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ABSTRACT

In this paper we propose an automatic system for the iden-

tification of anomalous fish trajectories extracted by pro-

cessing underwater footage. Our approach exploits Hidden

Markov Models (HMMs) to represent and compare trajecto-

ries. Multi-Dimensional Scaling (MDS) is applied to project

the trajectories onto a low-dimensional vector space, while

preserving the similarity between the original data.

Usual or normal events are then defined as set of trajec-

tories clustered together, on which HMMs are trained and

used to check whether a new trajectory matches one of the

usual events, or can be labeled as anomalous. This approach

was tested on 3700 trajectories, obtained by processing a set

of underwater videos with state-of-art object detection and

tracking algorithms, by assessing its capability to distinguish

between correct trajectories and erroneous ones due, for in-

stance, to object occlusions, tracker mis-associations and

background movements.

1. INTRODUCTION

The recent advances in camera technology and the decrease

of costs of devices have led to a widespread interest towards

computer vision applications for automatic video processing

in fields such as video surveillance [1] and real-life animal

studies [2, 3]. However, although a lot of research effort has

been put in the development of algorithms for object detection

and tracking, the problem of identifying and understanding

high-level behavioural events from low-level motion infor-

mation is still unsolved. Several approaches have been pro-

posed by the scientific community [4, 5], but, given the vari-

able nature of the task and its dependance to each specific ap-

plication context, it is extremely difficult to define a globally

valid method. Typically, these techniques follow a bottom-up

approach, consisting in mapping low-level motion features,

such as speed, direction, size and appearance variations, or

an object’s whole trajectory, to high-level scene semantics,

by either recursively identifying simple events and combining

them into more complex ones, or by using automatic cluster-

ing techniques to identify sets of “common” events, which

(a) Correct trajectory (b) Correct trajectory

(c) Complex but correct trajec-

tory

(d) Wrong trajectory, due to

background movement

Fig. 1. Examples of fish trajectories. 1(a) and 1(b): simple

trajectories; 1(c): complex but still correct trajectory; 1(d): a

wrong trajectory, due to background plant movements.

can then be mapped to specific behaviours or used to identify

“anomalous” events, i.e. events that do not fall into any of

the patterns identified as usual. However, most of the exist-

ing approaches are targeted, as expected, at humans, while the

analysis of fish trajectories in an unconstrained environment

shows many more problems. First of all, the quality of the tra-

jectories themselves is lower than in other contexts, because

the technical difficulties related to capturing, transmitting and

storing underwater videos often limit the resolution and frame

rate of the images. Also, scene conditions can be difficult to

handle, because of lighting variations, clearness of the water,

presence of moving background objects (e.g. algae). More-

over, fish have more degrees of freedom than humans, their

bodies are not rigid, so appearance models have to be able

to handle fast shape transformations, and finally they have a

typical erratic motion which makes them difficult to follow.

Examples of fish trajectories are shown in Figure 1.

In this paper, we propose an approach to identify uncom-



mon trajectories of fish when processing real-life underwater

videos. Our approach is based on the method proposed in

[6] and uses Hidden Markov Models (HMMs) to encode and

compare trajectories and, afterwards, projects the trajectories

onto a low-dimensional space which preserves the similar-

ity of trajectories through Multi-Dimensional Scaling (MDS).

The resulting vectors are then fed to a K-means clustering

algorithm in order to identify common motion patterns (i.e.

common “events”) which are used to identify incorrect tra-

jectories, generated as a result of errors of object detection

and tracking algorithms. The results showed that our method

performs well in the detection of incorrect trajectories, while

keeping the false positive rate (i.e. the percentage of regular

trajectories identified as anomalous) to acceptable levels.

The remainder of the paper is as follows: Section 2 briefly

introduces the state of the art on event detection through ob-

ject trajectory analysis; Section 3 describes the proposed

method for trajectory representation and clustering; whereas

Sections 4 and 5 show, respectively, the experimental re-

sults when the method was applied to fish trajectories and

the considerations and ideas for future improvements and

applications.

