bounding-surrounding boxes method, which effectively 

achieves the purpose that classifies moving fish as the 

foreground objects and swaying water plants as the 

background objects. Then, we are able to acquire the images 

of multiple species of fish with varied angles, sizes, shapes, 

and illumination to construct a fish category database. 

Compressive sensing theorem, a novel sampling technique 

for finding sparse solutions to underdetermined linear system, 

has presented in recent years [1, 2, 4, 9]. According to 

sparsity principle of compressive sensing, it is possible to 

recover certain signals and images exactly from far fewer 

samples of measurements beyond Nyquist rates [7]. Based 

on compressive sensing theorem, a sparse representation-

based classification (SRC) method is proposed for robust 

face recognition [12, 14]. The training images are used as the 

dictionary of representative samples, and the testing image is 

coded as a sparse linear combination of the training images 



via l1-norm minimization. In this paper, we propose a 

maximum probability of partial ranking method based on 

SRC algorithm for fish recognition and verification. 

The rest of this paper is organized as follows: Section 2 

introduces the fish observation and fish detection method. 

Section 3 proposes a maximum probability of partial ranking 

method based on SRC for fish recognition and verification. 

Section 4 shows experimental results and the conclusion is 

drawn in Section 5. 

2 Fish Observation and Fish Detection 

 In this paper, a distributed architecture for real-time 

high-definition underwater video stream system is proposed 

for long-term fish observation. The video stream data is 

preserved for further implement fish detection to 

construction a fish category database. 

2.1 Distributed Real-Time High-Definition 

Underwater Video Stream System 

 Figure 1 shows the distributed architecture components 

and stream pipeline. The system is composed of three units: 

capture devices, stream processor, and display devices. In the 

capture devices unit, the signals are received from high-

definition cameras and they are converted to multiple video 

encoded formats, such as MJPEG, MPEG 1/2/4, SWF/FLV, 

and WMV for multiple display platforms. The stream 

processor unit is in charge of post-processing of video stream 

data. It has two options, one is directly streaming to display 

devices unit that uses a stream relay server to bridge the 

stream data between unicast and multicast. The other is to 

slices video stream into sequence of images for further 

implementing image processing methods, such as object 

detection, tracking, and recognition. Meanwhile, these data 

are converted to SWF/FLV format and are stored as 

historical data. Figure 2 illustrates the workflow of the stored 

historical data. The display devices unit supports multiple 

display devices handy to end users, such as web-based user 

interface and mobile interface. 

 

Figure 1. Architecture blocks and stream pipeline. 

 

Figure 2.  Web-based user interface. 

Two high-definition cameras with 1280x1080 resolution 

located on two different sites inside a fairly large lagoon in 

NMMBA in Taiwan are implemented to test the above-

mentioned system. Figure 3 illustrates the architecture of the 

underwater observation site. Two waterproof cases are set up 

to protect the high-definition cameras, 1394 repeaters and 

optical fibers. The underwater video streams are transmitted 

from underwater cameras to video servers on land by using 

optical fibers, and they are transferred back to NCHC’s 

(National Center for High-Performance Computing) 

multicasting pool through ADSL lines. The marine biologists 

and end users can real-time observe the underwater video 

data via the web-based user interface or mobile interface. 

 

Figure 3.  The architecture of the underwater observation site. 

2.2 Fish Database Construction 

For the stored data, background subtraction [8], foreground 

segmentation and object tracking methods are implemented 

for fish detection and tracking. In this paper, Gaussian 

Mixture Matrix (GMM) method is adopted for background 

subtraction [5, 13]. The highest color histogram similarity 



and the shortest distance are used for feature extraction to 

track the foreground objects. Figure 4(a) shows the 

background model and the current frame is illustrated in 

Figure 4(b). Figure 4(c) illustrates the foreground objects and 

Figure 4(d) shows the bounding boxes of these foreground 

objects. 

  
(a)                                    (b) 

  
(c)                                   (d) 

Figure 4.  (a) The background model (b) the current frame (c) 

the foreground objects (d) the bounding boxes of foreground 

objects. 

