
Semantics and Planning Based Workflow

Composition for Video Processing∗

Gayathri Nadarajan
Yun-Heh Chen-Burger Robert B. Fisher

Accepted: April 16th 2013

Abstract

This work proposes a novel workflow composition approach that
hinges upon ontologies and planning as its core technologies within
an integrated framework. Video processing problems provide a fitting
domain for investigating the effectiveness of this integrated method as
tackling such problems have not been fully explored by the workflow,
planning and ontological communities despite their combined bene-
ficial traits to confront this known hard problem. In addition, the
pervasiveness of video data has proliferated the need for more auto-
mated assistance for image processing-naive users, but no adequate
support has been provided as of yet.

The integrated approach was evaluated on a video set originat-
ing from open sea environment of varying quality. Experiments to
evaluate the efficiency, adaptability to user’s changing needs and user
learnability of this approach were conducted on users who did not
possess image processing expertise. The findings indicate that using
this integrated workflow composition and execution method: 1) pro-
vides a speed up of over 90% in execution time for video classification
tasks using full automatic processing compared to manual methods
without loss of accuracy; 2) is more flexible and adaptable in response
to changes in user requests than modifying existing image processing
programs when the domain descriptions are altered; 3) assists the user
in selecting optimal solutions by providing recommended descriptions.

∗This research was funded by European Commission FP7 grant 257024, in the
Fish4Knowledge project (www.fish4knowledge.eu).

1



1 Introduction

Traditional workflow systems have several drawbacks, e.g. in their inabilities
to rapidly react to changes, to construct workflow automatically (or with
user involvement) and to improve performance autonomously (or with user
involvement) in an incremental manner according to specified goals. Over-
coming these limitations would be highly beneficial for complex domains
where such adversities are exhibited. Video processing is one such domain
that increasingly requires attention as larger amounts of images and videos
are becoming available to those who are not technically adept in modelling
the processes that are involved in constructing complex video processing
workflows. The requirements to address the problem of automated video
analyses for non-expert users include i) process automation; ii) rich process
modelling; iii) performance-based tool selection; and iv) adaptable to chang-
ing user needs.

Conventional video and image processing (VIP) systems, on the other
hand, are developed by image processing experts and are tailored to pro-
duce highly specialised hand-crafted solutions for very specific tasks, making
them rigid and non-modular. Traditionally they produce single-executable
systems that work accurately on a specific set of data. The knowledge-based
vision community have attempted to produce more modular solutions by in-
corporating ontologies. However, they have not been maximally utilised to
encompass aspects such as application context descriptions (e.g. lighting and
clearness effects) and qualitative measures.

This work aims to tackle some of the research gaps yet to be addressed by
the workflow and knowledge-based image processing communities by propos-
ing a novel workflow composition approach within an integrated framework.
This framework distinguishes three levels of abstraction via the design, work-
flow and processing layers. The core technologies that drive the workflow
composition mechanism are ontologies and planning. Video processing prob-
lems provide a fitting domain for investigating the effectiveness of this in-
tegrated method as tackling such problems have not been fully explored by
the workflow, planning and ontological communities despite their combined
beneficial traits to confront this known hard problem. In addition, the perva-
siveness of video data has proliferated the need for more automated assistance
for image processing-naive users, but no adequate support has been provided
as of yet.

A set of modular ontologies was constructed to capture the goals, video
descriptions and capabilities (video processing tools). They are used in con-
junction with a domain independent planner to help with performance-based
selection of solution steps based on preconditions, effects and postconditions.

2



Two key innovations of the planner are the ability to support workflow
execution (by interleaving planning with execution) and can perform in au-
tomatic or semi-automatic (interactive) mode. In the interactive mode, the
user is involved in tool selection based on the recommended descriptions pro-
vided by the workflow system via the ontology. Once planning is complete,
the result of applying the tool of their choice is presented to the user visually
for verification. This plays a pivotal role in providing the user with control
and the ability to make informed decisions. Video processing problems can
also be solved in more modular, reusable and adaptable ways compared to
conventional image processing systems.

The integrated approach was evaluated on a test set consisting of videos
originating from open sea environment of varying quality. Experiments to
evaluate the efficiency, adaptability to user’s changing needs and user learn-
ability of this approach were conducted on users who did not possess image
processing expertise. The findings indicate that using this integrated work-
flow composition and execution method: 1) provides a speed up of over 90%
in execution time for video classification tasks using full automatic processing
compared to manual methods without loss of accuracy; 2) is more flexible
and adaptable in response to changes in user requests (be it in the task,
constraints to the task or descriptions of the video) than modifying exist-
ing image processing programs when the domain descriptions are altered;
3) assists the user in selecting optimal solutions by providing recommended
descriptions.

Outline. Section 2 describes existing workflow composition initiatives and
highlights their shortfalls. The workflow composition framework is outlined
in Section 3, which introduces the workflow tool and its components. One
of the major component, the ontology will be detailed in Section 4. The
second core technology, the planning mechanism is explained in Section 5.
Evaluation of the overall approach and analysis are provided in Section 6.
Future directions for this research is concluded in Section 7.

2 Grid Workflow Systems

With the advent of distributed computing in the past two decades, workflows
have been deployed in distributed platforms. In a distributed context, such
as the Grid or e-Science [9] a workflow can be abstracted as a composite web
service, i.e. a service that is made up of other services that are orchestrated
in order to perform some higher level functionality. The goal of e-Science
workflow systems is to provide a specialised programming environment to

3



simplify the programming effort required by scientists to orchestrate a com-
putational science experiment [31]. Therefore, Grid-enabled systems must
facilitate the composition of multiple resources, and provide mechanisms for
creating and enacting these resources in a distributed manner. This requires
means for composing complex workflows for execution, which has attracted
considerable effort within the Grid workflow community.

Several major workflow systems were analysed in terms of workflow com-
position. Among them include Pegasus [7], a workflow management system
that aims to support large-scale data management in a variety of applica-
tions such as astronomy, neuroscience, biology, gravitational wave-science
and high-energy physics, Triana [32, 33], a problem solving and workflow
programming environment that has been used for text, speech and image
processing tasks, Taverna [27], an open source workflow engine that aims to
provide a language and software tools to facilitate easy use of workflow and
distributed compute technology for biologists and bioinformaticians and Ke-
pler [17], a workflow project that consists of a set of Java packages supporting
heterogeneous, concurrent modelling to design and execute scientific work-
flows. Workflow composition mechanisms and limitations of current efforts
will be discussed in the following subsections.

2.1 Workflow Composition Mechanisms

Studies on workflow systems have revealed four aspects of the workflow life-
cycle – composition, mapping (onto resources), execution and provenance
capture [6]. This paper focuses on the composition and execution aspects
of the workflow lifecycle. Workflow composition can be textual, graphical
or semantics-based. Textual workflow editing requires the user to describe
the workflow in a particular workflow language such as BPEL [1], SCUFL
[26], DAGMan [29] and DAX [7]. This method can be extremely difficult or
error-prone even for users who are technically adept with the workflow lan-
guage. Graphical renderings of workflows such as those utilised by Triana,
Kepler and VisTrails [3] are easy for small sized workflows with fewer than
a few dozen tasks. However many e-Science and video processing workflows
are more complex. Some workflows have both textual and graphical compo-
sition abilities. The CoG Kit’s Karajan [35] uses either a scripting language,
GridAnt or a simple graphical editor to create workflows.

Blythe et al. [2] have researched into a planning-based approach to work-
flow construction and of declarative representations of data shared between
several components in the Grid. This approach is extendable to be used in
a web services context. Workflows are generated semi-automatically with
the integration of the Chimera system [10]. In Pegasus [7], abstract work-

4



flows1 may be constructed with the assistance from a workflow editor, such as
the Composition Analysis Tool (CAT) [16] which critiques partial workflows
composed by users and offers suggestions to fix composition errors and to
complete the workflow templates. It assumes that the user may not have the
explicit descriptions of the desired goals at the beginning. It utilises classical
planning to perform workflow verification. Wings [12] extends this by dealing
with the creation and validation of very large scientific workflows. However,
CAT requires the user to construct a workflow before interactively verifying
it to produce a final workflow. Our effort, in contrast, aims to construct the
workflow interactively or automatically.

Splunter et al. [34] propose a fully automated agent-based mechanism for
web service composition and execution using an open matching architecture.
In a similar vein to these two approaches, our effort aims to provide semi-
automatic and automatic means for workflow composition, but does not deal
with the mapping of resources onto the workflow components.

Three distinct stages are distinguished for workflow creation; the creation
of workflow templates, the creation of workflow instances and the creation of
executable workflows (done by Pegasus). Workflow templates specify com-
plex analyses sequences while workflow sequences specify data. Workflow
templates and instances are semantic objects that are represented in on-
tologies using OWL-DL. While semantics-based workflow composition is the
subject of current research, most efforts have focused on either easing the
task of large scale workflows creation for computational workflows and for
web services [6].

2.2 Limitations of Current Grid Workflow Solutions

The major workflow systems mentioned at the beginning of the section pos-
sess some features that are worth investigating in order to assess their suit-
ability and limitations for the purposes of this study. In terms of compo-
sition itself, Pegasus’s main strength is in mapping abstract workflows to
their concrete (executable) forms, which are then executed by a scheduler.
It also provides adaptivity through a partitioner that uses planning to pro-
duce partial executable workflows. It does not, however, provide automatic
composition of the abstract workflows.

Triana, Taverna and Kepler contain similar elements; Triana’s tasks are
conceptually the same as Taverna’s processes and Kepler’s actors. The ap-
proach in Kepler is very similar to Triana in that the workflow is visually con-

1Directed acyclic graphs (DAGs) composed of tasks and data dependencies between
them.

