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Abstract

We address the question of, what structure of a set
of lines in space constitutes a critical configuration to
three generally positioned cameras. By critical config-
uration, it is meant a set of lines in space whose image
projections to the cameras do not allow unique determi-
nation of the cameras’ relative positions in space. We
approach the question by looking into the trifocal ten-
sor of the cameras, a quantity tightly related to the cam-
era geometry. We focus on structures of lines in space
that are common in reality – the linear structures – and
examine which of them would not allow the tensor to
be uniquely determined. Linear structures of lines in-
clude linear ruled surface, linear line congruence, and
linear line complex, and more specifically line pencil,
point star, and ruled plane. We offer a summary of by
how much such families of line set are shy of the general
enough structure for a unique determination of the ten-
sor. We also point out how many lines need be visible
minimally in each of them, for the full information of the
associated structure to be revealed in the image data.
We present synthetic and real image results to confirm
the findings. The findings are important to the valid-
ity and stability of algorithms related to structure from
motion and projective reconstruction using line corre-
spondences.

1. Introduction

Determining the relative geometry of a number of
camera positions in space is an indispensable problem
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in computer vision and robotics. Should the camera po-
sitions be about different cameras fixated in space, the
information is a pre-requisite of relating and in turn fus-
ing the visual data captured by the respective cameras.
Should they be about the same camera moving in space,
the information is then about the motion of the cam-
era and in turn of the person or vehicle that is holding
it. Both cases represent important applications of vision
and robotics.

One approach of solving the problem is to let the
cameras capture image data of the surroundings, and
seek to determine the geometry from such image data.
On the approach, much work [4, 5] has been devoted
to the case that the image data are considered as im-
age projections of a set of points in space. In particular,
what point set in space can or cannot allow the geometry
to be uniquely determined, how many points are mini-
mally needed, and how the geometry can be uniquely
determined etc. have been extensively studied.

In comparison, less work has been devoted to the
case that the image data are about image projections of a
set of lines. It is known that the geometry can indeed be
recovered from image observations of a line set, as long
as the line set is of a structure general enough. How-
ever, only limited works are present in the literature on
what line structures are critical configurations to the de-
termination of camera geometry. Here by critical con-
figuration, it is meant line structures that do not allow
the relative geometry of the cameras to be uniquely de-
termined from the image data.

Lines are in many circumstances as amply available
as points, especially in the urban environment. There
is even evidence [8] that 3-D determination from lines
could be more accurate than from points.

This work aims at offering a comprehensive analysis
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Figure 1. Examples of scenes consisting
of line structures that are of the class
point-star and ruled plane respectively.

of what line sets are critical structures to three gener-
ally positioned cameras. We focus on linear line struc-
tures, which encompass linear ruled surface, linear line
congruence, and linear line complex, and more specif-
ically, line pencil, point star, and ruled plane. Exam-
ples of such line structures in real life are shown in
Fig. 1. These critical line structures are not uncommon
in reality, and thus the work is important to the valid-
ity and stability of algorithms related to structure from
motion and projective reconstruction using line corre-
spondences.

In all cases, we assume that the three camera posi-
tions are general with respect to the set of lines, mean-
ing that the images are not degenerate images like those
having multiple lines in space projected to the same im-
age line, a result of accidental alignment.

We approach the problem from the perspective of the
trifocal tensor of the cameras, a 3×3×3 quantity closely
related to the cameras’ relative geometry. Given image
projections of a set of say N lines, a 2N × 27 matrix
we refer to as the tensor estimation matrix can be con-
structed, which constrains the values of the trifocal ten-
sor through a homogeneous system of linear equations.
Whether the trifocal tensor can be uniquely determined
then depends upon whether the estimation matrix is of
enough rank or not. The facts that the trifocal tensor
consists of altogether 27 scalar values, and that there
are always 9 nonlinear constraints (called the admiss-
ability constraints in the literature) relating the entries
of the tensor (the constraints include that the trifocal
tensor is defined up to arbitrary nonzero scale), together
imply that should the rank of the estimation matrix be
less than 27−9 = 18 the trifocal tensor cannot possibly
have a unique solution.

Our findings include that the rank of the estimation
matrix is reduced to 7, 11, 15 if the observed lines come
from a line pencil, a point-star, and a ruled plane respec-
tively, which are line families belonging to linear line

space; and 12, 19, 23 if the lines come from a general
linear ruled surface, a general linear line congruence,
and a general linear line complex, which are subclasses
of linear line structures.

We also offer a summary of how many lines need be
visible minimally in each of the above line families for
the full information of the associated line structure to
be revealed in the image data. We present synthetic and
real image results to confirm the findings.