2. RELATED WORKS

Given the importance of the possible applications that behaviour-

understanding and anomaly-detection algorithms can have,

as mentioned in the previous paragraph – one for all, in video

surveillance –, many approaches have been proposed in the

literature for trajectory analysis. Basically, these approaches

can be divided into two main categories:

• Automatic recognition of common/uncommon events,

e.g. by clustering trajectories and learning motion pat-

terns.

• Recursive composition of events, from low-level mo-

tion information to high-level scenarios.

The main advantage of the first category of approaches is

that they apply well-known data clustering methods to auto-

matically extract common patterns, thus minimizing the effort

required to define behaviours and events. Of course, these ap-

proaches are very sensitive to how trajectories are represented

and how the learning algorithm is tuned (for example, the

number of clusters can be a fundamental choice for the suc-

cess or failure of the approach). Relevant examples of these

approaches are:

• In [4], the authors apply a grammar rule induction

framework to learn event rules. A clustering approach

based on [7] is used to identify simple motion pat-

terns. Hidden Markov Models (HMMs) are trained to

model each cluster, and are used as detectors of prim-

itive events. A grammar induction algorithm, where

grammars are evaluated according to the Minimum

Description Length (MDL) principle [8], is then ap-

plied to build the set of event rules.

• Porikli et al. [5] propose a method for the detection

of unusual events based on spectral clustering. His-

tograms and HMMs based on objects’ speed, color,

size, aspect ratio, etc are used as features for trajectory

description. For each feature, an affinity matrix (where

the (i, j)-th element shows how similar the i-th and

j-th objects are, according to that feature) is built and

then decomposed using a certain number of the largest

eigenvalues. After further transformations, a corre-

lation matrix is computed, and clustering consists in

grouping the elements which result highly correlated.

• In [9], a clustering method for trajectories is presented,

which can be applied both to improve tracking perfor-

mance (by predicting the position of an object at time

t + 1 according to the best-matching cluster at time

t) and to detect anomalous trajectories (by evaluating

how frequently each cluster is matched, and consid-

ering clusters with few elements as “anomalous”). In

this approach, clusters actually represent relatively

short segments of trajectories, so each trajectory can be

made up by segments belonging to different clusters,

organized in a tree structure.

Other approaches are based on a semantic reconstruction

of the scene, by recognizing just simple events at first (such

as “being still” or “moving in a certain direction”), and then

combining them, spatially and/or temporally, into more com-

plex events (for example, “approaching”, “following”, or a

combination of simultaneous sub-events). Unlike the auto-

matic approaches, it is necessary to explicitly define rules for

the description of scenarios, i.e. these algorithms are manu-

ally tuned by the users according to the scenarios they deal

with and this, of course, limits their applicability. For exam-

ple, Medioni et al., in [10], use trajectory data and a-priori

information on the scene to define three abstraction levels in

the event recognition process: image features (size, speed, po-

sition, distance from reference objects), mobile object prop-

erties (entering a certain area, approaching reference objects

or other actors, etc), scenarios (combinations of mobile object

properties or, recursively, other scenarios). Similarly, Cupil-

lard et al. in [11] model the different scenarios with “basic

properties” (trajectory, speed, etc), states (a situation which

involves a set of actors at a certain time, or which holds for a

certain period) and events (variations of states).

3. TRAJECTORY ANALYSIS THROUGH HMM

CLUSTERING

The approach we used in our analysis of fish trajectories

takes inspiration from the work proposed in [6]. This method



belongs to the “clustering” category, which is one of the rea-

sons that makes it suitable to study fish trajectories, since it

is difficult to define events in terms of a sequence of simple

moves, because of the characteristics of fish motion. In detail,

we have extended the original approach by making it able to

learn motion patterns of any target (instead of only humans)

through the trajectory’s spatial and temporal features only.

Moreover, we have also corrected/changed the metrics used

to perform the Multi-Dimensional Scaling since the original

ones were not clearly explained and seemed to be wrong.

The basic idea is to use Hidden Markov Models (HMMs) to

represent trajectories in a uniform way, without having to deal

with different path sizes while keeping the underlying trajec-

tory’s dynamics. A metric for HMMs is introduced in order

to build a similarity matrix between all objects in the learning

set which is used by a Multi-Dimensional Scaling (MDS)

algorithm to project trajectories onto a lower-dimensional

space, where it is more feasible to perform trajectory cluster-

ing to identify classes corresponding to common patterns. In

order to decide whether a new trajectory is anomalous, for

each cluster a corresponding HMM is built and used to check

whether the input trajectory matches it; trajectories that do

not match significantly any of all the identified clusters are

therefore detected as anomalous.