5



structed from actors (Java components), which can either be local processes
or can invoke remote services such as Web services. In terms of applicability,
Pegasus would best suit a domain with well-defined requirements and where
the overall goal could be determined from a given set of rules and constraints.
Triana is well-suited for composing complex workflows for Web services and
Peer to Peer services. Taverna is also suitable to be used in Web and Grid
services contexts, but its use may be limited to composing simple workflows,
whereas Kepler works very well for composing workflows for complex tasks
but it has yet to reach its potential as a fully Grid-enhanced system. Kepler
is built upon Ptolemy II which is primarily aimed at modelling concurrent
systems. Furthermore, it is designed to be used by scientists which imposes
some level of expertise to the user.

While existing workflow systems have more recently incorporated ontolo-
gies, their use is still limited. The use of such technologies should not be ex-
clusively independent, rather they should be fully integrated into the system.
Existing systems do not provide full ontological handling nor integration, in-
stead they make use of separate ontology tools to define and manipulate
ontologies. The main limitations of existing workflow initiatives can be sum-
marised as follows:

• Limited or no automated support in constructing workflows, thus re-
quiring the user to possess domain expertise.

• Unable to improve performance autonomously (or with user involve-
ment) in an incremental manner according to specified goals.

• Generally do not have full integration of ontologies that would allow
for more powerful representation and reasoning abilities.

Next, the framework constructed to overcome the limitations of existing
efforts, in particular to provide automatic workflow composition is described.

3 Hybrid Three-layered Workflow Composi-

tion Framework

A hybrid semantics-based workflow composition method within a three-layered
framework was devised and implemented (Fig. 1). It distinguishes three
different levels of abstraction through the design, workflow and processing
layers. Each layer contains several key components that interact with one
another and with components in other layers. This has been the backbone of
the (Semantics-based Workflows for Analysing Videos) (SWAV) tool [21].

6



Figure 1: Overview of hybrid workflow composition framework for video pro-
cessing. It provides three levels of abstraction through the design, workflow
and processing layers. The core technologies include ontologies and a planner,
used in the SWAV tool.

The design layer contains components that describe the domain knowl-
edge and available video processing tools. These are represented using ontolo-
gies and a process library. A modeller is someone who is able to manipulate
the components of the design layer, for example populate the process library
and modify the ontologies. Typically the modeller has training in conceptual
modelling and has knowledge in the application domain, but not necessar-
ily. The components could also be updated automatically, as will be shown
in Section 5. Knowledge about image processing tools, user-defined goals
and domain description is organised qualitatively and defined declaratively
in this layer, allowing for versatility, rich representation and semantic inter-
pretation. The ontologies which are used for this purpose will be described
in Section 4.

The process library developed in the design layer of the workflow frame-
work contains the code for the image processing tools and methods available
to the system. These are known as the process models. The first attempt
in populating the process library involved identifying all primitive tasks for
the planner based on the finest level of granularity. A primitive task is one
that is not further decomposable and may be performed directly by one or

7



more image processing tools, for instance a function call to a module within
an image processing library, an arithmetic, logical or assignment operation.
Each primitive task may take in one or more input values and return one or
more output values. Additionally, the process library contains the decompo-
sition of non primitive tasks or methods. This will be explained in Section 5.
The complete list of independent executables can be found in [20].

The workflow layer is the main interface between the user and the
system. It also acts as an intermediary between the design and processing
layers. It ensures the smooth interaction between the components, access
to and from various resources such as raw data, image and video processing
toolset, and communication with the user. Its main reasoning component
is an execution-enhanced planner that is responsible for transforming the
high level user requests into low level video processing solutions. Detailed
workings of the planner is contained in Section 5.

The workflow enactor plays the important role of choreographing the flow
of processing within the system. It should be noted that unlike the workflow
enactors covered in Section 2, the SWAV tool does not deal with resource
allocation and scheduling, rather, on the composition of specific operators
and the execution of the operators given their predetermined parameters.
First it reads in the user request in textual form (use selects from a list
of options). Next it consults the goal and video description ontologies to
formulate the input that is then fed to the planner. When the planner, with
the assistance of the process library and capability ontology, returns the final
solution plan, the enactor prompts the user for further action. The user has
access to the final result of the video processing task visually, and has the
choice to 1) rerun the same task on the same video but with modifications
to the domain information; 2) rate the quality of the result; or 3) perform
another task. The composed workflow is saved in a script file that can be
invoked off-line. By being able to view the result of each solution with
changes to the domain information, the user can assess the quality of the
solution produced. This feedback mechanism could be used as a basis for
improving the overall performance of the system as verifying the quality
of the video processing solutions automatically is not a trivial task. The
planning mechanism is described in Section 5.

The processing layer consists of a set of video and image processing
tools that can perform various image processing functions. The functions
of these tools are represented in the capability ontology in the design layer.
Once a tool has been selected by the planner, it is applied to the video
directly. The final result is passed back to the workflow layer for output and
evaluation.

The functions (primitive tasks) that they can perform are represented

8



semantically in the capability ontology, described in Section 4. A set of
video processing tools developed for this research is available at [20].

Several prototypes of the workflow interface were designed over time;
initially it uses a textual interface to communicate with the user and more
recently the SWAV tool incorporates a graphical interface (Fig. 2).

Figure 2: The SWAV interface which allows user to select a video and a task
(top left panels) and adjust domain settings (right panel). Annotated results
are displayed to the user.

4 Video and Image Processing Ontology

Ontologies are used for capturing knowledge and semantics in a domain and
have been used widely in several major fields including medical, linguistics
and enterprise. Domain ontologies are often modelled in a collaborative effort
between domain and ontology experts to capture consensual knowledge that
is formed between the domain experts that can be shared and reused among
them. In the video processing field, ontologies are extremely suitable to many
problems that require prior knowledge to be modelled and utilised in both
a descriptive and prescriptive capacity since they encode the concepts and
relationships between the components in the world.

9



4.1 Modularisation

For the purposes of this research, a set of ontologies was required to model
the video and image processing (VIP) field so that it can be used for domain
description and understanding, as well as inference. The ontology should
describe the domain knowledge and support reasoning tasks, while being
reasonably independent from the system. The principles adopted for the
ontology construction included simplicity, conciseness and appropriate cate-
gorisation. For this reason, three aspects of the VIP field were highlighted.
These were identified as goal, video description and capability. These as-
pects were motivated by the context of their use within a planning system
that requires the goal and initial domain state model (which includes the
initial video description) and also a performance-based selection of opera-
tors. Following the SUMO (Suggested Upper Merged Ontology)2 ontology
representation, a modular ontology construction was adopted (see Fig. 3).
The modularisation aims to separate the formulation of the problems from
the description of the data and the solutions to be produced.

Figure 3: Modular structure of the Video and Image Processing (VIP) On-
tology.

The next three subsections describe the three ontologies, a more detailed
explanation of their construction in relation to the Fish4Knowledge project
can be found in [19].

4.2 Goal Ontology

The Goal Ontology contains the high level questions posed by the user and
interpreted by the workflow as VIP tasks, termed as goals, and the constraints
to the goals. The main concepts of the goal ontology is shown in Fig. 4.

Under the ‘Goal’ class, more specialised subclasses of video processing
goals are described. Some examples include ‘Object detection’, ‘Event de-
tection’ and ‘Object Clustering’. Under each of these, even more specialised
goals are described. For instance, more specific goals of ‘Object detection’

2http://www.ontologyportal.org/

10



Figure 4: Goal ontology denoting the main classes of goals and constraints.

include ‘Fish detection’ and ‘Coral detection’, which are relevant for this
work.

11



‘Constraint on Goal’ refers to the conditions that restrict the video and
image processing tasks or goals further. In our context, the main constriction
for a VIP goal is the ‘Duration’, a subclass of ‘Temporal Constraint’. Each
task may be performed on all the historical videos, or a portion specified by
the user – within a day, night, week, month, year, season, sunrise or sunset
(all specified as instances of the class ‘Duration’).

Other constraints types include ‘Control Constraint’, ‘Acceptable Error’
and ‘Detail Level’. The control constraints are those related to the speed
of VIP processing and the quality of the results expected by the user. ‘Per-
formance Criteria’ allows the user to state whether the goal that they wish
to perform should be executed using a faster algorithm (indicated by the
criterion processing time) or whether it should take less (CPU) memory.
Processing time and memory are instances of ‘Performance Criteria’. In-
stances of the class ‘Quality Criteria’ are reliability and robustness. ‘Quality
Criteria’ with the value reliability constrains the solution to be the most ac-
curate result. If such a solution could not be found, then the system should
fail rather than produce alternative options. ‘Robustness’ indicates the re-
verse; that the system should not break down completely in cases where a
reliable solution could not be found, instead it should return an alternative
(imperfect) result.

Another constraint that the user may want to insert is the threshold for
errors, contained in the class ‘Acceptable Error’. A typical example of this
is contained in its subclass ‘Accuracy’, which states the accuracy level of a
detected object. Two instances of accuracy are prefer miss than false alarm’
and prefer false alarm than miss. Miss and false alarm are terminologies
used within VIP tasks that involve the detection of objects to indicate the
accuracy level of the detection. Consider a real object to be the object that
needs to be detected. A miss (false negative) occurs when a real object exists
but is not detected. A false alarm (false positive) occurs when an object that
is not a real object has been detected.

The class ‘Detail Level’ contains constraints that are specific to particular
details, for example detail of ‘Occurrence’. The criteria for ‘Occurrence’ is
used for detection tasks to constrict the number of objects to be detected.
The value ‘all’ for occurrences imposes that all the objects should be identi-
fied.