The underwater environment in the real world is 

unconstrained, owing to the interference of the water plants 

sway severely. It raises the difficulty and complexity to 

discriminate moving fish and swaying water plants. However, 

the water plants always sway in a fixed field, but fish can 

free move to anywhere. Based on the concept, we propose a 

bounding-surrounding boxes method to discriminate fish as 

the foreground objects and water plants as the background 

objects. The foreground object is circumscribed by its 

bounding box with width w1 and height h1. Let (cx, cy) be the 

center point of the bounding box and the upper-left point is 

(cx-0.5*w1, cy-0.5*h1). Then, the surrounding box is set to T 

(T > 1) times the size of the bounding box with the same 

center point. Let Bt and St be the bounding box and 

surrounding box observed at time t. The location of St is 

fixed in the image, and the location of bounding box of the 

object is observed in a period of time τ. If the location of the 

bounding box from time t to time t+τ is always inside the 

range of St, the object is classified as a non-fish object (water 

plants). It is not only identified as a background object, but 

also eliminated from the tracked object. On the other hand, if 

the location of the bounding box has left the range of St, the 

object is classified as a foreground object (fish). The 

detecting results are shown in Figure 5. The yellow box 

represents the fixed surrounding box of the object. The red 

box in Figure 5(a) represents the object is classified as “fish”, 

and the blue box in Figure 5(b) represents the objects is 

classified as “non-fish” object. 

  
(a)                                   (b) 

Figure 5.  (a) The object (red box) is classified as fish (b) the 

object (blue box) is classified as non-fish (water plant). 

After fish detection is implemented using our proposed 

method, we can only record the video data that contains fish 

and remove the irrelevant information (without fish) to 

reduce the stored data volume. We acquire the images of 

multiple species of fish with varied angles, sizes, shapes, and 

illumination. For each species of fish, we select some images 

that are almost different, and implement image resizing 

method to resize all of fish images to the same resolution. 

Then, a fish category database in the real world is 

constructed. 

3 Maximum Probability of Partial 

Ranking Method 

 An SRC method that represents a testing image as a 

sparse linear combination of all training images has been 

shown to be robust for face recognition [7, 12, 14]. In this 

paper, we proposed a maximum probability of partial 

ranking method based on SRC method for fish recognition. 

There are K species of fish in our fish category database. 

Therefore, we set                as the concatenation 

of the N training images from K species of fish, where N = 

n1+n2+…+nK. The training images of the i
th

 species of fish is 

defined as       
      

         

              
   

 is an m-

dimensional vector stretched by the j
th

 image of the i
th

 

species of fish. A testing image        of the i
th

 species of 

fish could be represented as a linear combination of the 

training images in     i.e.      
   

  
   

   
  
         where 

        
      

         

   
       are weight coefficients. Let 

     represent the testing image   by using  , where   = 

[    ;     ;…;    ]. Due to   belongs to the i
th

 species of 

fish and      
   , a perfect solution to   is that only the 

coefficients in      have significant values, and all the 

coefficients in     , j=1,2,…,K and j≠i, are nearly zero. 

An SRC method computes the residuals as a classifier to 

accurately assign   to the certain species of fish. In this 

paper, we compute maximum probability of partial ranking 

to replace the residuals as a classifier (called SRC-MP). It is 

found by experiments that the largest coefficient may not 

belong to the exact species of fish. However, the   largest 

coefficients may almost match the correct species of fish. 

Thus, we convert and normalize the coefficient   
   

 into the 



probability value   
    

  
   

    
     

   
 
   

, where   
   

 is the j
th

 non-

zero coefficient greater than zero of the i
th 

species of fish of 

   . Then, we assign a partial ranking value   (first largest 

values), and sum up these largest   values to obtain a new 

probability value for each species of fish, respectively. 

Moreover, we employed the new maximum probability as 

the classifier. 

The complete method we proposed is summarized as bellow, 

1. Set       
      

         

           as a matrix of the 

training images for K species of fish, and a testing image 

       ,  as input data. 

