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ABSTRACT 
This paper proposes a system for automatic video analysis to detect events in 
video sequences with crowds of people. In detail, the proposed system consists 
of three subsystems: 1) the first identifies the motion areas, resorting to chaos 
theory using joint histogram between consecutive frames, 2) the second one 
creates a flow motion map that describes the behavior of motion pixels by using 
Lagrangian Particle Dynamics Theory and, 3) the last one uses self organizing 
maps (SOM) for segmenting the flow motion map in order to detect events. 
The proposed method was tested on a set of 30 videos, describing crowds in 
different scenarios, collected from the BBC Motion Gallery, achieving an 
average accuracy of about 87% in detecting events such as people stopping, 
people laying on the ground, group of people fighting, obstacles on the road and 
long queues. 
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1 INTRODUCTION 
Huge amounts of video streams are daily recorded for surveillance purposes. 
There is a great interest in automatic video analysis for event detection since 
manual mining of video streams is a very tedious and time consuming task. 
However, the problem is still far from being completely solved and current 
solutions show many drawbacks, especially if compared with the human vision 
system, which has a remarkable ability to detect interesting events in very 
changing and complex environments such as crowds of people. Several 
approaches for event detection have been recently proposed in the literature (e.g. 
[1]), which can be classified as based on: tracking, flow models, spatio-temporal 
analysis of shapes and interesting points analysis. The tracking based methods, 
such as the ones proposed in [2], [3], process the entire video sequence and 
extract objects by comparing the current frame and a background that represents 
the scene without objects of interest. Flow based models, instead, process 
directly the spatio-temporal sequence (e.g. optical flow) without performing any 
segmentation. In detail, events of interest are detected, for instance, by 
correlating flow maps with actions, as proposed by Efros et al. in [4] where the 
optical flow map is treated not as a pixel displacements map, but as a spatial 
pattern related to human actions. Spatio-temporal analysis of shapes methods, 
such as the one proposed in [5], usually, analyze the spatio-temporal volume of 
a videosequence considering it as a 3D object, i.e. they use a model (called 



 

motion history volumes) that fuses action cues seen from different viewpoints 
and in fixed time periods into a three dimensional representation. Ke et al. in [6] 
proposed a hybrid flow-shape approach by considering an event template not as 
an atomic entity, but composed by different parts both in space and in time. 
Recently, methods based on analysis of interesting points have gained an 
increasing interest. The idea behind these methods is to identify interesting 
events by processing space-time interest points. For example, in [7] a video 
sequence is represented as a collection of space-time interest points extracted 
from space-time shapes and features such as local saliency [8]. Then, the 
algorithm calculates the probability distributions of these spatial-temporal points 
and associates them to human actions. All these approaches lack when dealing 
with complex and crowded scenes, e.g. sports events with thousands of people, 
since they are not able to build models (e.g. interesting points, trajectories or 
motion history volumes) that describe the behavior of each person in the scene. 
Moreover, the above approaches cannot be applied in most cases when 
computational resources are scarce, since the motion detection phase is 
relatively heavy in terms of processing time. In this paper we propose a novel 
system for event detection in crowds of people that overcomes these limitations 
where motion pixels are identified by exploiting a chaos based approach [9] and 
the people behavior in the crowd is analyzed by the flow segmentation method 
proposed in [10]. 
The remainder of the paper is as follows: Section 2 gives an overview of the 
proposed system; in Section 3 the model for motion map estimation based on 
chaos theory is presented. Sect. 4 shows the system for people flow 
segmentation and suspicious event detection by integrating Lagrangian particle 
dynamics theory with Self Organizing Maps. Finally, experimental results and 
concluding remarks are, respectively, reported in Section 5 and 6.  

2 THE PROPOSED SYSTEM 
 
In this work, we propose an unsupervised approach (whose flowchart is shown 
in fig. 1) for event detection using chaos-like behavior of motion pixels for 
understanding which part of the scene is affected by motion, and identifying, 
among the motion pixels, those ones that behave differently from the rest by 
computing Finite-Time Lyapunov Exponent (FTLE) map [11]. 
In detail, the motion detection system relies on the assumption that the 
trajectories of motion pixels in phase space show a chaos-like behavior [9]; 
therefore, by exploring pixels’ trajectories in consecutive frames, it is possible to 
extract a motion map. At the same time, the system is provided with an 
algorithm that estimates pixels’ behavior in the videosequence by analyzing the 
ridges in a Finite-Time Lyapunov Exponent (FTLE) map. This FTLE map is 
then passed to a self-organizing map (SOM) to segment the input frame 
according to the different detected pixels’ behaviors. 