The Goal Ontology is used for consistency checks when a user query is
detected in the system. It can check that the query matches with a goal or set
of goals that is achievable within the workflow system. It is also used to guide
the selection of higher level tasks for workflow and formulate input values to
the reasoning engine that is responsible for searching the VIP solution set
for a VIP task, i.e. to compose the workflow.

12



4.3 Video Description Ontology

Figure 5: Main concepts of the Video Description Ontology.

The Video Description Ontology describes the concepts and relationships
of the video and image data, such as what constitutes video/image data, the
acquisition conditions such as lighting conditions, colour information, tex-
ture, environmental conditions as well as spatial relations and the range
and type of their values. Fig. 5 gives a pictorial overview of the main com-
ponents of the Video Description Ontology. The upper level classes include
‘Video Description’, ‘Descriptor Value’, ‘Relation’, and ‘Measurement Unit’.

The main class of this ontology is the ‘Video Description’ class, which
has two subclasses – ‘Description Element’ and ‘Descriptor’. A description
element can be either a ‘Visual Primitive’ or an ‘Acquisition Effect’. A
visual primitive describes visual effects of a video/image such as observed
object’s geometric and shape features, e.g. size, position and orientation
while acquisition effect descriptor contains the non-visual effects of the whole
video/image that contains the video/image class such as the brightness (lu-
minosity), hue and noise conditions. The descriptor for the description el-
ements are contained under the ‘Descriptor’ class and are connected to the

13



‘Description Element’ class via the object property ‘hasDescriptionElement’
(not visible in the diagram).

Typical descriptors include shape, edge, colour, texture and environmen-
tal conditions. Environmental conditions, which are acquisitional effects,
include factors such as current velocity, pollution level, water salinity, surge
or wave, water turbidity, water temperature and typhoon, specified as in-
stances. These values that the descriptors can hold are specified in the ‘De-
scriptor Value’ class and connected by the object property ‘hasValue’. For
the most part, qualitative values such as ‘low’, ‘medium’ and ‘high’ are pre-
ferred to quantitative ones (e.g. numerical values). ‘Qualitative’ values could
be transformed to quantitative values using the ‘convertTo’ relation. This
would require the specific measurement unit derived from one of the classes
under the concept ‘Measurement Unit’ and conversion function for the re-
spective descriptor e.g. a low velocity could be interpreted as movement with
velocity within a range of 0 and 25ms−13. Some descriptor values can be tied
to their appropriate measurement units. The property that specifies this is
‘hasMeasurementUnit’, which relates instances in the class ‘Descriptor’ to
instances in the class ‘Measurement Unit’.

The goal and video description ontology were developed with collabo-
ration with image processing experts, knowledge-based vision communities
and domain experts. Preliminary work with the Hermes project [28] brought
about initial versions of these two ontologies [22].

4.4 Capability Ontology

The capability ontology (Fig. 6) contains the classes of video and image
processing functions and tools. Each function (or capability) is associated
with one or more tools. A tool is a software component that can perform
a video or image processing task independently, or a technique within an
integrated vision library that may be invoked with given parameters. This
ontology will be used directly by the planner in order to identify the tools
that will be used to solve the problem. As this ontology was constructed
from scratch, the METHONTOLOGY methodology [13] was adopted. It
is a comprehensive methodology for building ontologies either from scratch,
reusing other ontologies as they are, or by a process of re-engineering them.
The framework enables the construction of ontologies at the knowledge level,
i.e. the conceptual level, as opposed to the implementation level.

3Currently, there is not a fixed conversation formula. The actual conversion formula
used will be determined as we gain more experience by using our workflow system over
time.

14



Figure 6: Main concepts of the Capability Ontology.

This ontology will be used to identify the tools that will be used for
workflow composition and execution of VIP tasks. In our context, it is used
by a reasoner and a process library for the selection of optimal VIP tools.
The main concepts intended for this ontology have been identified as ‘VIP
Tool’, ‘VIP Technique’ and ‘Domain Descriptions for VIP Tools’. Each VIP
technique can be used in association with one or more VIP tools. ‘Domain
Description for VIP Tool’ represent a combination of known domain descrip-
tions (video descriptions and/or constraints to goals) that are recommended
for a subset of the tools. This will be used to indicate the suitability of a
VIP tool when a given set of domain conditions hold at a certain point of ex-
ecution. At present these domain descriptions are represented as strings and
tied to VIP tools, e.g. Gaussian background model would have the descrip-
tion ‘Clear and Fast Background Movement’ to indicate the best selection
criteria for it.

The main types of VIP tools are video analysis tools, image enhancement
tools, clustering tools, image transform tools, basic structures and operations

15



tools, object description tools, structural analysis tools and object recogni-
tion and classification tools. At present fish detection and tracking have been
performed more than the other tasks, hence the ontology has been populated
with most of the tools associated with these tasks. For other tasks that have
not been performed, e.g. fish clustering, the ontology will be extended and
populated in due course. Detection and tracking tools fall under the class
‘Video Analysis Tool’. Other types of video analysis tools are event detection
tools, background modelling tools and motion estimation tools.

The class ‘Object Description Tool’ specifies tools that extract features
such as colour, texture, size and contour, while image transform tools are
those concerned with operations such as point, geometric and domain trans-
formations. ‘VIP Technique’ is a class that contains technologies that can
perform VIP operations. For now, two types of machine learning techniques
have been identified. These techniques could be used to accomplish the task
of one or more VIP tools. For example, neural netwworks can be used as
classifiers as well as detectors.

The Capability Ontology can be used for reasoning during workflow com-
position using planning. As planning takes into account preconditions before
selecting a step or tool, it will assess the domain conditions that hold to be
used in conjunction with an appropriate VIP tool.

4.5 Walkthrough

Based on the devised sub-ontologies, a walkthrough of their usage to provide
different levels of vocabulary in a seamless and related manner is explained
here. The flowchart in Fig. 7 outlines the workflow enactment process em-
phasising on points that require ontological usage.

The user may have a high level goal or task such as “Detect all the fish in

the video 1.mpeg” in mind. One way this could be represented and selected
are via the following criterion-value pairs in natural language:

[Goal: goal = fish detection]
[Constraints: Performance = memory, Quality = reliability,
Accuracy = prefer miss than false alarm, Occurrence = all]

[Video Descriptions: Brightness = not known, Clearness = not known,
Green Tone = not known]

As a first step, the user selects the goal s/he wishes to conduct via the
workflow interface. This corresponds to steps 1 and 2 in the flowchart. Once
the goal is retrieved, it is checked against the goal ontology (step 4). Axioms
in the goal ontology are used to check if the goal is indeed one that is valid
for the application in question. In this case the instance ‘fish detection’

16



Figure 7: Flowchart of the workflow enactor’s interaction with the user an-
notated with ontology use. Shaded processes denote user-provided input.

is checked against the class ‘goal’ to determine if they belong to the same
hierarchy.

Next, the related constraints for the goal are determined (steps 5 and

17



6). These are additional parameters to specify rules or restrictions that ap-
ply to the goal. For the goal ‘fish detection’, the relevant constraints are
Performance Criteria, Quality Criteria, Accuracy and Occurrence, con-
tained in the goal ontology. The user may choose to provide all, some or
none of these values. Adopting the same principle used for goal retrieval,
constraint values are checked if they are valid (step 7), i.e. if they are de-
scendants of the class ‘Constraint on Goal’.

Then, depending on the goal, the user is prompted for the video descrip-
tions (steps 9 and 10). For the task ‘fish detection’, the descriptions required
are brightness, clearness and green tone levels. As before, the user may
choose to provide all, some or none of these values. The values obtained are
checked against the video description ontology (step 11). The checking of
validity is again the same as with the goal and constraints, except that the
values (instances) are checked against the class ‘descriptor’ in the video de-
scription ontology. In the absence of user information, constraints are set to
default values while video descriptions are obtained via preliminary analysis.

Once the goal, constraints and video descriptions are determined, the
formulation of the user’s problem is complete and this information will be
fed to the planner (step 12). The inner workings of the planner will be
described in Section 5.1. Basically, the planner seeks to find steps in the
form of VIP tools composed in sequential, iterative and conditional fashions
in order to solve the task. At each step of the way, the planner attempts to
find a suitable tool by consulting the capability ontology (step 14/16). This
is done using the ‘check capability’ function, described in Algorithm 1 below.

check_capability(planning-step S, planning-mode Auto)

If Auto is true

Retrieve a tool, T that can perform S from capability ontology:

getTool(S)

Check that domain-criteria tied to this tool (if any) hold:

check_criteria(T)

Else

Display description of S, D to user:

hasDescription(S, D)

Retrieve ALL tools that can perform S from capability ontology:

For each tool ti in Ts

Retrieve recommended domain descriptions, RD for ti:

hasPerformanceIndicator(ti, RD)

Display ti and RD to user

End for

Display also system’s recommended tool, ts

getTool(S)

Prompt user to select a tool T

Return T

18



getTool(S)

canPerform(T, S)

instance(T, T1)

descendant_of(T1, tool)

Return T

check_criteria(T)

If a set of domain-criteria, DC exist for this tool

hasPerformanceIndicator(T, DC)

Retrieve the list of preconditions, P for DC:

instance_att_list(DC, P)

If all preconditions in P hold

return DC

Else return Fail

Else return ‘no_criteria’

Algorithm 1: The ‘check capability’ function for VIP tool (planning step) selec-
tion.