Figure 2 shows the flowchart of the system. Each compo-

nent of the whole system is described in detail in the next

subsections.

3.1. Modeling trajectories as HMMs

One of the main problems in the analysis of object trajectories

is finding an appropriate way of representing them. The typi-

cal point-sequence representation, although it contains all the

information describing the movement of an object, is often

difficult to work with, since a comparison of different-length

trajectories requires a normalization of the number of points,

with the risk of over- or under-sampling; moreover, for the

same reason, it is difficult to represent a generic motion pat-

tern as a sequence of points. Histograms of position, speed,

orientation (e.g. [5]), etc. may also be employed to describe

trajectories, but they lose all temporal information, which is

an essential part of the pattern recognition process. On the

contrary, HMMs are often used in the description of trajec-

tories, since they can intrinsically encode spatio-temporal se-

quences of data and also provide intuitive algorithms to gen-

erate sample trajectories and to check whether an input trajec-

tory matches the pattern learned by the HMM.

A Hidden Markov Model (HMM) is a stochastic model de-

scribing a Markovian process where the states are not directly

observable, differently from a regular Markov chain. The es-

timation of the current state is then performed by analyzing

the system’s output variables, which depend on the current

state: assuming discrete output variables, each state has a

probability distribution over the values these variables can as-

sume, hence by analyzing the output sequences it is possible

to obtain the information necessary for the estimation of the

state sequence. HMMs can be trained from output sequences,

making them especially feasible for temporal pattern recogni-

tion [12]. The parameters of an n-state HMM with m discrete

output variables are:

• Prior distribution π: probability for the initialization of

the HMM’s first state.

• State transition probabilities A: an n×n matrix whose

ai,j element is the probability of going from state i to

state j.

• Emission distributions B: an n ×m matrix whose bi,j
element is the probability that, in state i, the output to-

ken will be j.

The set of the three model matrices is typically referred to

as λ. Of course, the structure and dimensions of these matri-

ces can vary if there are multiple output variables or if the dis-

tribution is continuous, as is the case of this work. A descrip-

tion of continuous-output HMMs using mixtures of Gaussians

is presented in [12]. The proposed method models each tra-

jectory (of a initial training set) with an HMM, whose output

variables are position coordinates, speed and direction of the

object, modeled by mixtures of Gaussians. Differently from

the original approach, we do not force the states of the model

to match real world locations, instead we let the HMM learn

its own internal configuration by applying the Baum-Welch

algorithm and feeding a trajectory or a set of trajectories as

input. Moreover, we do not apply the state transition proba-

bility defined by the authors because it does not hold for 3D

unconstrained motion such as fish movement. All states have

the same initial probability.

After HMM training, trajectories are projected into a more

compact space which is more suitable for the subsequent clus-

tering phase.

3.2. MDS projection and clustering

In order to represent the trajectories in a format more appro-

priate to K-means clustering than HMMs, Multi-Dimensional

Scaling (MDS) [13] is applied, which projects HMMs to a

relatively short vector space, while maintaining the distances

in the original HMM space. Since MDS exploits a distance

matrix among input data to reduce the original space, we have

introduced a probabilistic metric to compare HMMs describ-

ing trajectories. If λ1 and λ2 are the parameters which model

trajectories O1 and O2, we adopt Juang and Rabiner’s ap-

proach [14] in defining the (asymmetric) distance D (λ1,λ2)
as:

D (λ1,λ2) = [log L (O1|λ1)− log L (O1|λ2)] (1)

where L (Ox|λy) is the probability that trajectory Ox is mod-

eled by λy . Since equation ( 1) is not symmetric, an averaged



Fig. 2. A flowchart of the proposed system.

distance is computed as:

Dave (λ1,λ2) =
1

2
(D (λ1,λ2) +D (λ2,λ1)) (2)

In order to avoid errors with short data sequences, the

HMM parameters λk for a single trajectory are interpolated

(linear interpolation between the π, A, and B matrices) with

λall, representing the HMM parameters obtained by training

a model with all trajectories in the training set:

πk ← βπk + (1− β)πall

Ak ← βAk + (1− β)Aall

Bk ← βBk + (1− β)Ball

(3)

The MDS algorithm takes as input a distance matrix D,

where each element di,j is equal to Dave (λi,λj). Starting

from D, a B matrix (which projects the original points into

points whose barycentric coordinates are the origin) is com-

puted, whose eigenvalues and eigenvectors are then employed

to compute the projected trajectory vectors (details are de-

scribed in [13]).

