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Abstract

We present a novel method for finding more good
feature pairs between two sets of features. We first se-
lect matched features by Bi-matching method as seed
points, then organize these seed points by adopting
the Delaunay triangulation algorithm. Finally, we
use Triangle-Constraint (T-C) to increase both number
of correct matches and matching score (the ratio be-
tween number of correct matches and total number of
matches). The experimental evaluation shows that our
method is robust to most of geometric and photometric
transformations including rotation, scale change, blur,
viewpoint change, JPEG compression and illumination
change, and significantly improves both number of cor-
rect matches and matching score.

1. Introduction

There are many tasks in computer vision which re-
quire effective techniques for finding more good (i.e.
discriminative and accurate) correspondences between
two sets of features, such as symmetry detection [5],
wide baseline matching [9] and building panoramas [2].
And numerous feature extraction schemes have been
proposed, like Harris corner detector [3], SIFT [7] and
SURF [1], to capture distinctive and stable features.
However, similarity measurements of features are lim-
ited for the existing schemes. The most popular mea-
surement is to adopt dot product between descriptors
and then compare the ratio between the first and the sec-
ond nearest neighbors against a predefined threshold to
decide whether they are matched or not (we denomi-
nate this measurement as the original matching method,
OMM). Even though this strategy reduces influences
from most of geometric and photometric transforma-
tions, the drawback is that it sacrifices a great many of
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(b) Matching result by TCM(a) Matching result by OMM

Figure 1. Matching result comparison between the
OMM and our method T-CM with the same matching
threshold. To better illustrate, we only show 1/6 of cor-
rect matches in each feature set (green ‘+’s) randomly.
There are 39 hits (matching score 85.97%) in (a) and
216 hits (matching score 93.11%) in (b).

features that should be on the list of correct matches,
which significantly weakens the power of feature ex-
traction schemes.

Currently, a few improvements of similarity mea-
surement have been developed, such as spectral tech-
nique [6] based on pairwise constraints, the method
called Circular Earth Mover’s Distance (CEMD) [8]
that relied on an adaptation of Earth Mover’s Distance,
and the solution of scale and rotation invariant match-
ing [4] which can efficiently and accurately match fea-
tures. These measurements improve the matching ac-
curacy, but they neglect the importance of number of
correct matches.

The neglect inspires us to propose an effective sim-
ilarity measurement, called Triangle-Constraint Mea-
surement (T-CM), designed for increasing both the
matching score and the number of correct matches to
provide the tasks based on local image features with
more good features (see Fig. 1).
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(a) Illustration of the Delaunay algorithm.
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(b) Illustration of the Triangle-Constraint.

Figure 2. Example of the Triangle-Constraint Mea-
surement.

2 Triangle-Constraint Measurement

In this section, we detail the flow of Triangle-
Constraint Measurement including seed point selection,
organization of seed points and Triangle-Constraint.

2.1 Seed point selection

We adopt the Bi-matching for selecting seed point
pairs (stable matches) for the rest of tasks, which is
based on the observation that true positive matches of
distinctive features between the reference image (IA)
and the matching image (IB) are more likely to be bi-
matched (from IA to IB and inversely). In other words,
if the relationship between matches is unidirectional,
then it is probably to be either incorrect or unstable
that needs to be discarded. Therefore, we assume that
if there are few stable matches, the corresponding im-
ages are very likely to be irrelative or distorted signifi-
cantly. The features finally matched by the bi-matching
method are considered as seed points, e.g. the yellow
points shown in Fig. 2.

2.2 Organization of seed points

As is known, triangle is the simplest and most sta-
ble polygon. Given the vertexes, the triangle is estab-
lished without extra ordering confirmation of the ver-
texes. Therefore, we use the Delaunay triangulation al-
gorithm to organize the seed points obtained from the
seed point selection stage. It integrates the isolated
points as triangles and maximizes the minimum angle
of all the angles of the triangles in the triangulation, i.e.
it tends to avoid skinny triangles. We only implement

the Delaunay triangulation algorithm on the seed points
from IA, where the triangles are joint but not overlapped
in IA. The seed points from IB are organized according
to the same order with those from IA due to the one-to-
one relationship between the seed points from IA and
IB . An example of the Delaunay triangulation is shown
in Fig. 2 (a). Note that the triangulation in IB might be
not exactly the same with that in IA due to the false pos-
itive matches survived from the Bi-matching, e.g. the
seed point pair 1 in Fig. 2 (a). The Triangle-Constraint
described later is suitable to solve this problem.

2.3 Triangle-Constraint

So far, we have obtained the triangles in IA with
their correspondences in IB. We take the case shown
in Fig. 2 (b) for example to explain how the Triangle-
Constraint works. For generalizing the case, we replace
the vertexes 2, 6 and 8 by a, b and c (a’, b’ and c’) re-
spectively for the left (right) triangle. The features are
limited by the triangle �abc and �a′b′c′ , i.e. the fea-
tures out of the triangles (the red ‘*’s in Fig. 2 (b)) are
not considered in current case. In other words, only the
sets of features inside the triangles (the ‘�’s in Fig. 2
(b)) denoted as PA and PB are involved.