First it retrieves a tool that can perform the planning step. Subsequently,
it checks if the selected tool is linked to a list of domain conditions that
are deemed suitable for it according to image processing experts’ heuristics.
Not all tools are tied to domain conditions. The domain conditions that
are suitable for this tool are checked against the current domain conditions.
If all of them hold, then the tool is selected for execution. Otherwise it
will try to find another tool where such conditions hold, failing otherwise.
This is applied when the planning mode is automatic (steps 13 and 14).
In semi-automatic mode, user will make this tool selection whenever more
than one tool is present to perform a planning step. All the tools and their
recommended descriptions are displayed to the user who will select one of
them (steps 15 and 16). The descriptions are expressed in natural language
to ease readability for the user. When a tool is selected, it is applied directly
to the video or image in question (step 18). This planning interleaved with
execution process continues until the task is solved, i.e. when the goal is
achieved (step 19).

5 Planning and Workflow Enactment

At the heart of the system lies a workflow enactor that interfaces the interac-
tions with the user and coordinates all the activities between the components
within the system. The main component is a planner that is responsible for
the derivation of video and image processing (VIP) solutions based on the

19



provided goal and domain descriptions. Therefore, the planner is a reasoner
that translates the high level non-technical terms (user goals and preferences)
to low level technical terms (VIP operations) for workflow composition. This
is done with the assistance of the process library and ontologies. Two key
innovations of the planner are the ability to support workflow execution (in-
terleaves planning with execution) and can perform in automatic or semi-
automatic (interactive) mode. It extends the capabilities of typical planners
by guiding users to construct more optimal solutions via the provision of
recommended descriptions for the tools. It is also highly adaptable to user
preferences.

5.1 Planner Design and Representation

The planner was designed with the aim of enhancing the flexibilities of exist-
ing Hierarchical Task Network (HTN) planners. HTN planning uses so-called
methods or refinements to describe the decomposition of non primitive tasks
in terms of primitive and other non primitive tasks. Primitive tasks are
directly executable by applying an operator. The planner starts with an ab-
stract network representing the task to be accomplished, and proceeds by
expanding the abstract network into more detailed networks lower down in
the abstraction hierarchy, until the networks only contain executable actions.
HTN methods are a form of domain-specific knowledge (in the form of task
decompositions). This greatly reduces the search space of the planner by en-
coding knowledge on how to go about looking for a plan in a domain and also
enables the user to control the type of solutions that are considered. Due
to its successes and practicalities, several major HTN planners have been
developed over the past decades, namely O-Plan [5], SHOP [25], I-X [30],
HyHTN[18] and SHOP2 [24].

The design includes interleaving planning with execution, and providing
automatic and semi-automatic (interactive) modes of planning. The semi-
automatic mode of planning enables the user to construct more optimal so-
lutions by providing recommended descriptions when more than one tool is
available to perform a primitive task.

The implementation of the planner has been kept separate to the mod-
elling of the domain. The planner itself is domain-independent and can be
tailored to be used in different problem scenarios as long as the domain
descriptions and relevant ontologies are provided. Domain-specific informa-
tion is encoded in the knowledge base as facts and in the process library as
primitive tasks and methods. The planner and domain model are described
declaratively using SICStus Prolog 4.0. The planner was built based on
ordered task decomposition where the planning algorithm which composes

20



tasks in the same order that they will be executed.
The input to the planner are the goals, objects and conditions of the

objects at the beginning of the problem (initial state), and a representation
of the actions that can be applied directly to primitive tasks (operators). For
HTN planning, a set of methods that describe how non primitive tasks are
decomposed into primitive and non primitive tasks are also required. The
output should be (partial) orderings of operators guaranteed to achieve the
goals when applied to the initial state.

A video processing task can be modelled as an HTN planning problem,
where a goal list, G is represented as the VIP task(s) to be solved, the prim-
itive tasks, p are represented by the VIP primitive tasks and the operators,
O are represented by the VIP tools that may perform the primitive tasks di-
rectly. The methods, M specify how the non primitive tasks are decomposed
into primitive and non primitive subtasks. The primitive tasks and methods
are contained in the process library.

Adapting the conventions provided in Ghallab et al. [11], an HTN plan-
ning problem is a 5-tuple

P = (s0, G, P,O,M)

where s0 is the initial state, G is the goal list, P is a set of primitive tasks,
O is a set of operators, and M is a set of HTN methods. A primitive task,
p ∈ P is a 3-tuple

p = (name(p), preconditions(p), postconditions(p))

where name(p) is a unique name for the primitive task, preconditions(p) is a
set of literals that must hold for the task to be applied and postconditions(p)
is a set of literals that must hold after the task is applied.

An HTN method, m ∈ M is a 6-tuple

m = (name(m), task(m), preconditions(m), decomposition(m), effects(m),
postconditions(m))

where name(m) is a unique name for the method, task(m) is a non primitive
task, preconditions(m) is a set of literals that must hold for the task to be
applied, decomposition(m) is a set of primitive or non primitive tasks that
m can be decomposed into, effects(m) is a set of literals to be asserted after
the method is applied and postconditions(m) is a set of literals that must
hold after the task is applied. The planning domain, D, is the pair (O,M).

21



5.2 Primitive Tasks, Operators and Methods

30 VIP operators were identified and implemented for performing the task
video classification according to brightness, clearness and algal levels, fish
detection and counting. They were developed using a combination of top-
down and bottom-up approaches that allowed a suitable level of granularity
of the operators [23]. The corresponding primitive tasks that the operators
can act upon are encoded in the process library. As stated earlier, primitive
tasks are those that can be performed directly by operators or VIP tools.

For each primitive task, its corresponding technical name, preconditions,
parameter values, output values, postconditions and effects of applying this
task are specified. The preconditions are all the conditions that must hold
(prerequisites) for this primitive task to be performed. The effects are condi-
tions that will be asserted or retracted after completion of the task and the
postconditions are all the conditions that must hold after the task is applied.

Non primitive tasks are decomposable to primitive and non primitive
subtasks. Schemes for reducing them are encoded as methods in the process
library. For each method, the name of the method, the preconditions, de-
composition, effects and postconditions are specified. The decomposition is
given by a set of subtasks that must be performed in order to achieve this
non primitive task. For VIP tasks, the methods are broadly categorised into
three distinct types; non recursive, recursive and multiple conditions. Non
recursive method is the most common form that does not involve loops or
branching of any sort, for example a direct decomposition of a video clas-
sification method into processing the image frames, followed by performing
the classification on the frames and finally writing the resulting frames onto
a video. Recursive methods, as its name suggest, model loops, hence the
decomposition of these methods will include itself as a subtask. Multiple
conditions arise when there is more than one decomposition for a method.
For instance, texture features can be computed by either computing the
histogram values followed by computing the statistical moments or by com-
puting the Gabor filter. Two separate decompositions will be possible for
computing the texture features.

5.3 Planner Algorithm

Planning algorithms solve problems by applying applicable operators to initial
state to create new states, then repeating this process from the new states
until the goal state is reached. In HTN planning, the algorithm stops when
all the goal tasks have been achieved. The algorithm below describes the
main workings of the planner implemented for this thesis.

22



gplanner(initial-state S, goal-list [g1|G], domain D, solution-plan P)

Initialise P to be empty

If goal-list is empty, return P

Consider first element in the goal-list, g1 in goal list [g1|T]

Case 1: If g1 is primitive AND all its preconditions hold

1.1. If one or more operator instances (tools) match g1

Retrieve ALL operators (tools) T = [t1,..,tn] from capability

ontology that can perform g1

For each tool, ti in T

Retrieve suitable domain conditions for ti from capability ontology

End For

If more than one operator is available to perform g1

Display all applicable tools with suitable domain conditions

Prompt user to select preferred tool, tp

Else tp is the only available operator to perform g1

Apply tp to S and planning algorithm to rest of goal-list:

apply-operator(tp, Input_list, Add_list)

Check that all postconditions of g1 hold

gplanner(tp(S), G, D, P)

1.2 Else return fail

Case 2: If g1 is non primitive

2.1. If a method instance m matches g1 in S

AND all its preconditions hold

Append the decompositions of m into the front of the goal-list

Add all elements in m’s Add List to S

Check that all postconditions of m hold

Apply planning algorithm to this new list of goals:

gplanner(S, append(m(g1),G), D, P)

2.2 Else return fail

% Apply_operator

apply-operator(Tool, Input_list, Add_list, P, S)

Update solution-plan P with Tool (append Tool to the end of P)

Execute Tool with parameters Input_list

Add all elements in Add_list (effects) to S

Algorithm 2: Workings of the SWAV planner in semi-automatic mode.

The domain is represented by the predicates that contain video descrip-
tions (e.g. brightness, clearness and green tone levels), the constraints (e.g.
accuracy and processing time), methods (decompositions) and operators
(tools to execute the primitive tasks). The algorithm is a recursive func-
tion that works on the goal list until it is empty. It inspects each item in
the goal list to see if it is a primitive task. If the item is a primitive task,

23



it seeks to find an operator that can perform the primitive task. This is
done automatically or semi-automatically, depending on the planning mode
selected by the user. Once found, the operator is applied and the primitive
task is accomplished. If the task is not primitive, it looks for a method in-
stance that matches it and appends its decompositions to the start of the
goal list. The basis for the planning algorithm was taken from HTN planners
that generate plans in a totally ordered fashion, where tasks are decomposed
from left to right in the same order that they will be executed. In addition, it
can plan interactively, interleave planning with workflow execution and has
been enriched to make use of knowledge from ontologies.

5.4 Automatic or Interactive Mode of Planning

The planner works in either automatic or semi-automatic (interactive) mode,
determined by the user before planning takes place. In the automatic mode,
user intervention during tool selection is not required. At each planning step,
the planner itself selects the tool deemed most optimal based on the domain
conditions that match with the tool’s recommended domain conditions en-
coded in the capability ontology. These conditions have been determined
based on image processing experts’ heuristics (determined empirically). Thus
the preferred step in Algorithm 2 is selected by the system rather than the
user. When there are no heuristics to guide the tool selection, the first tool
encountered that can perform the primitive task is selected for execution.
Hence it follows a depth-first style of search.