These vectors are then clustered using unsupervised K-

means algorithm [15]. We perform two clustering cycles: one

to filter out outliers from the training dataset and the second

one to build the clusters of common paths which are then used

to detect anomalous trajectories. In detail the executed steps

are:

• First clustering of the HMMs modeling the input tra-

jectories (training data set) into k clusters.

• Train k HMMs with the trajectories in each cluster.

• For each trajectory, detect it as anomalous if the max-

imum likelihood between it and the k HMMs is lower

than a threshold.

• Re-clustering of the input trajectories training data set

into k clusters, leaving out the trajectories identified

as anomalous by the previous step. This step makes

the final clusters more accurate and with less variance

around their centroids.

The resulting k HMMs are then used to evaluate the like-

lihood that a test trajectory belongs to one of the common

path clusters, and if the maximum likelihood is smaller than

a threshold, the trajectory is labeled as anomalous.

4. APPLICATION TO FISH TRAJECTORIES

We have applied the approach described in Section 3 to under-

water domain, as part of the Fish4Knowledge1 project, which

aims at providing marine biologists with a reliable system for

fish detection, tracking and behavioural analysis.

In order to extract fish trajectories from these videos, we

have employed an object detection algorithm [16], able to

handle all the changes that may affect the analysed scene, and

a covariance-based tracker [17]. Although the performance of

the overall system is good, it is unavoidable that errors some-

times occur, for example because of occlusions between fish

and/or objects in the scene and of errors in the object detec-

tion algorithm, which identifies moving background objects,

such as plants, as fish. For these reasons, the proposed system

has been applied also to identify erroneous trajectories (i.e.

not corresponding to feasible fish motion patterns) computed

by the tracker. Of course, such trajectories will be labeled as

“anomalous”, since the HMMs representing each cluster will

have been trained with correct trajectories only.

4.1. Experimental results

We performed several tests in order to investigate the best

configuration of the HMM/K-means system to identify incor-

rect trajectories. The training set Ttrain was made up of 300

correct fish trajectories with lengths between 5 and 30 points,

manually selected from the tracking results on 10 underwater

videos (320×240 resolution at 5 fps) from the F4K repos-

itory. The test set used to evaluate the system consisted of

3700 trajectories, with uniformly distributed lengths between

3 and 50, equally divided into correct and erroneous trajecto-

ries.

Since the output results depend on the HMMs’ parameters

we performed a parametric analysis of the performance in

order to find the best HMM configuration for the target we

are dealing with. The first HMM parameter we analyzed

was the number of iterations for the Baum-Welch algorithm

used to train the models. We found out that, for HMMs built

from a reasonable number of trajectories (for example, those

representing whole clusters), 45 iterations was a good com-

promise between computation time and the maximization of

the probability that trajectories in the training set matched

1http://www.fish4knowledge.eu



HMM configuration Results

S M T DR FAR

5 4 -100 55.6% 36.7%

5 4 -120 21.0% 3.1%

5 16 -100 57.3% 32.7%

5 16 -120 24.3% 7.1%

15 4 -100 55.0% 28.61%

15 4 -120 23.9% 2.0%

25 4 -100 54.2% 29.6%

25 4 -120 26.1% 5.1%

10 4 -100 18.9% 1.0%

10 4 -120 22.4% 0.0%

15 16 -100 59.6% 29.5%

15 16 -110 39.2% 13.3%

Table 1. Performance of the system with different HMM con-

figurations.

that HMM. However, for HMM representing single trajecto-

ries, this value resulted to be too high, because states tran-

sition probabilities would “flatten”, practically making states

equiprobable. Moreover, whichever smaller number of iter-

ations we applied, the input data sequence was too short to

make the resulting HMM effectively learn the trajectory pat-

tern. The solution we found to this problem was to train the

single-trajectory HMM with 15 iterations, and interpolating it

with the HMM parameters obtained by learning all trajecto-

ries in the training set.