2. Solve the l1-norm minimization problem. 

                                            (1) 

3. Compute the probability value   
    

  
   

    
     

   
 
   

 for all 

non-zero values greater than zero. 

4. Compute new probability value for each species of fish 

     , respectively. 

for k <=  ,       =       +   
   

 for i = 1, …, K,  where 

  
   

 is the k
th

 largest probability value belonging to the 

i
th 

species of fish. 

5. Label    by identity( ) =              }. 

4 Experimental Results 

 A bounding-surrounding boxes method for fish 

detection is implemented on the video data. It efficiently 

discriminates moving fish as foreground objects and swaying 

water plants as background objects. It enables to remove the 

irrelevant information (without fish) in the video data to 

reduce the data volume. The experimental result shows that 

we can reduce the data volume to about 1/10 averagely. 

Furthermore, we acquire the images of multiple species of 

fish with varied angles, sizes, shapes and illumination to 

construct a fish category database in the real world. Based on 

the database, a maximum probability of parting ranking 

method based on SRC method is implemented for fish 

recognition and verification. 

4.1 Fish Category Database 

 Prior to fish recognition, sufficient data for constructing 

a database of fish category is necessary. The fish category 

database that we constructed is composed of 1,000 fish 

images of 180 rows and 130 columns with JPEG file format. 

Totally, there are 25 different species of fish. Each one 

contributed 40 images with varied angles, sizes, shapes and 

illumination. The 5 training fish images of subjects 2, 10, 11, 

14, 19, 24 are illustrated in Figure 6. The total 40 fish images 

of subject 2 are illustrated in Figure 7. 

 

Figure 6. The 5 training fish images of 6 subjects. 

 

Figure 7. Examples of total 40 fish images of subject 2. 

4.2 Fish Recognition 

 We evaluate the performance of our proposed method 

(SRC-MP) for fish recognition on the fish category database. 

For each species of fish, we randomly selected 20 images for 

training, while the rest 20 images for testing. Eigenfaces [11] 

and fisherfaces [6] are used for feature extraction with the 

feature space dimensions d = 12, 16, 20, 30, 40, 50, 

respectively. We assign the partial ranking value   = 10 to 

compute the recognition rate. Table 1 shows the recognition 

rates of all methods: (1) Eigen + SRC-LV, (2) Eigen + SRC-

MP, (3) Fisher + SRC-LV and (4) Fisher + SRC-MP. verse 

the corresponding feature dimensions. Figure 8 shows the 

curve of the recognition rates, and the maximum recognition 

rate enables to approach over 80%. 

Table 1. Recognition rates (%) of all methods on the fish 

category database associated with the corresponding 

dimensionality. 

 d = 12 d = 16 d = 20 d = 30 d = 40 d = 50 

(1) 61.6 71.0 73.2 77.0 77.2 80.0 

(2) 63.2 73.6 75.8 79.2 80.4 81.6 

(3) 58.2 60.2 63.0 68.2 77.4 79.6 

(4) 58.6 61.8 66.0 72.8 79.0 81.8 



 

Figure 8. Recognition rates of all methods versus feature 

dimension on the fish category database. 

4.3 Fish Verification 

 Fish verification, verify whether the testing image is a 

valid image of one of the species of fish in the database, is a 

problem that different from identification. As for each 

species of fish on the database, the first 30 images for 

training and the next 10 images (valid images) for testing 

were selected. We also collected new 13 species of fish with 

10 images (invalid images) that are not species of fish on the 

database for testing. Eigenfaces and fisherfaces are used for 

feature extraction with the feature dimensional d = 12, 16, 20, 

30, 40. Figure 9 shows the weighting coefficient of an 

invalid testing image. The weighting coefficients are not 

concentrated on any one subject and instead spread widely 

across the entire training set. Thus, the nonzero weighting 

coefficients of a valid testing image concentrate mostly on 

one species of fish, whereas an invalid image has weighting 

coefficients widely spread among multiple species of fish.  

 

Figure 9. Weighting coefficients of an invalid testing image. 