In the semi-automatic mode, the planning process is interactive when
more than one tool is available to perform a primitive task. At this level, the
planner derives all the applicable VIP tools and their recommended domain
descriptions from the capability ontology (See Algorithm 1 in Section 4.5 for
the reasoning mechanism of this). The user selects the VIP operator/tool
of their choice based on the recommended domain descriptions for each tool
as guidance. Thus the planner allows the user to select a tool during the
planning process, giving them control and also the ability to make informed
decisions. The next section will highlight how this control is followed through
with user verification of the final result.

5.5 Interleaving Planning with Execution

The planner follows a style of planning interleaved with execution. Once a
VIP tool is selected, it is executed before the next planning step is inferred.
This is because domain conditions could change as a result of the application
of a selected tool. This would then affect the planning process of subsequent

24



steps. However, replanning is not allowed until execution of the whole task is
completed. This is due to the fact that intermediate results cannot be used
to assess the optimality of the selected VIP tools (neither by the system nor
the user) and finding a suitable heuristic for this purpose is not trivial.

Once planning is complete, the user has access to the final video con-
taining the result of applying the tool(s) that they have selected. This will
give them a good indication of the optimality of the tool(s) that they have
selected. Fig. 8 shows an example of this for a detection task. After viewing
this result, they may decide to replan in order to try different choices of tools.
Section 6 includes an evaluation of the learnability level achieved by the user
in selecting the optimal solutions based on the descriptions provided by the
system using the semi-automatic planning mode. The next section will il-
lustrate two examples on how domain descriptions can affect the selection of
planning operators.

(a) Adaptive Gaus-
sian Mixture Model.

(b) IFD Model. (c) Poisson Model. (d) W4 Model.

Figure 8: Results of applying four different background models for fish de-
tection and counting task for the same video.

6 Evaluation

Three hypotheses were formulated by taking into consideration factors such
as diversity in user requirements, variety in the quality of the videos (lighting
conditions, object movement, etc.) and vastness of the data made available:

1. Automated support could be provided for users without image process-
ing expertise to perform VIP tasks in a time-efficient manner using a
novel semantics- and planning-based workflow composition and exe-
cution system without loss of accuracy in the quality of the solutions
produced.

25



2. Constructing VIP solutions using multiple VIP executables employ-
ing planning and workflow technologies is more flexible and adaptable

towards changing users’ needs than modifying single executable pro-
grams.

3. The semantics and planning based automated-assisted mechanism to
compose and execute workflows for video processing tasks helps the
user manage and learn the processes involved in constructing optimal
solutions.

6.1 Data Set: Ecogrid Videos

Videos are captured, stored and made accessible to marine biologists contin-
uously via Ecogrid [8], a joint effort between the National Center for High
Performing Computing (NCHC), Taiwan and several local and international
research institutes which provides a Grid-based infrastructure for ecological
research. Data is acquired using geographically distributed sensors in various
protected sites such as Ken-Ting national park, Hobihu station and Lanyu
island. The video streams collected have enabled analysis in underwater reef
monitoring, among others. Interesting behaviours and characteristics of ma-
rine life such as fish and coral can be extracted from the videos by performing
analysis such as classification, detection, counting and tracking.

Figure 9: Sample shots from Ecogrid videos. From left to right: clear with
fish, algal presence on camera, medium brightness with fish, completely dark
and human activity.

As can be seen from the image captures in Fig. 9, the videos were taken in
an uncontrolled open sea environment where the degree of luminosity and wa-
ter flow may vary depending upon the weather and the time of the day. The
water may also have varying degrees of clearness and cleanness. In addition,
the lighting conditions change very slowly, the camera and the background
are fixed, images are degraded by a blocking effect due to the compression,
and the fishes are regions whose colours are different from the background
and are bigger than a minimal area (they are unusable otherwise). Further-
more, as algae grow rapidly in subtropical waters and on camera lens, it

26



affects the quality of the videos taken. Consequently, different degrees of
greenish videos are produced. In order to decrease the algae, frequent and
manual cleaning of the lens is required.

6.2 Tasks and Subjects

Based on the video descriptions and other features displayed from the video
captures, as well as discussions with marine biologists, several broad cate-
gories of tasks have been identified as useful for this test data. These are
described below, in order of increasing complexity:

T1. Video classification based on brightness, clearness and algal levels.

T2. Fish detection and counting in individual frames.

T3. Fish detection, counting and tracking in video.

(a) T1: Video classification. (b) T2: Fish detection and
counting in frames.

(c) T1 & T3: Video classi-
fication, fish detection and
tracking.

Figure 10: Sample visual results for video processing tasks.

The results are annotated to the original video in text and numerical
format. For example, Fig. 10(a) shows the brightness, clearness and green
tone values on the resulting video while Fig. 10(b) shows the detected fish
and the number of fish in the current frame image on the top left (incorrect
in this frame). These tasks can be conducted in a combined fashion for more
sophisticated analysis, for instance T1 and T3 can be combined to conduct
video classification, fish detection, counting and tracking. Fig. 10(c) shows
an example result for this task. The final video is annotated with brightness,
clearness, green tone and fish presence values, as well as the number of fish
in the current frame (number at the top left of image) and the number of
fish so far in the video (number at the bottom left of image).

These tasks will be useful to extract higher level analyses such as popula-
tion analysis, fish behaviour at certain times of the day or year and suitable

27



environmental conditions for fish presence. However, extracting useful char-
acteristics and features from these videos would take too long to perform
manually. One minute’s clip requires approximately 15 minutes’ human ef-
fort on average for basic processing tasks [4]. The following subjects and
systems were used for experimental purposes:

S1. An image processing-naive user who constructs the solution with the as-
sistance of the workflow tool using full automatic and/or semi-automatic
mode.

S2. An image processing-naive user who solves the goal manually.

S3. An image processing expert who constructs the solution using spe-
cialised tools (e.g. by writing an OpenCV [15] program).

S4. A workflow modeller who constructs the solution using the workflow
tool (e.g. by manipulating the process library and ontologies).

6.3 Statistical Hypothesis Testing using the t-distribution

Experiments demonstrating performance gains of plan generation with the
assistance of the workflow tool over manual processing and program genera-
tion from scratch were conducted. Performance gains are measured in CPU
time, manual processing time, and quality of solutions as compared to the
ground truth provided by marine biologists, where appropriate. The experi-
ments were designed according to the principles outlined in [14], where first
a hypothesis and its counterpart null hypothesis are formulated, followed by
the variables, conditions and subjects for the experiments, then the hypothe-
sis is tested by providing measurement levels to report the results and finally
an analysis to accept or reject the null hypothesis. The two sample depen-
dent t-test was performed to determine the t value and its corresponding p

value in order to accept or reject the null hypothesis. The t value is given by
Equation 1 below:

t =
d̄e

√

σ2

de

n

(1)

where n is the sample size, d̄e is the mean of the differences between the
manual and automatic times and σde is the standard deviation of this mean.
Based on the values of t and n, a significance level was computed. A signif-
icance level of p < 0.05 was taken as an acceptable condition to reject the
null hypothesis.

28



Where appropriate, tasks and systems from Section 6.2 will be referred
to. All the experiments were conducted on 27 videos selected from Ecogrid.
For experiments to test efficiency (Section 6.4) and user learnability (Section
6.6), eight participants from a variety of backgrounds were selected as sub-
jects. None of them possessed image processing expertise; three computer
scientists and five non computer scientists. The backgrounds of the non com-
puter scientists include medicine, history and archaeology, physics, ecology
and marine biology. The reason for having this variety was to test the us-
ability and effects of the system on a mix of users, with technical expertise
(computer scientists) and without, with domain expertise (ecologist and ma-
rine biologist) and without. These two experiments also required user-driven
evaluation measures. All experiments were conducted on a laptop operating
on Ubuntu 8.04 with 512 MB RAM and 1.6 GHz processor speed.

6.4 Manual vs. Automatic Approaches for Video Clas-

sification Task

In this experiment, subjects were asked to classify 10 videos according to
brightness, clearness and green tone (algal) levels. First, they were required
to conduct the task manually, and then using the workflow tool. Using man-
ual processing, each video was played using a video processing software where
the subject may pause and repeat the video in order to determine the bright-
ness, clearness and green tone levels. The subjects record the classification
value for brightness as “bright”, “medium”, or “dark”, the classification value
for clearness as “clear”, “medium” or “blur” and the classification value for
green tone level as “green” or “not green”. They were advised to select these
classification values based on their own judgement.

Using the workflow tool, the subjects selected the option to perform the
task ‘Video classification according to brightness, clearness and green tone
levels’. Then they were prompted to select between a fast and a slow pro-
cessing mode. For each video, they were required to run the slow processing
followed by the fast processing. They were given the freedom to perform this
task automatically using just the fast processing mode when they were confi-
dent enough to do so, otherwise they would proceed to use the two modes on
the videos. The reason for conducting the experiment in this fashion was to
test the subjects’ confidence in the quality of the fast processing. The num-
ber of videos processed before the user switched to using the fast processing
mode only was noted.

The fast processing algorithm was taken as the automatic processing time
as it has been empirically shown to produce the same quality of results as the

29



slow one. The CPU time taken to perform the task automatically and the
time taken to perform the task manually were computed. The accuracy of
the results were computed using the following procedure. As there were three
classification criteria (brightness, clearness and green tone), each matching
value of the automatic (system) or manual (subject) classification value with
the ground truth was given a score of 1. For each video manipulated by
each subject, a score of 3 would indicate 100% accuracy, in which case all
three classification values (brightness, clearness and green tone) matched
the recommended values. For all 10 videos manipulated by each subject,
an average score was computed. A percentage was then calculated for the
quality of the solution produced. The users were also asked three additional
questions, whether they noticed any difference in the fast and slow automatic
processing times, whether they found the automatic processing less tedious
than the manual processing and which method would they prefer to use if
the tasks were to be done frequently.