 

 
 

Fig. 1. Flow diagram of the proposed event detection system. 
 
Finally, events of interest are detected by integrated the motion map and the 
aforementioned segmented image. In the following each one of the above 
subsystems is described in detail. 

3 CHAOS THEORY FOR MOTION MAP ESTIMATION 
The first subsystem aims at identifying motion areas by means of the chaos 
theory. Unlike standard motion detection approaches [12], [13], [14], [15], our 
method estimates differences between pixel amplitudes of two images It0 and It1 
by assessing the mutual information H(It0; It1) between the images, defined as: 
 

H (It0, It1) = p(i, j) ! p(i, j)
p(i) ! p( j)i"It 0 , j"It1,
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where p(i) and p(j) are, respectively, the distributions of images It0 and It1 and 
p(i,j) is the joint distribution of the two images. The joint distribution can be 
approximated using the joint histogram as well as the distributions of images can 
be approximated using their grey level histograms. It has been proved in [16] 
that the result of motion in image sequences is a complex trajectory of joint 
histograms (see fig. 2), whereas the result of illumination changes is a linear 
trajectory as shown in Fig. 3. Therefore, motion in video sequences results in a 
chaotic behavior in joint histograms due to a non-linear multiplicative process in 
the reflectance [16] and we exploit this behavior to build our motion detection 
system, robust against illumination changes. In detail, our approach divides the 



 

input frame in subregions, and for each sub-region the joint histogram with the 
corresponding sub-region of the previous frame is computed. 
The sub-images that show a chaotic behavior are then considered as regions 
containing moving people, otherwise not. Finally, a motion map is computed by 
combining all the subregions that are affected by motion, as shown in Fig. 4. 
The motion map indicates the areas with motion and represents the input for the 
next subsystem that aims at analyzing the flow of people, in order to understand 
their behavior and to detect anomalous events. 
 

 
 

Fig. 2. Chaotic behavior due to a 
moving object. a) Image at time t0, 

b) Image at time t1 and c) Joint 
histogram between image t0 and 

image t1. 

Fig. 3. Linear behavior due to 
illumination changes. a) Image at time 

t0, b) Image at time t1 and c) Joint 
histogram between image t0 and image 

t1. 
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Fig. 4. a) Subregions of frame at time t0, b) Subregions of frame at time t1 and 
c) Motion map between frame t0 and frame t1. 

4 IMAGE SEGMENTATION USING LAGRANGE PARTICLE DYNAMICS 
THEORY 
This subsystem relies on the notion of coherent structure (CS) [17], which is 
generally used both in turbulence theory and in 2D or 3D fluid mechanics, and 
basically, it segments the input frames by exploring how clouds of particles mix 
together and how they are transported under the action of a flow field (computed 
by optical flow) generated by the crowd motion. The rationale is that the 
trajectories generated from the advection of particles through a flow are 
representative of cases such as people stopping, locations of the barriers, 
anomalous movements, etc. In this work, the study of particles’ trajectory under 
the action of a flow is performed by the identification of the coherent structures, 
which are separatrices that split the flow of particles into dynamically distinct 



 