After setting the number of training iterations, the next param-

eter we analyzed was the number of clusters. We ran a few

simulations, with varying HMM parameters (the number of

states and output mixtures), and applied the method described

in [15] to estimate the optimal number of clusters. According

to most of these simulations, 3 clusters were enough to rep-

resent the variability of the training set (and no simulations

gave a result smaller than 2 or larger than 4), so we set the

number of clusters for the following tests to 3.

Our first test session consisted in varying HMM param-

eters to gather some preliminary information on the most

promising configuration. Table 1 shows the best performance

of the system we achieved by varying HMM parameters: in

the left group of columns, S is the number of HMM states,

M is the number of output mixtures and T is the minimum

log-likelihood threshold used to decide whether a given tra-

jectory matches at least one cluster; on the right columns,

for each configuration we show the corresponding detection

rate (DR, the percentage of correctly identified anomalous

trajectories) and the false alarm rate (FAR, the percentage of

correct trajectories identified as anomalous).

The results we obtained with these first tests showed

the difficulty in choosing a set of HMM parameters which

provided satisfactory percentages of both true positives and

Length range T DR FAR

≤10 -80 88.8% 4.3%

11-15 -100 80.2% 14.2%

16-20 -160 85.4% 29.2%

21-25 -190 96.2% 16.7%

≥30 -230 82.4% 16.6%

Table 2. Performance of the system when the threshold is

varied according to the length of the training and test trajec-

tories.

false negatives. The best HMM configuration seemed to be

the ones with 15 states and 16 mixtures of Gaussians, and

the most discriminating variable was clearly the probability

threshold.

In order to understand if the HMM parameters were some-

how related to the trajectory length, we carried out a second

run of experiments which consisted in building several test

sets, each containing the test set trajectories having lengths

included in a certain range (for example, Ttest,≤10 contained

the test trajectories with up to 10 points, Ttest,11−15 contained

trajectories with 11 to 15 points, and so on), and finding for

each of them the best probability threshold. The HMM’s

numbers of states and number of output mixtures were 15

and 16, since these values yielded the best results in the pre-

vious test. Table 2 shows the best threshold for each range,

and the corresponding detection rate and false alarm rate for

the each of the new test sets.

It is clear how the trajectory length actually influences

the capability of HMMs to match them, and how a length-

depending threshold allows to obtain a much higher accuracy

than using a fixed threshold.

5. CONCLUDING REMARKS

The problem of inferring semantic events from a low-level

analysis of motion information in videos is still far from

solved, because of the obvious difficulties in finding a com-

mon model to different contexts and because of the variety

of possible targets and event types. Many approaches, based

on a recursive recognition of simple and complex events or

on clustering trajectories into common patterns, have been

proposed in scientific literature.

In this paper we investigated the possibility of applying

a method for the identification of anomalous events, specif-

ically thought for humans, to fish trajectories, computed by

processing underwater videos with state-of-art motion detec-

tion and tracking algorithms. This approach, based on a repre-

sentation of trajectories through Hidden Markov Models and

on the computation of clusters representing common motion

patterns, is able to identify anomalous trajectories, defined as

those which show significant differences from all the above-

mentioned clusters.



The evaluation of this approach was performed by assess-

ing its capability to distinguish valid fish trajectories from in-

correct ones, computed by the object detection and tracking

but affected by errors (e.g. misassociations, occlusions, back-

ground object movements). The results show the the method

is effectively able to distinguish between correct and incorrect

trajectories, thus providing a useful tool for automatic error

identification and object detection/tracking improvements.

Of course, the generality of the method and of the def-

inition of what can be an “anomalous” event allows for an

extension of the purposes for which it can be applied. For the

next step in our work, we will investigate the possibility to

map the clusters of usual events to specific behaviours, such

as feeding, preying, mating, etc. However, this task requires

prior knowledge on how fish show these behaviours, which

is not as evident as with humans. Therefore, a preliminary

behaviour ground-truth generation stage will have to be per-

formed, since it has not been tackled yet in the literature for

such targets.
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