6.4.1 Results

Table 1 contains the average time measurements, accuracies of the results and
the differences between automatic and manual processing for each subject
who participated in the experiment. As explained in the previous section,
the metrics were produced based on 10 videos processed by each subject,
out of a total of eight subjects. There was a total of 27 videos, where each
video was manipulated three times throughout the entire experiment. The
classification result provided by a marine biologist was taken as the base line
for the accuracy. Based on these values, statistical tests were performed to
evaluate the efficiency of the methods of processing and the quality of the
solutions produced by the methods.

6.4.2 Testing of Efficiency

Statistical hypothesis testing using the t-distribution was conducted to mea-
sure the dependencies between the results obtained for the times taken to
conduct automatic and manual processing. The hypothesis, null hypothesis,
independent and dependent variables for this test are given below.

• Hypothesis: Image processing-naive users solve VIP tasks using the
workflow tool faster than performing them manually.

• Null hypothesis: There is no difference in the time taken for image
processing-naive users to solve the task manually and with the workflow
tool.

30



Table 1: Time and accuracy of automatic versus manual processing, and
their differences for video classification task.

Subject Automatic Manual Difference

Time Accuracy Time Accuracy Time Accuracy
(s) (%) (s) (%) de da

1 2.12 61.11 47.90 76.19 -45.78 -15.08
2 2.13 61.11 39.65 53.33 -37.52 7.78
3 2.09 61.11 40.12 25.00 -38.03 36.11
4 2.06 61.11 45.33 87.50 -43.28 -26.39
5 2.13 61.11 35.02 52.38 -32.89 8.73
6 2.14 61.11 48.25 80.00 -46.11 -18.89
7 2.06 61.11 37.20 66.67 -35.14 -5.56
8 2.02 61.11 17.95 52.78 -15.93 8.33

Average 2.09 61.11 38.93 61.73 -36.83 -0.62

• Independent variables:
– Data (27 Ecogrid videos of various quality).
– Subjects and systems used for solving task: S1, S2.
– Task T1: Classify video according to brightness, clearness and algal
levels.

• Dependent variables: Time taken to perform task manually versus time
taken to perform task automatically.

The t value, given by equation 1 was computed for this data yielding
-11.43. The degree of freedom is set to n − 1, which is 7. A value of t(7)
= -11.43 corresponds to a significance level of p ≪ 0.0001. This means that
the null hypothesis can be rejected. It can be concluded that the efficiency
of automatic processing is significantly higher than the efficiency of manual
processing.

6.4.3 Testing of Accuracy

A similar statistical hypothesis testing using the t-distribution was conducted
to measure the dependencies between the accuracies between the results ob-
tained for automatic and manual processing. The hypothesis, null hypothesis,
independent and dependent variables for this test are given below.

• Hypothesis: The quality of the solutions produced by image processing-
naive users when solving video classification task using the automatic
workflow tool is higher than quality of the solutions produced when
they perform the task manually.

31



• Null hypothesis: There is no difference in the quality of the solutions
produced by image processing-naive users to solve the task manually
and with the workflow tool.

• Independent variables
– Data (27 Ecogrid videos of various quality).
– Subjects and systems used for solving task: S1, S2.
– Task T1: Classify video according to brightness, clearness and algal
levels.

• Dependent variables: Quality of results as compared to ground truth.

The t value was computed using Equation 1, yielding -0.09133. The
degree of freedom is set to n − 1, which is 7. A value of t(7) = -0.09133
corresponds to a significance level of p = 0.4649. This means that the null
hypothesis cannot be rejected. Hence, the accuracy of manual processing,
although slightly higher on average, is not significant enough to indicate that
it is more accurate than the solutions produced by automatic processing.

6.4.4 Analysis

One observation from the results is on the relationship between the manual
processing times and accuracy. The accuracy of the subjects’ manual classifi-
cation varied slightly. It was noted that subjects who had domain knowledge
(e.g. ecologist and marine biologist) had higher levels of accuracies in the
video classification than their counterparts without domain expertise (e.g.
computer scientists). However, they did not take less time in performing
this classification. The main findings of this experiment that compares au-
tomatic and manual processing using efficiency and accuracy metrics are the
following:

• Automatic processing for video classification is on average 94.73% faster
than manual processing without loss of accuracy in the solutions pro-
duced.

• 75% of the subjects found performing the video processing task using
the automatic tool was less tedious than performing it manually.

• All subjects preferred to use the automatic tool over the manual method
if they were to conduct the video classification task frequently.

The next experiment was aimed at testing the efficiency and accuracy
levels in the workflow tool and conventional image processing approaches
when it comes to adapting to changes in user preferences, with a focus on
varying domain descriptions.

32



6.5 Single- vs. Multiple-Executable Approaches on

Software Alteration

This experiment aims to show that the workflow system which adopts a
multiple-executable approach adapts quicker to changes in user preferences
than its single-executable counterpart (specialised image processing programs).
This is the test of adaptability of the workflow system to reconstruct solutions
efficiently when the user changes the domain descriptions for a task.

In this experiment, an image processing expert and a workflow modeller
have access to the same set of video and image processing tools; the former
has an OpenCV program with available image processing algorithms written
as functions and the latter in the form of independent executables defined in
the process library.

Both subjects were familiar with the systems that they were manipulat-
ing. They were given an identical task to perform – fish detection, counting
and tracking in a video. Both systems were able to perform this task using
a default detecting and tracking algorithm. In the workflow tool, the Gaus-
sian mixture model was defined as the detection algorithm, no methods were
defined for the selection of any other detection algorithm. In the OpenCV
program, the Gaussian mixture model was used as the detection algorithm.
Six scenarios were presented to both subjects containing changes to domain
conditions (see Table 2). Both subjects were asked to make modifications
or additions of code to their respective systems to cater for these changes in
order to solve the VIP task as best as possible. For this purpose, they were
both given which detection algorithm should be selected in each case. The
number of lines of code (OpenCV for image processing expert and Prolog
for workflow modeller) and the time taken to make these modifications were
computed for both subjects. A line of code in OpenCV is represented by a
valid C++ line of code, i.e. a line ending with a semi-colon (;), a looping
or conditional statement (if/for/while). In Prolog, a line of code is a single
predicate or fact ending with a full stop (.) or a statement ending with a
comma (,).

The quality of the solutions is calculated as follows. There are two values
to be considered, the first is the number of fish in the current frame and the
second is the number of fish in the video so far. Each of these is given a
score of 1 if there is a match with the ground truth. For each frame, the
accuracy could be 0%, 50% or 100%. An average accuracy as a percentage

is computed by taking the accuracy of 10 frames (1st, 6th, 11th, ..., 46th)
from each video over all 27 videos.

33



6.5.1 Results

Table 2 contains the results obtained for this experiment. For each domain
description altered, the time taken to modify the system, the number of lines
of code added, and the accuracy of the solution are given.

Table 2: Comparisons of number of new lines of code written, processing
times and accuracies of solutions between single-executable image process-
ing program and multiple-executable workflow system to adapt to changing
domain descriptions.
Domain Descriptions Image Processing Expert Workflow Modeller
(User Preference) New Lines Time Accuracy New Lines Time Accuracy

of Code (min.) % of Code (min.) %

Prefer false alarm than miss 43 16 58.25 3 3 59.30
Prefer miss than false alarm 56 23 62.55 2 2 64.80
Clear, no background movement 43 16 58.46 3 3 60.71
Clear, background movement 61 27 60.42 2 2 60.10
Blur, no background movement 43 16 60.88 3 3 62.09
Blur, background movement 57 32 63.80 2 2 61.22

Average 50.50 21.67 60.73 2.50 2.50 61.37

The results produced are used to compare the efficiency of two different
problem solving systems given equal starting points in the form of available
solutions and equal expectations in the alterations required when user prefer-
ences change. Despite measuring the lines of code between two programming
languages, the experiment does not intend to compare the two programming
languages, but rather, to show the differences in effort required (i.e. time)
to solve video processing problems using two different approaches (single-
versus multiple-executable systems).

6.5.2 Testing of Efficiency

Statistical hypothesis testing using the t-distribution was conducted to mea-
sure the dependencies between the results obtained for the times taken to
make changes to the workflow tool and OpenCV program. The parameters
for this test are given below.

• Hypothesis: Constructing VIP solutions using the workflow tool is
faster than modifying existing image processing programs each time
a domain description is altered for a fish detection, counting and track-
ing task.

34



• Null hypothesis: There is no difference in the time taken to solve the
task using the workflow tool and modifying existing image processing
programs each time a domain description is altered for the same task.

• Independent variables
– Data (27 Ecogrid videos of various quality)
– Subjects and systems used for solving task: S3, S4.
– Task: T3 with the domain conditions given in Table 2.

• Dependent variables
1) Time taken to modify existing OpenCV program versus time taken
to encode changes in workflow tool.
2) Number of new lines of code added to encode the changes in OpenCV
program and workflow tool.

Using the formula provided by Equation 1, the value of t was computed to
be 7.01. The degree of freedom is set to n − 1, which is 5. A value of t(5)
= 7.01 corresponds to a significance level of p ≪ 0.05. This means that the
null hypothesis can be rejected. Thus the workflow tool is faster to adapt to
changes in domain descriptions than the image processing program.

6.5.3 Testing of Accuracy

Again, statistical hypothesis testing using the t-distribution was conducted
to measure the dependencies between the results obtained for the accuracies
of the solutions provided by the workflow tool and the OpenCV program.
The parameters for this test are given below.