2. Previous Work

As discussed, in camera motion determination the
ambiguity issue possibly involved in the use of line cor-
respondences has not been given as much attention as
to the use of point correspondences. Buchanan [2, 3]
pointed out that (3, 6, 5)-congruence is a critical line
set, and suggested a few line sets that defeat the Liu-
Huang algorithm [9]. Maybank [11] used Semple’s rep-
resentation to describe lines so as to let line congruence
be parameterized by surfaces of lower degree. How-
ever, Semple’s representation does not have a direct
way of expressing the projection of 3-D lines to image
lines. Navab and Faugeras [12] addressed the analysis
of the critical sets of lines in the Euclidean domain using
two equations from Liu and Huang [9] and related the
degeneracy analysis to the Liu-Huang algorithm. The
treatment was however in terms of geometric primitives
directly related to individual camera positions and ori-
entations, not the collective quantity – the trifocal ten-
sor. We believe there is advantage in treating the de-
generacy issue in terms of trifocal tensor. In particular,
the rank of the estimation matrix involved in the trifocal
tensor’s determination could be a measure of the de-
generacy level of the observed line set, and the parallel
measure in direct geometric primitives is not as accessi-
ble. [10] enabled global geometric analysis for multiple
images. It made it possible to utilize all incidence con-
ditions involving point and line features of all images
simultaneously for consistent recovery of structure and
motion from multiple views.

The work of Stein and Shashua [14] was among the
very few that looked at the degeneracy of line struc-
tures from the viewpoint of trifocal tensor. However,
the work focused only on the structure of linear line
complex (LLC). It pointed out that the tensor estima-
tion matrix has the rank reduced to 23 if the observed
line set belong to an LLC.

This work aims at enumerating all linear line struc-
tures that are critical, and pinpointing how critical or
how under-determining they are in terms of constrain-
ing the trifocal tensor.



3. Preliminaries and Notations

Plücker line coordinates. Given two 3-D points
MT ∼ (M̄T|m) and NT ∼ (N̄T|n) of a 3-D line,
the Plücker line coordinate is the homogeneous 6-vector
L ∼ (aT|bT)T , where a = M̄× N̄, b = mN̄− nM̄,
and a, b satisfy the Plücker equality: ΩL,L = aT b =
0. With this, a line in 3-D can be represented as a point
that lies on a non-singular quadric Ω in P5, a represen-
tation called the Klein model [7].
Camera line projection matrix. The 3 × 6 line pro-
jection matrix [1] that projects 3-D line (in Plücker co-
ordinates) to image line is P̃ ∼ [det(P̄)P̄−T|[p]xP̄],
where P ∼ (P̄|p) is the camera matrix.

4. Linear Line Structures

General 3-D lines form a quadruply infinite system
P 4 [13]. Specific family of lines that possess 1 degree
of freedom (DoF), 2 DoFs, and 3 DoFs are respectively
called ruled surface, line congruence, and line complex.
In particular, if the constraints that reduce the DoFs of
the line set are all linear, the above line structures are
called linear. In this work, we restrict our discussion
to linear line structures, i.e., we focus on linear ruled
surface, linear line congruence, and linear line com-
plex.

Linear line congruence is defined by two indepen-
dent equations aT

1 L = aT
2 L = 0. Linear line complex

(LLC) is the 3-D linear manifold of lines defined by one
linear equation aT

1 L = 0. If the 6-vector a1 satisfies the
Plücker equality (Ωa1,a1 = 0), the LLC is called spe-
cial; otherwise, the LLC is called general. The degener-
acy study of Stein and Shashua [14] was about special
LLC.

On top of the above, if the Plücker equality hap-
pens to be linear, the linear line structures are reduced
to the linear line space. In such a case, linear ruled
surface becomes line pencil, and linear line congruence
becomes point-star or ruled plane.

Sketches of the line structures are shown in Fig. 2 for
illustration.

5. Critical Configurations of Line Structure
in 3-View Analysis

Image Line Matrix K̄. For any 3-D line L visible in
three given views, its image projections l, l′, l′′ in the
three views are related to L in Plücker coordinates by:

K̄ =

 l
l′

l′′

 =

 P̃
P̃′

P̃′′

 L (1)

Figure 2. Illustration of the various lin-
ear line structures. Top to bottom, left
to right: linear line spaces including line
pencil, point-star, and ruled plane; linear
line structures including linear ruled sur-
face, linear line congruence, and linear
line complex.

where P̃, P̃′, P̃′′ are the three cameras’ line projection
matrices, L is a 6×1 matrix, l, l′, l′′ will be each a 3×1
matrix. Here the matrix K̄ represents an encapsulation
of all image data in the three views about the 3-D line,
and can be termed the image line matrix. If data about
N lines are included into the above equation (which we
hereafter assume), L will become a 6 × N matrix, and
l, l′, l′′ will be each a 3×N matrix, and the image line
matrix K̄ a 9×N matrix.
Linear Constraints for Trifocal Tensor. Each line
correspondence over three views gives two independent
linear equations for the trifocal tensor [6] whose entries
can be listed out in a column fashion as a 27× 1 vector
t. Given N line correspondences, we have 2N linear
equations for t, which can be collectively captured by a
2N×27 matrix A. This matrix A is the aforementioned
tensor estimation matrix. The tensor-equivalent vector
t and the estimation matrix A are related by At = 0.