regions where all particles show a similar (coherent) behavior. 
One of the most common method to calculate the coherence structure is the 
Finite-Time Lyapunov Exponent (FTLE) [18] that describes different behaviors 
of the pixels (in terms of flow in a scene) that cannot be seen using the velocity 
vector field provided by the optical flow. The description on how to compute the 
FTLE is behind the aim of the paper and it can be found in [10]. In order to 
identify variations in the behavior of crowds of people (i.e. identifying LCS), the 
proposed system, initially, estimates the optical flow according to [19], as a 
functional that integrates three motion features: the brightness variation, the 
gradient constant variation and a discontinuity-preserving spatial-temporal 
smoothness constraint. Afterwards, it identifies the FTLE field of the computed 
optical flow, then it divides the flow into regions with different dynamics by 
applying a self-organizing map (SOM) [20] to the FTLE field, segmenting the 
input frame according to the motion pixels’ behavior. Each identified region 
(color-coded in Fig. 5-e) in the segmented image is a coherence structure. 
An example on how the algorithm performs is shown in Fig. 5, where an 
interesting event is depicted in red; this event is detected by comparing the 
motion map with the segmented image and it represents the only coherence 
structure that is entirely included in the area outside the motion map. 
More in general, we detect anomalous events by estimating the number of 
coherence structures entirely included either within or outside the motion map. 
For example, a coherence structure inside the motion map indicates a different 
behavior of some particles in an area with people moving, e.g. people lying on 
the ground; whereas a coherence structure outside the motion map may indicate 
events when most of the people are stationary, but some of them suddenly move, 
e.g. people fighting. 

 
Fig. 5. FTLE estimation. a) Image at time t0, b) Image at time t1, c) Optical flow 
superimposed on the Image at time t1, d) FTLE field, e) Image segmented by the 

SOM according to the particles’ behavior shown in the FTLE field and f) 
Interesting event detected 



 

5 EXPERIMENTAL RESULTS 
The proposed event detection system was tested on a set of 30 videos collected 
from the BBC Motion Gallery. The videos had a spatial resolution of 320x240 
with 30 fps. The main target was crowds of people in different locations such as 
train station, airport, stadium and subway station. The ground truth was hand 
labeled by using ViPER (the Video Performance Evaluation Resource [21]) and 
consisted of 859 events, categorized as: 1) People Stopping (PS), 2) People lying 
on the ground (PL), 3) Group of People Fighting (PF), 4) Obstacles (O) on the 
road (road working or cleaning), 5) Long Queues (Q). Table I shows the 
obtained results in terms of correct detections over the test set. It has to be 
noticed that the proposed system does not recognize the events but it is only able 
to detect them; this means that it was tested on each category of event and the 
number of detected coherence structures is computed. 
 

Tab.1 Experimental results 

Type of Event Total Number Detected  
Number 

Percentage of 
Success 

PS 296 263 88.85 % 
PL 92 76 82.60% 
PF 73 64 87.60% 
O 157 136 86.62% 
Q 241 217 90.04% 

 
 
As a further example, fig. 6 shows the results of processing a scene recorded at 
La Mecca where there are people walking (most of them) in an ordered flow and 
some people praying and stopping, located more or less at the middle of the 
image. 
In this particular scenario, the proposed system is able to detect the different 
behavior of praying people (red area in fig. 6-b) with respect the other walking 
people. 
 

 
(a) 

 
(b) 

Fig. 6. Event Detection. a) Input Image, b) Event detected: people praying 
 



 

6 CONCLUDING REMARKS 
In this paper we have proposed an unsupervised system, applicable to real-world 
settings, for identifying events in videos with crowds of people by using joint 
histograms between consecutive frames, derived from the chaos theory, to detect 
motion areas and then using Lagrangian particle dynamics theory combined with 
self organizing maps for image segmentation according to people flow behavior. 
Unlike existing methods, our system processes very quickly the input frames in 
order to estimate the motion areas, without requiring background/objects 
separation. Our system shows promising performance on real-world videos 
(about 87%) in detecting events in complex scenes with highly cluttered 
dynamic backgrounds. As future work, we plan to provide our system with a 
denoising module [22], [23] to remove the noise affecting the grabbed frames, 
since the motion detection has been proved to be robust against noise, whereas 
the performance of the flow map estimation module might be affected by noise. 
Moreover novel clustering approaches such as the ones proposed in [24] for 
investigating improved performance in the segmentation of the FTLE map and 
also we will use GRID based approaches [25] to increase the efficiency in the 
FTLE computing. We also aim at adding a further layer for automatic event 
recognition and at integrating this system in a more complex framework able to 
track [26] and recognize people [27] (more in general objects and their behavior 
[28]) involved in the detected events. We are also aiming at integrating the 
proposed system in a distributed environment where software agents [29] detect 
and integrate the events, thus supporting event detection on multiple cameras. 
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