• Hypothesis: Constructing VIP solutions using the workflow tool yields
more accurate solutions than modifying existing image processing pro-
grams each time a domain description is altered for a VIP task.

• Null hypothesis: There is no difference in the quality of the solutions
obtained using the workflow tool and modifying existing image pro-
cessing programs each time a domain description is altered for a VIP
task.

• Independent variables
– Data (27 Ecogrid videos of various quality)
– Subjects and systems used for solving task: S3, S4.
– Task: T3 with the domain conditions given in Table 2.

• Dependent variables: Quality of solutions, assessed against manually
determined values.

35



Using the formula provided by Equation 1, the value of t was calculated
to be 1.01. The degree of freedom is set to n− 1, which is 5. A value of t(5)
= 1.01 corresponds to a significance level of p = 0.1794. This means that
the null hypothesis cannot be rejected. Thus, the quality of the solutions
produced by the workflow tool, although on average slightly better than the
quality of the solutions of the image processing program, is not significant
enough to be considered more superior.

6.5.4 Analysis

When an existing specialised image processing program can be found to
support a specific task, the specialised program works very well. However,
when the user requirements (domain descriptions) are altered this is no longer
guaranteed without modifications to the program. This modification could
range from 16 to 32 minutes for fish detection and counting tasks and take at
most 61 lines of code to be written. The workflow tool, however, is adaptable
to these changes very efficiently, taking just 3 minutes and 3 lines of code at
most. The steps involved for the workflow modeller to encode these changes
include adding a method in the process library to encapsulate the new domain
descriptions as preconditions, and the relevant detection algorithm. Two
more lines are added in the capability ontology to introduce this description
as a performance criteria and to tie it to a relevant tool.

In terms of accuracy, the workflow tool on average performed slightly
better than the image processing program, however, this difference was not
significant enough to conclude that it produced solutions with better quality.
Hence, without loss of accuracy, the multiple-executable workflow tool is a
more adaptable problem solver than the single-executable image processing
program.

6.6 User Learnability in Selection of Optimal Tool for

Detection Task

In this experiment, the system’s ability to help the user learn and manage
the processes involved in constructing optimal video processing solutions is
tested. An optimal tool is one that yields the best overall performance for
the VIP task. When the workflow tool is run in full automatic mode, it self-
manages the creation of workflows for the user. This is achieved by making
use of expert heuristics in assisting with the planning process. However, the
system is not able to assess the optimality of the plan that results from this
automatic solution as verifying video processing solutions computationally is

36



not a trivial task. Humans, on the other hand, are able to assess the optimal-
ity of the plan by viewing the video containing the results. For example, it is
trivial for a human to verify that the system has counted two fish in a frame
by observing the count displayed in the resulting frame and the bounding
boxes around the fish (e.g. Fig. 10(c)). The aim of this experiment is to test
whether the user can compare the results of different tools for the same task
and learn the best performing tool from this comparison.

In this experiment, each subject was presented with seven pairs of similar
videos and seven pairs of dissimilar videos to perform a fish detection and
counting task. Similar videos have the same video descriptions (brightness,
clearness and green tone levels), while dissimilar videos have differing video
descriptions. For these 14 pairs, it was determined previously that similar
videos will use the same detection algorithms (hence same optimal detection
tool) while dissimilar videos required different detection algorithms (hence
not the same optimal detection tool) and have been used as baseline values
for the evaluation. The subject was asked to perform this task using the
semi-automatic mode of the workflow tool on all 14 pairs of videos. The
ordering of the pairs were mixed between similar and dissimilar. The aim
was to test if they were able to determine the most optimal tool for the
detection algorithm based on the recommended descriptions provided by the
workflow tool. If they were, then they should select this tool as the most
optimal one in the next similar video presented to them. They should also
not conclude to select this tool as the most optimal one in the next dissimilar
video presented to them.

Before conducting the experiment, subjects were given a demonstration
of one run using the semi-automatic mode to familiarise them with the proce-
dures involved. Furthermore, they had performed the experiment in Section
6.4 and have some familiarity with the system. For each pair, they first con-
ducted the task on the first video given. The workflow tool will display the
video to the subject before proceeding to solve the task. Knowing the de-
scriptions of the video (e.g. brightness, clearness, movement speed, presence
of fish), the subject will have more information when selecting a detection
algorithm with the help of the recommended descriptions provided by the
workflow tool. After selecting a detection algorithm, the workflow tool will
display the final result of this task based on this selection visually. The sub-
ject repeated the same task on the same video by trying another detection
algorithm, if they wished, and observed the result.

When they were confident with the most optimal tool, they proceeded
to perform the same task on the second video in the pair. This video could
have similar video descriptions as the previous one (i.e. similar) or not (i.e.
dissimilar). If the video descriptions are similar then the best tool inferred

37



from the previous run should also be the best (most optimal) tool for the
second run, otherwise it should not. During the second run, subjects were
asked which tool they would choose based on what they have inferred from
having conducted the experiment on the first video. Each time they selected
the best tool inferred from the first video for the second video in the similar
pairs, they were given a score of “correct”. Each time they selected the best
tool from the first video for the second video in the dissimilar pairs, they
were given a score of “incorrect”. If they were not able to infer the most
optimal tool from the first run, and thus could not infer any tool for the
second video based on the first, they were given a score of “incorrect”. The
subjects were asked five additional questions on the usability of the system.
These included verification of the system’s design principles, which included
the option to provide constraints and video descriptions, usefulness of the
recommended descriptions, and ease of use.

6.6.1 Testing of User Learnability

Statistical hypothesis testing using the t-distribution was conducted to mea-
sure the dependencies between the results obtained for the number of times
the user selected the correct tool based on a previous similar video and the
number of times the user selected the incorrect tool based on a previous
dissimilar video. The parameters for this test are given below.

• Hypothesis: The semi-automated mechanism to compose workflows for
fish detection and counting task helps the user manage and learn the
processes involved in constructing optimal solutions.

• Null hypothesis: The descriptions provided by the workflow tool using
the semi-automated mechanism to compose workflows for fish detection
and counting task do not assist the user to learn the optimal solutions.

• Independent variables
– Data: 14 pairs of videos from 27 Ecogrid videos, 7 similar pairs and
7 dissimilar pairs.
– Subjects and systems used for solving task: S1.
– Task: T2 Detect and count fish in frames.

• Dependent variables
– Number of times correct tool was selected as optimal tool in second
video for similar pairs of videos.
– Number of times incorrect tool was selected as optimal tool in second
video for dissimilar pairs of videos.

38



6.6.2 Results

Table 3 shows the results obtained to assess the level of user learnability when
using the workflow tool for seven pairs of similar videos and seven pairs of
dissimilar videos.

Table 3: Number of times “correct” tool was selected in seven similar pairs
of videos, number of times “incorrect” tool was selected in seven dissimilar
pairs of videos.

Subject Similar Pairs Dissimilar Pairs Difference
No. correct choices No. incorrect choices c − i

c i d

1 6 2 4
2 4 3 1
3 5 2 3
4 6 1 5
5 4 3 1
6 6 2 4
7 4 2 2
8 5 3 2

Average 5 2.25 2.75

The value of t was calculated to be 5.59 using Equation 1.The degree
of freedom is set to n − 1, which is 7. A value of t(7) = 5.59 corresponds
to a significance level of p = 0.0004. This means that the null hypothesis
can be rejected. With this, it can be concluded that subjects, more often
than not, selected the correct (optimal) tool when they were presented with
a similar video and did not choose this tool by chance. Hence, the semi-
automatic mode has helped the user learn and manage the processes involved
in selecting the optimal steps when solving a task.

6.6.3 Analysis

The results in Table 3 indicate that subjects were able to select the correct
optimal tool when they were presented with a similar video 5 out of 7 times
on average (71.43% of the time). This is relatively high compared to the
instances when they incorrectly chose an optimal tool learnt from a video for
another video that is not similar to the one where they have inferred the tool
from, which was 2.25 out of 7 times on average (32.14% of the time). The
statistical test proves that the workflow tool is indeed able to help subjects
learn optimal VIP tools without having any image processing knowledge, but

39



purely from their own visual capabilities in judging visual descriptions and
from the textual descriptions provided by the system.

The user’s understanding is tested via the provision of the description of
the tools when there was more than one tool to perform a task. By repeating
the same task using a different tool, the user can gain insight into how a
different solution can be produced and could then ‘judge’ which tool should
be used for producing the most optimal solution. Hence when a new video
is presented and the same task is performed, the user would have learnt and
gained confidence in selecting the most suitable tool. The user can evaluate
the performance of any particular tool that they have selected for a particular
task. Using this feedback loop, the system can now learn which tools work
better for which type of videos (according to their video descriptions) and
under which constraint conditions.

To further validate the system’s usability and learnability features, the
findings of the questionnaire are summarised as follows:

• All subjects agreed on the appropriateness of having the option to
provide constraints and video descriptions to specify the VIP task in
more detail.

• All subjects found the recommended domain descriptions suitable and
helpful in assisting them make more informed decisions when selecting
the best detection algorithms (i.e. VIP tools).

• All subjects felt it was appropriate to be given the control to select
tools despite not having image processing expertise.

• On average, subjects were able to make the decision to run the fast
processing option for video classification task after just 6.4 runs.

• All subjects would prefer to use the automated tool if they were to
perform video classification and fish detection and counting tasks fre-
quently.