For each feature Pi ∈ PA (e.g. the feature marked
by dashed red circle) in �abc, the relationship between
Pi and the vertexes of �abc is

Pi = a + β(b − a) + γ(c − a), (1)

where β and γ are the scale coefficients of the vector
(b− a) and (c− a) respectively. Fortunately, the three
vertexes of �abc are known and the parameters K can
be computed easily by

K =

⎡
⎣

α
β
γ

⎤
⎦ =

⎡
⎣

xa xb xc

ya yb yc

1 1 1

⎤
⎦
−1 ⎡

⎣
xi

yi

1

⎤
⎦ , (2)

where α = 1 − β − γ. The same parameters for the
relationship between the estimated point Pe (the black
point in Fig. 2 (b)) and the vertexes of �a′b′c′ in IB hold
true if the triangles are true positive correspondence. As
a consequence, we estimate the coordinates of Pe via

⎡
⎣

xe

ye

1

⎤
⎦ =

⎡
⎣

xa′ xb′ xc′

ya′ yb′ yc′

1 1 1

⎤
⎦

⎡
⎣

α
β
γ

⎤
⎦ . (3)

To be more robust to noises and distortions, we de-
fine the area around the Pe within R pixels (in our ex-
periments, R = 3) as candidate area and the features in
this area as candidate features (the green ‘�’s in Fig.
2 (b)). We denote C as the set of candidate features.
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The similarity score between the Pi and the candidate
feature Cj is measured by

sj = 1.5−(distj/R)2 × DT
i Dcj , (j = 1, 2, ..., |C|), (4)

where distj is the Euclidean distance between the Cj

and the Pi, Di and Dcj are the descriptors for the Pi

and the Cj respectively, and | ◦ | stands for the cardi-
nality of a set. If the maximum score of all the features
in C is greater than a predefined threshold τ , the corre-
sponding feature pair is considered as temporary match,
and there is at most one match for every feature. In our
experiments, we use τ = 0.4 for all the evaluations.

After processing all the features from PA, there is
a set T containing all the temporary matches for PA

and PB . The temporary matches are accepted as final
matches if they satisfy

|T | > λmin{|PA|, |PB|}, (5)

where λ = 0.3 in our experiments. Otherwise, the tri-
angle pair �abc and �a′b′c′ and the temporary matches
between them are discarded. This straightforward strat-
egy is based on the observation that if the pair of the tri-
angles is true correspondence, they will approximately
even perfectly satisfy the Triangle-Constraint due to the
accurate vertexes, or they will be greatly different. And
if all the relative triangles of a vertex are discarded, the
vertex is then removed from seed points. This strat-
egy is able to reduce wrong matches in the Triangle-
Constraint step and filter out the false positive matches
survived from the Bi-matching step.

The Triangle-Constraint Measurement is invariant to
translation, rotation and scale transformations due to the
accurate features obtained from the Bi-matching step.
It is also invariant to affine transformation and robust to
partially perspective transformation, since the Triangle-
Constraint itself is affine invariant.

3 Experimental Evaluation

Our method is suitable to apply to almost all the local
image features. In this work, we use the popular SIFT
as the example.

Data set. We evaluate our method on real im-
ages with different geometric and photometric trans-
formations and for different scene types. Figure 3
shows the first image (the original image) in every cat-
egory of INRIA dataset1 (Leuven, illumination change;
UBC, JPEG compression; Bikes, blur, structured scene;
Trees, blur, textured scene; Boat, scale change, struc-
tured scene; Bark, scale change, textured scene; Graf-
fiti, viewpoint change, structure scene; Wall, viewpoint
change, textured scene).

1http://www.robots.ox.ac.uk/∼vgg/research/affine/

(c) Bikes(a) Leuven (d) Trees(b) UBC

(f) Bark(e) Boat (g) Graffiti (h) Wall

Figure 3. Example images from eight categories of
INRIA dataset.

Evaluation criterion. The criterion of our evalua-
tion is based on the number of correct matches and the
matching score (the ratio between the number of cor-
rect matches and the number of all matches). Since
the experiments are based on the same feature extrac-
tion scheme, the numbers of correspondences for the
OMM and our method have no difference. Therefore,
this criterion is sufficient to report the performance dif-
ference between the measurements clearly. Note that a
match is defined correct if the distance between the ac-
curate location (projected by the provided homography
for each pair of relative images) and the estimated loca-
tion (computed by the OMM or our method) is less than
6 pixels, incorrect otherwise.

Relative image pair matching. Every category of
INRIA dataset contains six images capturing the same
scene with geometric or/and photometric transforma-
tions. Figure 4 shows the results in terms of the number
of correct matches and the matching score for differ-
ent categories. As can be seen, the number of correct
matches of T-CM is considerably more than that ob-
tained by the OMM for all eight categories. With re-
spect to the matching score, almost all acquired from
the T-CM are higher than those from the OMM except
for the image sequences of Trees and Wall as shown
in Fig. 4 (d) and (h). As for Trees, there are a huge
amount of features (the most number of correct matches
reaches about 8000 by the T-CM) that increase the pos-
sibility of accidentally considering incorrect matches as
correct. Note that we don’t draw the matching score
for the last pair of the Wall sequence, since no seed
point is obtained from the Bi-matching step and con-
sequently there is no match between the images by us-
ing our method (only 3 unstable correct matches by the
OMM), i.e. the matching score is undefined ( 0

0 ).
Irrelative image pair matching. From another per-

spective, a good measurement has to be robust to noisy
images. Therefore, there is an additional pair of irrel-
ative images taken by ourselves to test and verify the
validity of our method. As shown in Fig. 5, there are 22
hits by the OMM and 0 hit by our method.
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Figure 4. Experiment results of number of correct matches (upper ones) and matching score (lower ones) for different
categories from INRIA dataset.

Figure 5. Irrelative image pair. There are 22 hits by
the OMM and 0 hit by our method.

4 Conclusion

Similarity measurement is the crucial part for numer-
ous tasks built on local image features. There are two
factors for a good measurement, i.e. the matching accu-
racy and the number of correct matches. Unfortunately,
existing methods hardly take in consideration both two
factors. We have proposed a new measurement to im-
prove the matching accuracy and the number of cor-
rect matches simultaneously. Experimental results have
demonstrated that our method outperformed the OMM
in terms of matching relative and irrelative image pairs.
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