First, we obtain the value   
   

 that the j
th

 image of the i
th

 

testing fish belongs to one species of fish on the database, 

where j = 1, 2, …, ni. The value of   
   

 is k, if   
   

 belongs to 

the k
th

 species of fish on the database. For valid fish, we 

compute the number      that the i
th

 valid testing fish is 

classified to the correct species of fish. For invalid fish,      

is the maximum number of the i
th

 invalid testing fish belongs 

to one species of fish. Then, we compute the probability 

value of the i
th

 testing fish is  
   

  
 . Table 4 shows the 

probability value (italic value) of all valid and invalid testing 

fish, that eigenfaces is used for feature extraction with the 

feature dimensional d = 30. Two mean values 
      

   
  , 

valid mean value and invalid mean value, are computed, 

where   is the number of the valid testing fish and invalid 

testing fish, respectively. A threshold t that is the mean value 

of the valid mean value and the invalid mean value is 

implemented. For valid testing fish, if the probability value 

of      is higher than t, the valid testing fish is represented as 

a valid fish, otherwise, it is represented as an invalid fish. 

For invalid fish, if the probability value of      is lower than 

t, the invalid testing fish is represented as an invalid fish, 

otherwise, it is represented as a valid fish. In table 2, the 

valid mean value is 90 and the invalid mean value is 43.85. 

The threshold t is (85.6 + 39.2)/2 = 62.4 is assigned, and the 

verification rate that the valid fish is represented as valid fish 

is 92% (23/25), and the verification rate that invalid fish is 

represented invalid fish is 92%. Thus, we can efficiently 

verify the testing image is valid or invalid on the database. 

Table 3 shows the verification rates of all methods: (1) Eigen 

(Valid), (2) Eigen (Invalid), (3) Fisher (Valid) and (4) Fisher 

(Invalid). 

Table 2. The Probability values (italic values) of all valid 

and invalid subjects. The bold values are the testing subjects 

that they are lower than threshold t for valid testing subjects, 

and they are higher than t for invalid testing subjects. 

Valid individual 

id % id % id % id % id % id % 

1 60 2 80 3 80 4 100 5 100 6 100 

7 100 8 100 9 90 10 100 11 80 12 80 

13 90 14 80 15 70 16 80 17 70 18 90 

19 50 20 90 21 90 22 90 23 80 24 100 

25 90  

Invalid individual 

id % id % id % id % id % id % 

1 40 2 60 3 50 4 10 5 30 6 30 

7 40 8 100 9 70 10 50 11 30 12 30 

13 30 14 20 15 50 16 40 17 30 18 30 

19 20 20 50 21 20 22 30 23 40 24 60 

25 20  

 



Table 2. The verification rates of all methods: (1) Eigen 

(Valid), (2) Eigen (Invalid), (3) Fisher (Valid) and (4) Fisher 

(Invalid). 

 d = 12 d = 16 d = 20 d = 30 d = 40 d = 50 

(1) 66.0 80.0 80.0 92.0 88.0 96.0 

(2) 92.0 88.0 80.0 92.0 88.0 92.0 

(3) 56.0 68.0 72.0 76.0 84.0 88.0 

(4) 72.0 76.0 76.0 88.0 88.0 88.0 

 

5 Conclusion 

 In this paper, a distributed real-time high-definition 

underwater video stream system was developed for long-

term fish observation in the real world. The stored video data 

was huge for storage space. A bounding-surrounding boxes 

method had been proposed to discriminate moving fish as the 

foreground objects and swaying water plants as the 

background objects. Then, it enabled to efficiently remove 

the irrelevant information (without fish) and only save the 

data containing fish. It reduced the massive amount of the 

video data greatly. After that, we acquired the images of 

multiple species of fish with varied angles, sizes, shapes, and 

illumination to construct a fish category database. We 

presented a maximum probability of partial ranking method 

based on the framework of sparse representation-based 

classification (SRC) for fish recognition and verification. 

Eigenfaces and fisherfaces were utilized for feature 

extraction. Experimental result showed our proposed method 

achieved high recognition and verification accuracy. In the 

future work, we plan to identify fish species real-time from 

the live video data. 
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