Notice that the tensor estimation matrix A is totally
dependent on the image line matrix K̄ in the following
way:

l′T [T1, T2, T3]l′′[l]× = 0T (2)

where Ti, i = 1, 2, 3 are the matrix decompositions of
the trifocal tensor. In other words, the determination
of the trifocal tensor depends upon A, which in turns
depends upon K̄.



Through an extensive analysis which involves inter-
mediate results expressible as a number of lemmas and
theorems, we have come to the findings that are sum-
marized in Table 1. In brief, the analysis proceeds in
this manner. We show that if the K̄ matrix defined by
the line correspondences owns respectively certain rank
properties, the rank of the estimation matrix A will be
capped accordingly at certain values. We then show
that the respectively required properties of the K̄ matrix
are indeed there should the line correspondences come
from the various line structures mentioned above.

Retrieving trifocal tensor in critical configura-
tions. Notice that the tensor estimation matrix from the
observations of linear line congruence and linear line
complex is under-ranked but the rank is no less than 18.
It means that though the estimation matrix A itself does
not allow a unique determination of the trifocal tensor,
but if the 9 admissibility constraints of the tensor are
brought in, the tensor can still be determined uniquely.

Line transfer between Views. Empirical experimen-
tation also indicates the following. While the trifocal
tensor determined from any degenerate line structure
L are not unique and cannot be used to transfer gen-
eral lines (more specifically, lines beyond the degener-
ate line structure L itself) from any two views of the
input triplet of views to the third view, the tensor can be
used to transfer lines that are within the line structure L.

Due to space limit, here we cannot possibly include
the derivations here; interested readers can refer the de-
tails to [15]. In this article, we choose to present empir-
ical experimentation on both synthetic and real image
data to prove the findings.

Table 1. A classification of linear line
structures according to the rank of the
tensor estimation matrix.

Line structure Rank Min. No. lines
Line pencil 7 4

Point star 11 6

Ruled plane 15 8

Linear ruled surface 12 6

Linear line congruence 19 10

Linear line complex 23 12

6. Experimental Results

Massive experimentation on synthetic and real image
data have been conducted to verify the findings summa-
rized in Table 1. Here we present two sets of results for
illustration.
Ruled Plane. A ruled plane structure was generated in
3-D, and three views of 50 lines of it were created and
they are shown in Fig. 3(a) respectively. Fig. 3(b) shows
the logarithmic values of all singular values for the line
structure. Plain visual check already shows that the rank
of the estimation matrix was no more than 15.

Figure 3. Three views of 50 lines that be-
long to a ruled plane: rank(A) ≤ 15; (a)
the three views; (b) magnitudes of all sin-
gular values of the tensor estimation ma-
trix.

Point Star. In a real image experiment we constructed
a scene that was composed of a cube and square board,
with square grids covering every surface of the scene.
The images were captured by a consumer-grade cam-
era (Fuji FinePix S602 Zoom camera) at 2048 × 1536
resolution. Image lines were precisely located by hav-
ing two widely separated grid-corner points identified
on each of them, and line correspondences were manu-
ally established carefully. The grid-corner points came
from four different planes: three faces of the cube and
one square board behind the cube. Lines and subse-
quently line correspondences could be established from
points within a plane as well as across different planes.
Three views of 15 lines of a point star were captured as
displayed in Fig. 4(a),(b),(c). Fig. 4(d) shows the singu-
lar values in logarithmic form. The rank of the estima-
tion matrix A was indeed no more than 11, as predicted
by the findings.

7. Conclusion and Future Work

We have offered a rank classification of the structure
of a set of lines in space in regard to the determina-
tion of the trifocal tensor from three views of the lines.
An unprecedented study, it lays down what linear line
structures in space represent critical configurations to



Figure 4. Three views of 11 lines of point
star: rank(A) should be no more than 11:
(a),(b),(c): the three views, (d) the singular
values of the tensor estimation matrix.

the task of determining the camera geometry, how criti-
cal they are, and how many lines minimally need be vis-
ible for the full information of each of the structures to
be revealed in the image data. Experimental results on
synthetic and real image data prove empirically that the
findings are valid. The analysis on linear line structures
lays down a framework for the analysis on structures
beyond linear. Possible future work includes extension
of the study for nonlinear line structures.
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