These findings indicate that although the workflow tool and the domain
that it manipulates are both complex, users without expertise in workflow
or image processing domains can learn how to use the workflow tool and
they can even learn some aspects of solving image processing problems via
selection of VIP tools. These were achieved in a short period of time as
indicated by the experiment’s results. The experimental findings also verify
and validate the strength of the integrated approach. The efficiency and
accuracy of the results obtained indicate that the workflow system is able to
produce results comparable to those produced by humans and by competing

40



systems (e.g. image processing programs). The use of ontologies has been
proven to be beneficial via the provision of recommended descriptions that
were useful to users. The planner’s correctness and completeness has been
tested on a set of VIP tasks (goals), constraints and detection algorithms.

7 Conclusions

This research has contributed towards the provision of automatic workflow
composition via a novel framework that hinges on two key technologies, on-
tologies and planning. The integration has resulted in a semantics-rich and
flexible mechanism that is beneficial for the scientific, research and applica-
tion communities.

The framework has been evaluated on video processing tasks, in particu-
lar for underwater videos that vary in quality and for user requirements that
change. Higher time-efficiency has been achieved in automated-supported
video processing tasks without loss of accuracy. In addition, a new, more
flexible approach for video processing which utilises multiple reusable exe-
cutables was introduced. Consequently, non-experts can also learn to con-
struct optimal video processing workflows which was impossible prior to this.

Optimistically, this framework could eventually be used for general-purpose
video processing, not just confined to underwater videos. It could also serve
as an educational tool for naive users on a larger scale. At present, this
approach is being integrated onto a heterogeneous multi-core environment
via a resource scheduler and also to a web-based front-end. It is envisaged
that this workflow will be extended to support the management of live video
streams for on-demand user queries.

References

[1] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein, F. Ley-
mann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and
S. Weerawarana. Business Process Execution Language for Web Ser-
vices Version 1.1 (BPEL). IBM, BEA Systems, Microsoft, SAP AG,
Siebel Systems, 2003. http://download.boulder.ibm.com/ibmdl/pub/

software/dw/specs/ws-bpel/ws-bpel.pdf. Last accessed: Apr 22 2013.

[2] J. Blythe, E. Deelman, and Y. Gil. Automatically Composed Workflows for
Grid Environments. IEEE Intelligent Systems, 19(4):16–23, 2004.

[3] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo. Managing the Evolution of Dataflows with VisTrails. In IEEE Workshop

41



on Workflow and Data Flow for Scientific Applications (Sciflow’06), pages
71–75, 2006.

[4] Y. H. Chen-Burger and F. P. Lin. A Semantic-based Workflow Choreogra-
phy for Integrated Sensing and Processing. In The 9th IEEE International
Workshop on Cellular Neural Networks and their Applications (CNNA’05),
2005.

[5] K. Currie and A. Tate. O-Plan: the Open Planning Architecture. Artificial
Intelligence, 52(49-86), 1991.

[6] E. Deelman, D. Gannon, M. Shields, and I. Taylor. Workflows and e-Science:
An Overview of Workflow System Features and Capabilities. Future Genera-
tion Computer Systems, 25(5):528–540, 2009.

[7] E. Deelman, G. Singh, M.H. Su, J. Blythe, Y. Gil, C. Kesselman, G. Mehta,
S. Patil, K. Vahi, B. Berriman, J. Good, A. Laity, J. C. Jacob, and D. S.
Katz. Pegasus: A Framework for Mapping Complex Scientific Workflows
onto Distributed Systems. Scientific Programming Journal, 13(3):219–237,
2005.

[8] Ecogrid. National Center for High Performance Computing, Hsin-Chu, Tai-
wan, 2006. http://ecogrid.nchc.org.tw. Last accessed: Apr 21 2012.

[9] I. Foster and C. Kesselman, editors. The Grid 2: Blueprint for a New Com-
puting Infrastructure. Morgan Kaufmann, 2nd edition, 2003.

[10] I. Foster, J. Voeckler, M. Wilde, and Y. Zhao. Chimera: A Virtual Data
System for Representing, Querying, and Automating Data Derivation. In
14th Conference on Scientific and Statistical Database Management, pages
37–46, 2002.

[11] M. Ghallab, D. Nau, and P. Traverso. Automated Planning: Theory & Prac-
tice. Morgan Kaufmann Publishers Inc., 2004.

[12] Y. Gil, V. Ratnakar, E. Deelman, G. Mehta, and J. Kim. Wings for Pegasus:
Creating Large-scale Scientific Applications using Semantic Representations
of Computational Workflows. In Proceedings of the 19th National Conference
on Innovative Applications of Artificial Intelligence (IAAI’07), pages 1767–
1774. AAAI Press, 2007.

[13] A. Gómez-Pérez, M. Fernández-López, and O. Corcho. Ontological Engineer-
ing. Springer, 2004.

[14] D. C. Howell. Statistical Methods for Psychology. Belmont, CA, 6th edition,
2007.

42



[15] Intel. Open Source Computer Vision (OpenCV) Library. 2006. http://

sourceforge.net/projects/opencvlibrary. Last accessed: Apr 22 2013.

[16] J. Kim, M. Spraragen, and Y. Gil. An Intelligent Assistant for Interactive
Workflow Composition. In Proceedings of the International Conference on
Intelligent User Interfaces (IUI’04), pages 125–131. ACM Press, 2004.

[17] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M. Jones, E. A.
Lee, J. Tao, and Y. Zhao. Scientific Workflow Management and the Kepler
System. Concurrency and Computation: Practice & Experience, 18(10):1039–
1065, 2005.

[18] T. L. McCluskey, D. Liu, and R. M. Simpson. GIPO II: HTN Planning in
a Tool-supported Knowledge Engineering Environment. In ICAPS’03, pages
92–101, 2003.

[19] G. Nadarajan and Y. H. Chen-Burger. Goal, Video Descriptions and Capabil-
ity Ontologies for Fish4Knowledge Domain. In Special Session on Intelligent
Workflow, Cloud Computing and Systems, (KES-AMSTA’12), 2012.

[20] G. Nadarajan, Y. H. Chen-Burger, and R. B. Fisher. A Knowledge-Based
Planner for Processing Unconstrained Underwater Videos. In IJCAI’09 Work-
shop on Learning Structural Knowledge From Observations (STRUCK’09),
2009.

[21] G. Nadarajan, Y. H. Chen-Burger, and R. B. Fisher. SWAV: Semantics-based
Workflows for Automatic Video Analysis. In Special Session on Intelligent
Workflow, Cloud Computing and Systems, (KES-AMSTA’11), 2011.

[22] G. Nadarajan and A. Renouf. A Modular Approach for Automating Video
Processing. In 12th International Conference on Computer Analysis of Images
and Patterns (CAIP’07), 2007.

[23] G. Nadarajan, C. Spampinato, Y. H. Chen-Burger, and R. B. Fisher. A
Flexible System for Automated Composition of Intelligent Video Analysis. In
7th International Symposium on Image and Signal Processing and Analysis
(ISPA’11), 2011.

[24] D. Nau, T. C. Au, O. Ilghami, U. Kuter, W. Murdock, D. Wu, and F.Yaman.
SHOP2: An HTN Planning System. Journal of Artificial Intelligence Re-
search, 20:379–404, 2003.

[25] D. S. Nau, Y. Cao, A. Lotem, and H. Muñoz Avila. SHOP: Simple Hierarchical
Ordered Planner. In International Joint Conference on Artificial Intelligence
(IJCAI’99), pages 968–973, 1999.

43



[26] T. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, M. Greenwood, T. Carver,
K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: A Tool for the
Composition and Enactment of Bioinformatics Workflows. Bioinformatics,
20(17):3045–3054, 2004.

[27] T. Oinn, M. Greenwood, M. Addis, N. Alpdemir, J. Ferris, K. Glover,
C. Goble, A. Goderis, D. Hull, D. Marvin, P. Li, P. Lord, M. Pocock, M. Sen-
ger, R. Stevens, A. Wipat, and C. Wroe. Taverna: Lessons in Creating a
Workflow Environment for the Life Sciences. Concurrency and Computation:
Practice and Experience, 18(10):1067–1100, 2006.

[28] A. Renouf and R. Clouard. Hermes - A Human-Machine Interface for the
Formulation of Image Processing Applications, 2007. https://clouard.

users.greyc.fr/Hermes/index.html. Last accessed: April 22 2013.

[29] T. Tannenbaum, D. Wright, K. Miller, and M. Livny. Condor – A Distributed
Job Scheduler. In T. Sterling, editor, Beowulf Cluster Computing with Linux.
MIT Press.

[30] A. Tate. Intelligible AI Planning - Generating Plans Represented as a Set of
Constraints. In Proceedings of the Twentieth British Computer Society Special
Group on Expert Systems International Conference on Knowledge Based Sys-
tems and Applied Artificial Intelligence (ES’00), pages 3–16. Springer, 2000.

[31] I. Taylor, E. Deelman, D. Gannon, and M. Shields. Workflows for e-Science.
Springer, New York, 2007.

[32] I. Taylor, M. Shields, I. Wang, and A. Harrison. The Triana Workflow
Environment: Architecture and Applications. In I. Taylor, E. Deelman,
D. Gannon, and M. Shields, editors, Workflows for e-Science, pages 320–339.
Springer, New York, 2007.

[33] I. Taylor, M. Shields, I. Wang, and O. Rana. Triana Applications within Grid
Computing and Peer to Peer Environments. Journal of Grid Computing,
(2):199–217.

[34] S. van Splunter, F. M. T. Brazier, J. A. Padget, and O. F. Rana. Dynamic Ser-
vice Reconfiguration and Enactment using an Open Matching Architecture. In
International Conference on Agents and Artificial Intelligence (ICAART’09),
pages 533–539, 2009.

[35] G. von Laszewski and M. Hategan. Java CoG Kit Karajan/Gridant Workflow
Guide. Technical report, Argonne National Laboratory, Argonne, IL, USA,
2005.

44


